1	Affiliative social relationships and coccidian oocyst excretion in a cooperatively
2	breeding bird species
3	Claudia A.F. Wascher ¹ , Daniela Canestrari ² & Vittorio Baglione ³
4	
5	¹ School of Life Sciences, Anglia Ruskin University, United Kingdom
6	² Unidad Mixta de Investigación en Biodiversidad, Campus de Mieres, University of
7	Oviedo, Spain
8	³ Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Spain
9	
10	
11	
12	
13	
14	Short title: Parasite shedding and social relationships in crows
15	
16	Corresponding author (present address):
17	Claudia A.F. Wascher: School of Life Sciences, Anglia Ruskin University, East Road,
18	Cambridge, CB1 1PT, United Kingdom; Phone: ++4369912381419; e-mail:
19	claudia.wascher@gmail.com
20	
21	
22	
23	
24	
25	

26

27 Abstract

28	In group living animals, behavioural interactions with conspecifics strongly modulate an
29	individual's physiological stress response. Stable social relationships may reduce an
30	individual's stress response, which in turn can affect the immune system and health.
31	Ultimately, positive health effects of stable social bonds may contribute to maintain
32	group living. We investigated whether, in cooperatively breeding carrion crows (Corvus
33	corone), the quality of social relationships correlates with coccidian oocyst and
34	nematode eggs excretion. We repeatably collected behavioural data on dyadic social
35	interactions and individual droppings to quantify parasite eggs and oocysts from 36
36	individuals in a captive population of carrion crows in northern Spain. Individuals with
37	strong social bonds, living with more relatives and in larger groups excreted a
38	significantly smaller proportion of droppings containing coccidian oocysts. The
39	probability to excrete droppings containing nematode eggs was not affected by social
40	factors. The relationship between social interactions and coccidian oocyst excretion is
41	consistent with the idea that high quality social relationships can positively affects
42	individual's health, setting the stage for the evolution of stable social living.
43	
44	
45	
46	
47	Key words: carrion crows, coccidian oocysts, dominance rank, group size, parasites,
48	social bonds.
49	
50	

51

52 Introduction

53	In group living animals the social environment directly affects an individual's
54	physiology and health (DeVries, Glasper, & Detillion, 2003; Hanley & Stamps, 2002;
55	Holst, 1998; Sheridan, Dobbs, Brown, & Zwilling, 1994). Adverse effects are caused,
56	for example, by increased competition and aggressive behaviour (Chester, Bonu, &
57	Demas, 2010; Hawley, Lindström, & Wikelski, 2006), which affect especially low-
58	ranking individuals (Ungerfeld & Correa, 2007; Zuk, Kim, Robinson, & Johnsen,
59	1998). Further, large group sizes increase the exposure to directly transmitted parasites
60	(Côté & Poulin, 1995; Loehle, 1995) and social interaction patterns can also facilitate
61	pathogen transmission (Drewe, 2010; Fouchet et al., 2012).
62	
63	Affiliative behaviour and reliable social allies, on the other hand, have a stress-
64	reducing effect (Frigerio, Weiss, Dittami, & Kotrschal, 2003; Sachser, Dürschlag, &
65	Hirzel, 1998; Stöwe et al., 2008; Young, Majolo, Schülke, & Ostner, 2014). In several
66	mammalian species, stable social bonds have a fitness enhancing effect (Schülke,
67	Bhagavatula, Vigilant, & Ostner, 2010; Schülke et al., 2010; Silk et al., 2009, 2010b).
68	Social relationships in female chacma baboons (Papio hamadryas ursinus) help coping
69	with stressful events and increase longevity (Silk et al., 2010a), whereas social bonds in
70	male Assamese macaques (Macaca assamensis) and feral horses (Equus ferus caballus)
71	are directly linked to the number of offspring sired (Schülke et al., 2010). However, it
72	has also been observed that poor health could influence the social behaviour of group
73	living animals through sickness-induced behavioural modulation (Adelman & Martin,
74	2009; Dantzer, O'Connor, Freund, Johnson, & Kelley, 2008; Klein, 2003)

76	In humans, a rich social network and social support yields measurable positive
77	consequences for health (Berkman, 1995; Lisa. F. Berkman & Glass, 2000; Cassel,
78	1976; Cobb, 1976; Kiecolt-Glaser, McGuire, Robles, & Glaser, 2002; Theorell et al.,
79	1995; Uchino, Cacioppo, & Kiecolt-Glaser, 1996). Recent research, however, has
80	shown that complex sociality associated with the formation of strong, long-lasting
81	social bonds, is not unique to humans and closely related primate species (Pollen et al.,
82	2007; Shultz & Dunbar, 2010b). This suggests the fascinating hypothesis that positive
83	health effects of social bonds may contribute to maintain stable group living in a large
84	variety of taxa and types of social organizations (Silk, 2007).
85	
86	Among birds, corvids show complex social relationships. Common ravens (Corvus
87	corax), for example, are capable of forming valuable relationships, not only within
88	reproductive pairs but also with social partners in their groups (Fraser & Bugnyar, 2012;
89	Heinrich, 2011). Such bonds are characterized by low levels of aggression and high
90	levels of affiliative behaviours exchanged in a reciprocal way over extended periods of
91	time (Fraser & Bugnyar, 2010). Within such valuable relationships, individuals support
92	each other in agonistic encounters (Emery, Seed, von Bayern, & Clayton, 2007; Fraser
93	& Bugnyar, 2012) and share information and resources (Bugnyar, Kijne, & Kotrschal,
94	2001; de Kort, Emery, & Clayton, 2006; Fraser & Bugnyar, 2012), whereas they
95	typically act competitively with other non-bonded conspecifics (Bugnyar & Heinrich,
96	2005, 2006). In the present study we investigated the benefits of social bonds in carrion
97	crows (Corvus corone). In most European populations carrion crows form socially
98	monogamous pairs during the breeding season (Glutz von Blotzheim, 1985; Meide,
99	1984) whereas in northern Spain crows live in stable social groups of up to nine
100	individuals, consisting of the breeding pair and retained offspring as well as male

101	immigrants (Baglione, Canestrari, Marcos, & Ekman, 2003). Group living in carrion
102	crows is based on kinship (Baglione et al., 2003) and cooperation in nestling
103	provisioning (Canestrari, Chiarati, Marcos, Ekman, & Baglione, 2008) and territory
104	defence (Hillemann, et al. n.d.). Dominant males are more aggressive towards same sex
105	group members compared to females (Chiarati, Canestrari, Vera, Marcos, & Baglione,
106	2010) and are less aggressive towards related individuals than to unrelated ones
107	(Chiarati, Canestrari, Vila, Vera, & Baglione, 2011). In previous experiments,
108	attentiveness of captive crows towards visual or olfactory social stimuli was measured.
109	Males watched non-kin more often than kin individuals (Wascher, Núñez Cebrián,
110	Valdez, Canestrari, & Baglione, 2014) and, unlike females, showed less avoidance
111	towards the scent of a stressed familiar individual, compared to a stressed unfamiliar
112	one, which might reflect a stronger willingness to provide social support (Wascher,
113	Heiss, Baglione, & Canestrari, 2015).
114	
115	In this study, we investigated the correlation between the quality of individual's

116 social relationships and the prevalence of gastrointestinal parasites in captive groups of 117 carrion crows that varied in size and composition. In particular, we focused on the 118 pattern of excretion of oocysts of coccidian protozoans and different nematode species, 119 mainly Syngamus trachea and Capillaria sp. Coccidian oocysts are among the most 120 common endoparasites of birds (López, Figuerola, & Soriguer, 2007; Page & Haddad, 121 1995) and are widespread among corvids, including carrion crows (Cawthorn & 122 Wobeser, 1985; Poon & Chew, 1991; Upton, Langen, & Wright, 1995). Infections with 123 large numbers of coccidia clinically manifest as 'coccidiosis', which damages the 124 intestinal tract (Conway & McKenzie, 2007) and severely affects individual body 125 condition, longevity and fecundity by inhibiting the uptake of essential dietary

126	components (Hõrak et al., 2004; Stenkewitz, Nielsen, Skírnisson, & Stefánsson, 2016).
127	The pathogenicity is well documented in poultry (Allen, 1987; Allen & Fetterer, 2002;
128	Allen, Lydon, & Danforth, 1997), and further evidence is accumulating in wild bird
129	species (e.g. Brawner, Hill, & Sundermann, 2000; McGraw & Hill, 2000). Coccidia are
130	transmitted via the faecal-oral route, when oocysts undergo sporogony and become
131	infectious (typically within 24 hours after excretion) (Allen & Fetterer, 2002).
132	Similarly, different nematode species are described as regular endo-parasites of
133	different corvid species (Halajian et al., 2011; Loman, 1980). Syngamus trachea is
134	usually located in the trachea of birds and can lead to severe respiratory distress and
135	pulmonary lesions (Fernando, Stockdale, & Remmler, 1971; Nevarez, Gamble, Aczm,
136	Tully, & Avian, 2002). Capillaria sp. infect the intestinal tract and clinical symptoms
137	are weight loss, diarrhoea, regurgitation, anaemia and oral necrotic plaques (Schnieder,
138	Boch, & Supperer, 2006). Different nematode species infect their avian hosts via a
139	direct life cycle, when embryonated eggs are ingested. Nematode eggs have a prepatent
140	period of several weeks (Ortlepp, 1923).
141	

142 In the present manuscript we ask how social factors relate to parasite egg and oocysts 143 excretion patterns. First, we ask whether group size is related to parasite eggs and 144 oocysts excretion, as infections may spread more easily in crowded conditions. Second, 145 we ask whether parasite eggs and oocysts excretion correlate with a) the quality of the 146 social relationships, with individuals maintaining strong social bonds being less likely 147 to be infected than those with weak social bonds; b) the presence of relatives in the 148 group, through reduction of stressful conflicts and competition (Chiarati et al., 2011) 149 that can impair the ability to fight against parasites (Schat & Skinner, 2008); and c) an 150 individual's position in the dominance hierarchy, as dominance rank is known to

- 151 weaken the immune system either in subordinates or dominants, depending on the
- 152 relative allostatic load of social status in the respective species (Goymann & Wingfield,
- 153 2004).

154 Methods

155 Ethical Note

156 All procedures described in this manuscript were conducted in accordance with the

- 157 guidelines for the treatment of animals in behavioural research of the Association for
- 158 the Study of Animal Behaviour. Keeping crows in captivity and the procedures
- 159 performed were authorized by Junta de Castilla y León (núcleo zoológico 005074/2008;
- 160 EP/LE/358/2009).
- 161
- 162 Study subjects
- 163 We collected data during seven different phases (November 2008, December 2008 -
- 164 January 2009, January February 2013, May June 2013, January February 2014,
- 165 May June 2014, September October 2014), from a total of 36 crows (17 females, 19
- 166 males), which were housed in a large outdoor aviary (30 x 12 x 6 m) in Northern Spain.
- 167 The aviary was located in Solanilla, León in 2008 and 2009 (42°37'25" N, 5°26'58"
- 168 W), and moved location to Navafría, León in 2013 and 2014 (42°36'15" N, 5°26'56"
- 169 W). The outdoor aviary resembled a natural situation as much as possible, with external
- 170 walls and ceiling made of wire-net. It comprised four major compartments (12 x 6 x 3
- m) separated by wooden walls and connected through eight smaller testing

172 compartments (3 x 3 x 3 m). Compartments were equipped with wooden perches,

- 173 natural vegetation, rocks, and sheltered perches in the four corners, where the wire-net
- 174 ceiling was covered with transparent plastic boarding. There was no artificial floor, but
- 175 natural vegetation covered the ground. An enriched diet consisting of fruit, vegetables,
- bread, meat and milk products was provided on a daily basis. Water and dry food were
- 177 available *ad libitum*.
- 178

179	Birds were kept in groups that mirrored the social aggregations that naturally occur in
180	the wild (A) 'Flock': three or more juvenile individuals; (B) 'Pairs': adult male and
181	adult female. (C) 'Cooperative Family': a reproductive pair with its own already
182	independent offspring. In 2008, 2010 and 2012 crows were hand-raised and initially
183	kept in juvenile flocks. When birds aged and needed to be separated because of
184	increasing frequency of aggressions, this was decided according to observed behaviour
185	in the flock, <i>i.e.</i> individuals showing high frequency of affiliative behaviour and spatial
186	proximity where paired. In June 2008, two wild families were captured in their territory
187	at Sobarriba, brought into the aviary and subsequently kept in captivity (for more
188	details, see: Wascher, Núñez Cebrián, Valdez, Canestrari, & Baglione, 2014). Each
189	group of crows was kept in a different compartment, with acoustic but not visual contact
190	with the rest of the captive birds (supplementary figure 1). Birds changed over time
191	(from 2008 to 2014), so new groups were housed in separate compartments of the
192	aviary. In each phase of data collection, each group was housed in only one keeping
193	compartment of the aviaries. Between phases, group composition, size and holding
194	compartment could change (supplementary materials Table 1). Although birds did not
195	move freely between compartments and therefore were spatially isolated from each
196	other, they were all equally potentially exposed to parasite transmission as it occurs in
197	the wild, due to the outdoor settings and lack of hygienic isolation of each compartment.
198	Droppings were removed from the aviary on a regular basis, approximately every
199	couple of months, but no disinfection was applied.
200	

201 Behavioural data

A total of 1180 individual focal observations were recorded. Each observation lasted
5 minutes, and all occurring behaviours were recorded. For this study, we focused on

frequencies of agonistic behaviour (threat, chase flight, and fight) and affiliative behaviours (allopreening and sitting in contact). The identity of the interacting individuals was noted, as well as their role (initiator/receiver) and the outcome of the interaction (winner/loser). The loser of an interaction was defined as the individual retracting. All behavioural observations were recorded on video and analysed by one researcher (C.A.F.W.).

210

211 Social bonds: the composite sociality index

212 For each phase of data collection, we calculated a composite sociality index (CSI)

213 for each crow dyad within a group according to Silk et al. (2010a). A CSI was

214 constructed from two affiliative behaviours: contact sitting and allopreening. Note that

215 we used mean values per observation instead of absolute numbers because the number

216 of focal observations varied among individuals (supplementary Table 1). The higher the

217 CSI of a dyad, as compared with the frequency of affiliative interactions observed in its

218 entire group, the stronger the affiliative bond between the two individuals involved.

219 Dyads with CSI higher than the average of the entire sample and lower rates of

aggression compared to the average of the entire group, were classified as 'bonded'. For

each individual we calculated the maximum CSI value among all the dyads, reflecting

the strongest affiliative relationship for each individual in the group.

223

224 Agonistic encounters: Elo-rating

We calculated the success of individuals in agonistic encounters using Elo-rating in

226 'aniDom' (Sánchez-Tójar et al. 2017). Elo-rating allows to track dynamic changes in

227 rank over different phases of data collection, by rating each of the individuals

228 depending on the outcome of each single interaction (won or lost) and the probability of

that outcome occurring (Neumann et al. 2011).

230

231 Parasitological examination

232 During the entire study period, 760 individual droppings were collected on 160 days 233 of sample collection. A human observer was watching the crows from inside the aviary 234 and opportunistically collected droppings directly after defecation, so that each sample 235 could be assigned to a particular individual (supplementary Table 1). To avoid diurnal 236 variation in parasite eggs and oocysts shedding, we only collected droppings in the 237 morning between 0900-1200. For each individual, a maximum of three droppings were 238 collected on each sampling day (mean \pm SE = 1.256 \pm 0.238). Samples were stored in a 239 refrigerator and analysed within seven days after collection. Samples were examined for 240 eggs and oocysts of intestinal parasites. In 2008, we used a modified version of the 241 flotation method (Schnieder et al., 2006) to examine the occurrence of parasite eggs and 242 oocysts in the droppings. Fresh droppings (0.1 g) were suspended in a 2 ml collecting 243 tube with 1 ml saturated saline. Collection tubes were shaken for 10 seconds and 244 afterwards centrifuged for 5 minutes at 3000 rpm. After centrifugation, the collection 245 tubes were filled with saline solution and a cover slip (18 x 18 mm) was positioned onto 246 the tube. The high density of the saline solution causes the parasite eggs and oocysts to 247 float up and be caught on the cover slip (Carta & Carta, 2000). After 10 minutes, the 248 cover slip was moved onto a microscope slide and the parasite eggs and oocysts were 249 identified and counted. From January 2013 onwards, we used a two grid McMaster 250 (Marienfeld) counting chamber to examine the occurrence of parasite eggs and oocysts 251 in the droppings. The entire sample was weighed, then diluted with 3 ml saturated NaCl 252 solution per 0.1 g of droppings and thoroughly mixed. Afterwards, the solution was

253 filled into both McMaster counting chambers. After 10 minutes of resting period we 254 identified the parasite eggs and oocysts in both chambers. We used a compound 255 microscope with 100-fold and 400-fold amplification to identify parasite eggs and 256 oocysts. We found Coccidian oocysts, eggs of several nematode species (Capillaria sp., 257 Ascarida sp., Syngamus sp., Heterakis sp., Trichostrongylus tenius) and cestode eggs to 258 a varying degree. The proportion of positive samples was highest for coccidian oocysts 259 (31%, N = 760). Nematode eggs were found in 9% of samples and cestode eggs where 260 only found in less than 1 % of samples. We therefore limited our statistical analysis to 261 coccidian oocysts and nematode eggs and analysed their occurrence (presence/absence) 262 in the droppings, a measure that is unaffected by the sampling method used (Cringoli et 263 al., 2011; Rinaldia, Coles, Maurelli, Musella, & Cringoli, 2011). 264 265 Data analysis 266 We analysed the factors affecting the proportion of droppings containing 267 coccidian oocysts and nematode eggs in our housed crows using the *glmer* function 268 using R v. 3.0.2 (R Core Team 2016) and the glmer function in the *lm4* package 269 (version 1.1-19; Bates, et al. 2014). We calculated a GLMM with binomial error

270 distribution and a two-vectors response variable comprising the number of infected and

271 non-infected samples for each individual in any given period of data collection. Various

272 model diagnostics were employed to confirm model validity (visual inspection of

distribution of residuals, qq plots, residuals plotted against fitted values) none of which

suggested violation of model assumptions. To assess multicollinearity between fixed

275 factors, we calculated variance inflation factors (VIFs) using the vif function in the

276 package car (Fox & Weisberg, 2011). VIFs for all factors were below 1.5, indicating

that there was no issue with multicollinearity (Zuur, Ieno, Walker, Saveliev, & Smith,

278	2009). We based our model selection on second-order Akaike's Information Criterion
279	values (AICc; Hurvich, Tsai, & Chih-Ling, 1989). We calculated the difference between
280	the best model and each other possible model ($\Delta AICc$) and ranked the model
281	combinations according to their Δ AICc, which provides an evaluation of the overall
282	strength of each model in the candidate set. Multiple models qualified as the similarly
283	good models, <i>i.e.</i> $\Delta AICc \leq 2$ (Burnham, 2004; Burnham & Anderson, 2002) and
284	therefore we applied a model averaging approach, which calculates model averaged
285	parameters using the MuMIn package (version 1.15.6; Bartón, 2014). Full statistical
286	models are presented in the supplementary materials (supplementary Table 2 and 3).
287	Maximum CSI value, group size, number of related individuals, Elo-rating and sex were
288	included as explanatory variables. For each model, we fitted individual identity as a
289	random term to control for the potential dependence associated with multiple samples
290	from the same individuals. To describe the variance explained by our models, we
291	provide marginal and conditional \mathbb{R}^2 values that range from 0 to 1 and describe the
292	proportion of variance explained by the fixed and by the fixed and random effects
293	combined, respectively (Nakagawa & Schielzeth, 2013). We calculated marginal and
294	conditional R ² values using the r.squaredGLMM function in MuMIn. Levels of
295	significance were adjusted to $P \le 0.025$ according Bonferroni, to account for multiple
296	testing of coccidia oocysts and nematode eggs.

297

298 **Results**

299 Social bonds

On average ± standard error (SE) we recorded 23.64 ± 3.38 affiliative
interactions per individual as well as 12.21 ± 2.41 interactions won and 17.51 ± 2.44
lost per individual. We observed 56 bonded dyads (out of 327 dyads in total), 37 of

303	which were male-female dyads (17 between related individuals and 20 between
304	unrelated individuals), 11 were male-male (7 between related and 4 between unrelated
305	individuals) and 8 female-female (7 related, 1 unrelated). Thirty-three dyads with CSI
306	higher than the average of the entire sample but also higher rates of aggression, where
307	not classed as bonded. On average \pm SE, males and females had 1.58 \pm 0.41 and 1.53 \pm
308	0.36 bonded partners respectively. Mean CSI \pm SE between bonded dyads was 2.73 \pm
309	0.46 for male-female dyads, 4.06 \pm 0.76 for female-female bonds and 3 \pm 0.87 for male-
310	male bonds.
311	

312 Occurrence of coccidian oocysts

313 Overall, 235 samples from 26 individuals contained coccidian oocysts, out of a 314 total of 760 samples. Coccidian oocysts occurred in 151 out of 459 samples in males 315 (33 %) and 84 out of 301 samples in females (28 %). Maximum CSI value, the number 316 of related individuals in the group, Elo-rating score and sex remained as fixed factors in 317 the best models (Table 1). Crows with a strong affiliative relationship (maximum CSI 318 value: estimate \pm SE = -0.11 \pm 0.02, z = 4.28, P < 0.001) excreted a lower proportion of 319 samples containing coccidian oocysts (Figures 1). A similar pattern occurred for 320 individuals living in larger groups (estimate \pm SE = -0.07 \pm 0.01, z = 4.59, P < 0.001) 321 and with more related individuals (estimate \pm SE = -0.07 \pm 0.03, z = 2.6, P = 0.01). On 322 average \pm standard error (SE) we recorded 12.21 \pm 2.41 interactions won and 17.51 \pm 323 2.44 lost per individual. Dominance rank (estimate \pm SE = 0.06 \pm 0.03, z = 1.81, P = 324 0.07) and sex (estimate \pm SE = -0.01 \pm 0.04, z = 0.33, P = 0.74) did not significantly 325 relate to the proportion of samples containing coccidian oocysts. 326

327 Occurrence of nematode eggs

- 328 Overall, 69 samples from 23 individuals contained nematode eggs, out of the
- 329 total of 760 samples collected in all the 36 individuals. None of the factors investigated
- 330 significantly affected excretion patterns of nematode eggs (supplementary Table 3), in
- fact the null model was amongst the best models in the candidate set (Table 1).

333 Discussion

334 335	In the present study, we have shown that carrion crows with closely bonded
336	social partners (high CSI scores) were less likely to excrete coccidian oocysts, which
337	represent an important threat for health in birds (Hõrak et al., 2004; Stenkewitz et al.,
338	2016). Health correlates of high quality social ties have been reported in humans (e.g.
339	Seeman, 1996). Similar evidence has been recently found in non-human primates
340	(Schülke et al., 2010; Silk et al., 2010a), suggesting that the tendency to form strong
341	social ties may have deep phylogenetic roots (Shultz & Dunbar, 2010a). Social
342	complexity, however, is not limited to primate species. Indeed, coalition formation has
343	been reported in several mammalian and bird species, e.g. African elephants (Loxodonta
344	africanus) (Bates et al., 2008), spotted hyenas (Crocutta crocutta) (Holekamp, Sakai, &
345	Lundrigan, 2007), bottlenose dolphins (Tursiops aduncus) (Connor & Krützen, 2015),
346	ravens (Braun & Bugnyar, 2012), and carrion crows (Baglione et al., 2003). Our study
347	uncovered that high quality social relationships correlate with reduced occurrence of
348	parasites. From our present observational study, we cannot conclude about the causality
349	of effects. Parasite burden could either be affected by social bonds showing a benefit of
350	social relationships in group living animals, or could influence the social behaviour
351	through sickness-induced behavioural modulation (Adelman & Martin, 2009; Dantzer,
352	O'Connor, Freund, Johnson, & Kelley, 2008; Klein, 2003), or sickness-induced
353	cognitive biases (Nettle & Bateson, 2012). Either way, our data illustrate the importance
354	of physiological mechanisms underlying social behaviours and potential benefits
355	associated to the social environment in birds that parallel those of primates (including
356	humans) and suggesting a route towards advanced sociality that may be common to a
357	variety of taxa.

358	Cooperatively breeding groups of carrion crows form through two different
359	mechanisms, namely delayed dispersal of offspring, which remain in the natal territory
360	with their parents and siblings (Baglione, Marcos, & Canestrari, 2002), and formation
361	of long lasting social bonds among distant relatives, most often males, that share all-
362	purpose territories and frequently mate polyandrously (Baglione et al., 2003; Baglione,
363	Marcos, Canestrari, & Ekman, 2002). These bonds typically form when an immigrant
364	male joins an established family group and allies with the same sex resident breeder, to
365	whom it is related (Baglione et al., 2003). Cooperative breeding, with group members
366	working together to raise the brood, can only arise once stable groups have formed
367	(Canestrari, Marcos, & Baglione, 2005). Both offspring delayed dispersal and bonding
368	between adult males are therefore necessary preceding steps that eventually lead to
369	cooperation, which has to be considered a consequence rather than the cause for the
370	formation of the social group (Ekman, Baglione, Egger, & Griesser, 2001; Ekman,
371	Dickinson, Hatchwell, & Griesser, 2004; Hatchwell & Komdeur, 2000). In other words,
372	to understand why carrion crows, as well as any other bird species, form groups we
373	need to understand the advantages that sociality conveys, independently of the payoff
374	derived from cooperation at the nest. In carrion crows, as well as in many other
375	cooperatively breeding species, the benefits of delayed dispersal for offspring are well
376	studied (Chiarati, Canestrari, Vera, & Baglione, 2012), but little is known about the
377	advantages of forming long lasting social bonds outside the nuclear family. The
378	correlation between social bonds and parasite burden found in this study is consistent
379	with the idea that the health benefits of high-quality relationships extend beyond the
380	bonds between parents and offspring or reproductive partners, and may be associated
381	with a reduction of harmful endo-parasites. Ultimately, this may be an important factor
382	for establishing stable relationships in groups. Further research is needed to confirm the

383	direction of the cause and effect relationship of these results. However, it should be
384	noted that besides an effect of strong social bonds, we also found that the number of
385	relatives in the group was negatively correlated with parasite oocyst excretion in carrion
386	crows. Because group size and composition in this captive situation were obviously not
387	under the control of the crows themselves, the reduced parasite burden in kin-based
388	groups was likely to be a consequence, and not a cause, of the presence of relatives,
389	suggesting that social bonds in general affect health and not vice-versa. Sociality is
390	based on kinship in wild cooperatively breeding carrion crows. Offspring remain in the
391	natal territory with their parents for years and more distant relatives are actively
392	recruited to form cooperative alliances with the resident breeders (Baglione et al.,
393	2003). As a result, social groups in cooperatively breeding carrion crow are extended
394	families, comprising members with different degree of relatedness. Indirect fitness
395	benefits are known to be a primary driver of kin-based sociality in many taxa of animals
396	(Clutton-Brock, 2002). However, our results indicate that living with kin can also
397	accrue immediate direct benefits to carrion crows through reduced infection by
398	coccidia.
399	

Increased exposure to parasites and disease transmission is considered as one of the major disadvantages of group living (Côté & Poulin, 1995). In our study, however, group size showed the opposite effect, with the probability of presence of coccidian oocysts decreasing in larger groups. This suggests that the benefits of sociality in crows are not dumped by the health risk of living in group, at least in the range of group sizes tested in this study. However, crows can also aggregate in larger flocks, typically in winter, when they roost and forage communally (Sonerund et al., 2002). The trade-off

407 between the benefits of sociality and risk of infection in these particular circumstances

408 are yet to be assessed.

409

410	We only found effects of social factors in coccidia, but not in nematode species.
411	One reason could be that the lower occurrence of nematode eggs compared to coccidian
412	oocysts in the samples (12 % of samples contained nematode eggs and 24 % of samples
413	contained coccidian oocysts) limited the power of our analysis. However, the different
414	life cycles of different parasite species could also play a role. Coccidia sp. have a
415	prepatent period of approximately one week, in contrast nematode species, e.g.
416	capillaria, have a pre-patent period of 3 - 4 weeks (Schnieder et al., 2006). Therefore,
417	we suggest that short-term changes in the immune system, which could be caused by
418	suppressive effects of glucocorticoids in response to social interactions (Bartolomucci,
419	2007), might have stronger effects on infection by coccidia compared to nematode
420	species.
421	
422	The present study was conducted in captive, mostly hand-raised individuals,
423	because this allowed for repeated observations of individuals habituated to the presence
424	of a human observer. Working in aviaries is a standard procedure to investigate social
425	behaviour in corvids (Fraser & Bugnyar, 2012; Kondo & Hiraiwa-Hasegawa, 2015;
426	Logan, Ostojić, & Clayton, 2013; Wascher, 2015) and although similar observational
427	studies in the wild are desirable, they are difficult to realize, because corvids avert
428	humans and are difficult to observe in the wild. However, differentiated affiliative
429	social relationships have previously been described in wild ravens (Braun & Bugnyar,
430	2012; Braun, Walsdorff, & Bugnyar, 2012) as well as carrion crows (Baglione et al.,

actual forms of social aggregations observed in the wild (Baglione, Marcos, &
Canestrari, 2002). The investigated parasite species are widespread among wild corvids,
including carrion crows (Cawthorn & Wobeser, 1985; Poon & Chew, 1991; Upton et
al., 1995) and have been found in wild carrion crows at the study site in northern Spain
(Wascher, 2014).

437

438 Conclusions

Social complexity has deep phylogenetic roots, being widespread in a wide
variety of mammals and birds. Understanding its evolution, however, is difficult
because of our scant knowledge of the fitness consequences of sophisticated social
behaviour across taxa. We are just starting to fill the gaps, and this study shows a
correlative relationship between the quality of social relationships and parasite shedding
in a bird species that may underlie social bonding, setting the stage for a complex form
of cooperation (cooperative breeding).

446

447 Acknowledgments

448 We thank Kurt Kotrschal for feedback and discussion, Hugo Robles for statistical 449 advice and Friederike Hillemann for help with droppings collection. Alfredo Sánchez-450 Tójar advised on calculation of dated individual Elo-rating trajectories. Further we 451 would like to thank Bernhard Voelkl and two anonymous reviewers for valuable 452 comments on earlier versions of the manuscript. This work was supported by the 453 Spanish Plan Nacional I+D, project CGL2011-27260 and CGL2016-77636-P, to VB 454 and a KWA ('kurzfristiges wissenschaftliches Auslandsstipendium') stipend of the 455 University of Vienna to C.A.F.W..

456 **References**

457	Adelman, J. S., & Martin, L. B. (2009). Vertebrate sickness behaviors: adaptive and
458	integrated neuroendocrine immune responses. Integrative and Comparative
459	<i>Biology</i> , 49(3), 202–214.
460	Allen, P. C. (1987). Physiological responses of chicken gut tissue to coccidial infection:
461	Comparative effects of Eimeria acervulina and Eimeria mitis on mucosal mass,
462	carotenoid content, and brush border enzyme activity. Poultry Science, 66(8),
463	1306–1315.
464	Allen, P. C., & Fetterer, R. H. (2002). Recent advances in biology and immunobiology
465	of. Cytokine, 15(1), 58–65.
466	Allen, P. C., Lydon, J., & Danforth, H. D. (1997). Effects of components of Artemisia
467	annua on coccidia infections in chickens. Poultry Science, 76(8), 1156–1163.
468	Baglione, V., & Canestrari, D. (2016). Carrion crows: Family living and helping in a
469	flexible social system. In W. D. Koenig & J. L. Dickinson (Eds.), Cooperative
470	Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior (pp. 97–
471	114). Cambridge, UK: Cambridge University Press.
472	Baglione, V., Canestrari, D., Marcos, J. M., & Ekman, J. (2003). Kin selection in
473	cooperative alliances of carrion crows. Science, 300(5627), 1947-1949.
474	Baglione, V., Marcos, J. M., & Canestrari, D. (2002). Cooperatively breeding groups of
475	carrion crow (Corvus corone corone) in Northern Spain. The Auk, 119(3), 790-
476	799.
477	Baglione, V., Marcos, M., Canestrari, D., & Ekman, J. A. N. (2002). Direct fitness
478	benefits of group living in a complex cooperative society of carrion crows, Corvus
479	corone corone. Animal Behaviour, 64, 887–893.

480 Bartolomucci, A. (2007). Social stress, immune functions and disease in rodents.

481	Frontiers	in	Neuroend	ocrinology.	28(1).	28-49.
101	1 1 0111101 5		110001001000	oon monogy,		<u> </u>

- 482 Bartón, K. (2014). MuMIn: multi-model inference. R package version 1.12-2,.
- 483 Retrieved from http://cran.r-project.org/web/packages/MuMIn/index.html
- 484 Bates, L. A., Lee, P. C., Njiraini, N., Poole, J. H., Sayialel, K., Sayialel, S., Moss, C.J.,
- 485 Byrne, R. W. (2008). Do elephants show empathy? *Journal of Consciousness*
- 486 *Studies*, *15*(10), 204–225.
- 487 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects
- 488 models using lme4. *ArXiv*. Retrieved from http://arxiv.org/abs/1406.5823
- 489 Berkman, L. F. (1995). The role of social relations in health promotion. *Psychological*
- 490 *Bulletin*, 57(3), 245–254.
- 491 Berkman, L. F., & Glass, T. (2000). Social integration, social networks, social support,
- 492 and health. In L. F. Berkman & I. Kawachi (Eds.), *Social Epidemiology* (p. 137).
- 493 Oxford, UK: Oxford University Press.
- Braun, A., & Bugnyar, T. (2012). Social bonds and rank acquisition in raven nonbreeder
 aggregations. *Animal Behaviour*, 84(6), 1507–1515.
- 496 Braun, A., Walsdorff, T., & Bugnyar, T. (2012). Socialized sub-groups in a temporary
- 497 stable raven flock? *Journal of Ornithology*, *15*, 97–104.
- 498 Brawner, W. R., Hill, G. E., & Sundermann, C. A. (2000). Effects of coccidial and
- 499 mycoplasmal infections on carotenoid-based plumage pigmentation in male house
- 500 finches. *The Auk*, *117*(4), 952–963.
- 501 Bugnyar, T., & Heinrich, B. (2005). Ravens, Corvus corax, differentiate between
- 502 knowledgeable and ignorant competitors. *Proceedings of the Royal Society B:*
- 503 *Biological Sciences*, 272(1573), 1641–1646.
- 504 Bugnyar, T., & Heinrich, B. (2006). Pilfering ravens, Corvus corax, adjust their
- 505 behaviour to social context and identity of competitors. *Animal Cognition*, 9(4),

506 369–376.

- 507 Bugnyar, T., Kijne, M., & Kotrschal, K. (2001). Food calling in ravens: are yells
- 508 referential signals? *Animal Behaviour*, *61*(5), 949–958.
- 509 Burnham, K. P. (2004). Multimodel Inference: Understanding AIC and BIC in model
- 510 selection. *Sociological Methods & Research*, *33*(2), 261–304.
- 511 Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference:
- 512 *a practical information-theoretic approach.* New York: Springer.
- 513 Canestrari, D., Chiarati, E., Marcos, J. M., Ekman, J., & Baglione, V. (2008). Helpers
- 514 but not breeders adjust provisioning effort to year-round territory resource
- 515 availability in carrion crows. *Animal Behaviour*, *76*(3), 943–949.
- 516 Canestrari, D., Marcos, J., & Baglione, V. (2005). Effect of parentage and relatedness
- 517 on the individual contribution to cooperative chick care in carrion crows *Corvus*
- 518 *corone corone. Behavioral Ecology and Sociobiology, 116*(5), 422–428.
- 519 Carta, L. K., & Carta, D. G. (2000). Nematode specific gravity profiles and applications
- 520 to flotation extraction and taxonomy. *Nematology*, 2(2), 201–210.
- 521 Cassel, J. (1976). The contribution of the social environment to host resistance.
- 522 *Psychosomatic Medicine*, 104(2), 107–123.
- 523 Cawthorn, R. J., & Wobeser, G. A. (1985). Exogenous and endogenous stages of
- 524 Isospora brachyrhynchi sp. n.(Protozoa: Eimeriidae) from the American crow
- 525 *Corvus brachyrhynchos* Brehm. *Canadian Journal of Zoology*, 63(11), 2639–2645.
- 526 Chester, E. M., Bonu, T., & Demas, G. E. (2010). Social defeat differentially affects
- 527 immune responses in Siberian hamsters (*Phodopus sungorus*). *Physiology &*
- 528 Behavior, 101(1), 53–58.
- 529 Chiarati, E., Canestrari, D., Vera, R., & Baglione, V. (2012). Subordinates benefit from
- 530 exploratory dominants: response to novel food in cooperatively breeding carrion

- 531 crows. *Animal Behaviour*, 83(1), 103–109.
- 532 Chiarati, E., Canestrari, D., Vera, R., Marcos, J. M., & Baglione, V. (2010). Linear and
- 533 stable dominance hierarchies in cooperative carrion crows. *Ethology*, *116*(4), 346–
- 534 356.
- 535 Chiarati, E., Canestrari, D., Vila, M., Vera, R., & Baglione, V. (2011). Nepotistic access
- 536 to food resources in cooperatively breeding carrion crows. *Behavioral Ecology and*
- 537 *Sociobiology*, 65, 1791-1800.
- 538 Clutton-Brock, T. (2002). Breeding Together: Kin selection and mutualism in
- 539 cooperative vertebrates. *Science*, *296*(5565), 69–72.
- 540 Cobb, S. (1976). The role of social relations in health promotion. *Psychosomatic*
- 541 *Medicine*, *38*(5), 300–314.
- 542 Connor, R. C., & Krützen, M. (2015). Male dolphin alliances in Shark Bay: Changing
- 543 perspectives in a 30-year study. *Animal Behaviour*, *103*, 223–235.
- 544 Conway, D. P., & McKenzie, M. E. (2007). Poultry Coccidiosis. Diagonistic Testing

545 *and Procedures*. Iowa: Blackwell Scientific Publications.

- 546 Côté, I. M., & Poulin, R. (1995). Parasitism and group size in social animals: a meta-
- 547 analysis. *Behavioral Ecology*, 6(2), 159.165.
- 548 Cringoli, G., Rinaldi, L., Maurelli, M. P., Morgoglione, M. E., Musella, V., & Utzinger,
- 549 J. (2011). Ancylostoma caninum: Calibration and comparison of diagnostic
- accuracy of flotation in tube, McMaster and FLOTAC in faecal samples of dogs.
- 551 *Experimental Parasitology*, *128*, 32–37.
- 552 Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008).
- 553 From inflammation to sickness and depression: when the immune system
- subjugates the brain. *Nature Reviews. Neuroscience*, 9(1), 46–56.
- 555 de Kort, S. R., Emery, N. J., & Clayton, N. S. (2006). Food sharing in jackdaws, Corvus

- 556 *monedula*: what, why and with whom? *Animal Behaviour*, 72(2), 297–304.
- 557 De Vries, H., Stevens, J. M. G., & Vervaecke, H. (2006). Measuring and testing the
- 558 steepness of dominance hierarchies. *Animal Behaviour*, 71(3), 585–592.
- 559 DeVries, A. C., Glasper, E. R., & Detillion, C. E. (2003). Social modulation of stress
- 560 responses. *Physiology & Behavior*, 79(3), 399–407.
- 561 Drewe, J. a. (2010). Who infects whom? Social networks and tuberculosis transmission
- 562 in wild meerkats. *Proceedings of the Royal Society B: Biological Sciences*,
- 563 277(1681), 633–642.
- 564 Ekman, J., Baglione, V., Egger, S., & Griesser, M. (2001). Delayed dispersal: living
- under the reign of nepotistic parents. *The Auk*, *118*(1), 1–10.
- 566 Ekman, J., Dickinson, J. L., Hatchwell, B. J., & Griesser, M. (2004). Delayed dispersal.
- 567 In Ecology and Evolution of Cooperative Breeding in Birds (pp. 35–47).
- 568 Cambridge, UK: Cambridge University Press.
- 569 Emery, N. J., Seed, A. M., von Bayern, A. M. P., & Clayton, N. S. (2007). Cognitive
- 570 adaptations of social bonding in birds. *Philosophical Transactions of the Royal*
- 571 Society of London. Series B, Biological Sciences, 362(1480), 489–505.
- 572 Engqvist, L. (2005). The mistreatment of covariate interaction terms in linear model
- 573 analyses of behavioural and evolutionary ecology studies. *Animal Behaviour*,
- 574 70(4), 967–971.
- 575 Fernando, A. M. A., Stockdale, P. H. G., & Remmler, O. (1971). The route of
- 576 migration, development, and pathogenesis of *syngamus trachea* (Montagu, 1811)
- 577 Chapin 1925, in pheasants. *The Journal of Parasitology*, 57, 107–116.
- 578 Fouchet, D., Verrier, D., Ngoubangoye, B., Souquiere, S., Makuwa, M., Kazanji, M., ...
- 579 Pontier, D. (2012). Who infects whom? Social networks and tuberculosis
- 580 transmission in wild meerkats. *Proceedings of the Royal Society B: Biological*

- 581 *Sciences*, 279(1742), 3426–3435.
- 582 Fox, J., & Weisberg, S. (2011). An {R} Companion to Applied Regression. (second edi).
- 583 California: Sage Publications.
- 584 Fraser, O. N., & Bugnyar, T. (2010). The quality of social relationships in ravens.
- 585 *Animal Behaviour*, 79(4), 927–933.
- 586 Fraser, O. N., & Bugnyar, T. (2012). Reciprocity of agonistic support in ravens. Animal
- 587 *Behaviour*, 83(1), 171–177.
- 588 Frigerio, D., Weiss, B., Dittami, J., & Kotrschal, K. (2003). Social allies modulate
- 589 corticosterone excretion and increase success in agonistic interactions in juvenile
- 590 hand-raised graylag geese (Anser anser). Canadian Journal of Zoology, 81, 1746–
- 591 1754.
- 592 Glutz von Blotzheim, U. N. (1985). Handbuch der Vögel Mitteleuropas. (U. N. Glutz
- 593 von Blotzheim, Ed.). Wiesbaden: Aula-Verlag.
- 594 Goymann, W., & Wingfield, J. C. (2004). Allostatic load, social status and stress
- 595 hormones: the costs of social status matter. *Animal Behaviour*, 67, 591–602.
- 596 Halajian, A., Eslami, A., Mobedi, I., Amin, O., Mariaux, J., Mansoori, J., & Tavakol, S.
- 597 (2011). Gastrointestinal Helminths of Magpies (*Pica pica*), Rooks (*Corvus*
- *frugilegus*) and Carrion Crows (*Corvus corone*) in Mazandaran Province, North of
- 599Iran. Iranian Journal of Parasitology, 6(2), 38–44.
- 600 Hanley, K. A., & Stamps, J. A. (2002). Does corticosterone mediate bidirectional
- 601 interactions between social behaviour and blood parasites in the juvenile black
- 602 iguana, *Ctenosaura similis? Animal Behaviour*, 63(2), 311–322.
- Hatchwell, B. J. B., & Komdeur, J. (2000). Ecological constraints, life history traits and
- the evolution of cooperative breeding. *Animal Behaviour*, 59(6), 1079–1086.
- 605 Hawley, D. M., Lindström, K., & Wikelski, M. (2006). Experimentally increased social

()(. • . •	•	1 1	•		•	1	C" 1	77
606	competition	compromises	humoral	immune	responses	1n	house	function function function function function for the second secon	Hormones

- 607 *and Behavior*, 49(4), 417–424.
- 608 Heinrich, B. (2011). Conflict, cooperation, and cognition in the common raven.
- 609 *Advances in the Study of Behavior*, *43*, 189–237.
- 610 Hillemann, F., Canestrari, D., Fischer, J., Wascher, C.A.F., Baglione, V. (n.d.).
- 611 Year-round territory defence in cooperatively breeding Carrion crows an
- overlooked opportunity to study helping in avian cooperative breeders? in
- 613 preparation.
- Holekamp, K. E., Sakai, S. T., & Lundrigan, B. L. (2007). Social intelligence in the
- 615 spotted hyena (Crocuta crocuta). Philosophical Transactions of the Royal Society
- 616 of London. Series B, Biological Sciences, 362(1480), 523–538.
- 617 Holst, D. Von. (1998). The concept of stress and its relevance for animal behavior.

618 *Advances in the Study of Behavior*, *37*, 1–131.

- 619 Hõrak, P., Saks, L., Karu, U., Ots, I., Surai, P. F., & McGraw, K. J. (2004). How
- 620 coccidian parasites affect health and appearance of greenfinches. *Journal of*
- 621 *Animal Ecology*, 73(5), 935–947.
- 622 Hurvich, C., Tsai, C., & Chih-Ling, T. (1989). Regression and time series model
- 623 selection in small samples. *Biometrika*, 76, 297–307.
- 624 Kiecolt-Glaser, J. K., McGuire, L., Robles, T. F., & Glaser, R. (2002).
- 625 Psychoneuroimmunology: Psychological influences on immune function and
- health. *Journal of Consulting and Clinical Psychology*, 70(3), 537–547.
- 627 Klein, S. L. (2003). Parasite manipulation of the proximate mechanisms that mediate
- 628 social behavior in vertebrates. *Physiology & Behavior*, 79(3), 441–449.
- 629 Kondo, N., & Hiraiwa-Hasegawa, M. (2015). The influence of social dominance on
- 630 calling rate in the Large-billed crow (Corvus macrorhynchos). Journal of

- 631 *Ornithology*, 156, 775–782.
- 632 Loehle, C. (1995). Social barriers to pathogen transmission in wild animal populations.
- 633 *Ecology*, 76(2), 326–335.
- 634 Logan, C. J., Ostojić, L., & Clayton, N. S. (2013). Rook, but not jackdaw, post-conflict
- 635 third-party affiliation reduces aggression for aggressors. *Ethology*, *119*(5), 427–
- 636 435.
- 637 Loman, J. (1980). Reproduction in a population of the hooded crow *Corvus cornix*.
- 638 *Holarctic Ecology*, *3*, 26–35.
- 639 López, G., Figuerola, J., & Soriguer, R. (2007). Time of day, age and feeding habits
- 640 influence coccidian oocyst shedding in wild passerines. International Journal for
- 641 *Parasitology*, *37*(5), 559–564.
- 642 McGraw, K. J., & Hill, G. E. (2000). Differential effects of endoparasitism on the
- 643 expression of carotenoid- and melanin-based ornamental coloration. *Proceedings*
- 644 of the Royal Society B: Biological Sciences, 267(1452), 1525–1531.
- 645 Meide, M. (1984). Raben- und Nebelkrähe. Magdeburg: Westarp Wissenschaften.
- 646 Moyers, S. C., & Kosarski, K. B. (2015). Interactions between social behaviour and the
- 647 acute phase immune response in house finches. *Behaviour*, *152*, 2039–2058.
- 648 Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2
- 649 from generalized linear mixed-effects models. *Methods in Ecology and Evolution*,
 650 4, 133–142.
- Nettle, D., & Bateson, M. (2012). The evolutionary origins of mood and its disorders.
- 652 *Current Biology*, 22(17), R712-21.
- Neumann, C., Duboscq, J., Dubuc, C., & Ginting, A. (2011). Assessing dominance
- hierarchies : validation and advantages of progressive evaluation with Elo-rating.
- 655 *Animal Behaviour*, 82(4), 911–921.

656	Nevarez.	J.G.	. Gamble.	. K.	С	Aczm.	D.,	. Tully.	Т.	N	& A	Avian.	D.	A. ((2002)).
000			,	,	<i>~</i> .,			,	,	· · · · ·				'	(=)	<i></i>

- 657 *Syngamus trachea* infection in two red-and-yellow barbets (Trachyphonus
- 658 erythrocephalus). *Journal of Avian Medicine and Surgery*, *16*, 31–33.
- 659 Ortlepp, R. J. (1923). The life-history of *Syngamus trachealis* (Montagu) v. Siebold, the
- 660 gape-worm of chickens. *Journal of Helminthology*, *1*(3), 119–140.
- 661 Page, C. D., & Haddad, K. (1995). Coccidial infections in birds. Seminars in Avian and
- 662 *Exotic Pet Medicine*, 4(3), 138–144.
- Pollen, A. A., Dobberfuhl, A. P., Scace, J., Igulu, M. M., Renn, S. C. P., Shumway, C.
- A., & Hofmann, H. A. (2007). Environmental complexity and social organization
- sculpt the brain in Lake Tanganyikan cichlid fish. *Brain, Behavior and Evolution*,
- 666 *70*(1), 21–39.
- 667 Poon, S. K., & Chew, W. K. (1991). Isospora corvi Ray, Shivnani, Oommen and
- 668 Bhaskaran, 1952 from the common house crow (*Corvus splendens* Vieillot) of
- 669 Selangor, peninsular Malaysia. *Folia Parasitologica*, *38*(3), 201–207.
- 670 Rinaldia, L., Coles, G. C., Maurelli, M. P., Musella, V., & Cringoli, G. (2011).
- 671 Calibration and diagnostic accuracy of simple flotation, McMaster and FLOTAC
- 672 for parasite egg counts in sheep. *Veterinary Parasitology*, 177, 345–352.
- 673 Sachser, N., Dürschlag, M., & Hirzel, D. (1998). Social relationships and the
- 674 management of stress. *Psychoneuroendocrinology*, 23(8), 891–904.
- 675 Sánchez-Tójar, A., Schroeder, J., & Farine, D. R. (2017). A practical guide for inferring
- 676 reliable dominance hierarchies and estimating their uncertainty. *Journal of Animal*
- 677 *Ecology*, 87(3), 594–608.
- 678 Schat, K. A., & Skinner, M. A. (2008). Avian immunosuppressive diseases and
- 679 immune evasion. In F. Davison, B. Kaspers, & K. A. Schat (Eds.), Avian
- 680 *Immunology* (pp. 299–322). Oxford, UK: Elsevier Academic Press.

- 681 Schnieder, T., Boch, J., & Supperer, R. (2006). Veterinärmedizinische Parasitologie.
- 682 (T. Schnieder, J. Boch, & R. Supperer, Eds.) (6th ed.). Berlin: Parey.
- 683 Schülke, O., Bhagavatula, J., Vigilant, L., & Ostner, J. (2010). Social bonds enhance
- 684 reproductive success in male macaques. *Current Biology*, 20(24), 2207–2210.
- 685 Seeman, T. E. (1996). Social ties and health: The benefits of social integration. Annals
- 686 *of Epidemiology*, 6(5), 442–451.
- 687 Sheridan, J. F., Dobbs, C., Brown, D., & Zwilling, B. (1994). Psychoneuroimmunology:
- 688 stress effects on pathogenesis and immunity during infection. *Clinical*
- 689 *Microbiology Reviews*, 7(2), 200–212.
- 690 Shultz, S., & Dunbar, R. (2010a). Bondedness and sociality. Behaviour, 147(7), 775–
- 691 803**.**
- 692 Shultz, S., & Dunbar, R. I. M. (2010b). Social bonds in birds are associated with brain
- 693 size and contingent on the correlated evolution of life-history and increased
- 694 parental investment. *Biological Journal of the Linnean Society*, *100*(1), 111–123.
- Silk, J. B. (2007). The adaptive value of sociality in mammalian groups. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 362, 539–559.
- 697 Silk, J. B., Beehner, J. C., Bergman, T. J., Crockford, C., Engh, A. L., Moscovice, L. R.,
- 698 Cheney, D. L. (2009). The benefits of social capital: close social bonds among
- 699 female baboons enhance offspring survival. *Proceedings of the Royal Society B:*
- 700 *Biological Sciences*, 276(1670), 3099–3104.
- 701 Silk, J. B., Beehner, J. C., Bergman, T. J., Crockford, C., Engh, A. L., Moscovice, L. R.,
- 702 Cheney, D. L. (2010a). Female chacma baboons form strong, equitable, and
- enduring social bonds. *Behavioral Ecology and Sociobiology*, 64(11), 1733–1747.
- 704 Silk, J. B., Beehner, J. C., Bergman, T. J., Crockford, C., Engh, A. L., Moscovice, L. R.,
- 705 Cheney, D. L. (2010b). Strong and consistent social bonds enhance the longevity

e baboons.	Current Biology.	20(15).	1359–1361.
	e baboons.	e baboons. <i>Current Biology</i> ,	e baboons. <i>Current Biology</i> , 20(15),

- 707 Skaug, H., Fournier, D., Nielsen, A., Magnusson, A., & Bolker, B. (2013). Generalized
- 708 linear mixed models using AD model builder. R Package v0.8.0.
- 709 Sonerud, G. A., Hansen, H., & Smedshaug, C. A. (2002). Individual roosting strategies
- 710 in a flock-living bird: movement and social cohesion of hooded crows (Corvus
- 711 *corone cornix*) from pre-roost gatherings to roost sites. *Behavioral Ecology and*
- 712 *Sociobiology*, *51*, 309–318.
- 713 Stenkewitz, U., Nielsen, Ó. K., Skírnisson, K., & Stefánsson, G. (2016). Host-parasite
- interactions and population dynamics of rock ptarmigan. *PLoS ONE*, *11*(11), 1–19.
- 715 Stockmaier, S., Bolnick, D. I., Page, R. A., & Carter, G. G. (2018). An immune
- challenge reduces social grooming in vampire bats. *Animal Behaviour*, *140*, 141–
 149.
- 718 Stöwe, M., Bugnyar, T., Schloegl, C., Heinrich, B., Kotrschal, K., & Möstl, E. (2008).
- 719 Corticosterone excretion patterns and affiliative behavior over development in
 720 ravens (*Corvus corax*). *Hormones and Behavior*, *53*(1), 208–216.
- 721 Team, R. C. (2016). R: a language and environment for statistical computing. Vienna,
- 722 Austria: R foundation for statistical computing. Retrieved from http://www.r-
- 723 project.org/
- 724 Theorell, T., Blomkvist, V., Jonsson, H., Schulman, S., Berntorp, E., & Stigendal, L.
- 725 (1995). Social support and the development of immune function in human
- immunodeficiency virus infection. *Psychosomatic Medicine*, 57(1), 200–212.
- 727 Uchino, B. N., Cacioppo, J. T., & Kiecolt-Glaser, J. K. (1996). The relationship
- between social support and physiological processes: a review with emphasis on
- 129 underlying mechanisms and implications for health. *Psychological Bulletin*,
- 730 *119*(3), 488–531.

731	Ungerfeld, R	& Co	rrea, O. ((2007)	. Social	dominance	of female	e dairy	goats influen	ces
	- (3			/					0	

- the dynamics of gastrointestinal parasite eggs. *Applied Animal Behaviour Science*,
- 733 *105*(1–3), 249–253.
- 734 Upton, S. J., Langen, T. A., & Wright, T. F. (1995). A new species of Isospora
- 735 Schneider, 1881 (*Apicomplexa: Eimeriidae*) from the white-throated magpie jay
- 736 Calocitta formosa (*Passeriformes: Corvidae*) from Costa Rica. *Systematic*
- 737 *Parasitology*, *31*(3), 195–199.
- 738 Villanúa, D., Pérez-Rodríguez, L., Gortázar, C., Höfle, U., & Vinuela, J. (2006).
- Avoiding bias in parasite excretion estimates: The effect of sampling time and type
- 740 of faeces. *Parasitology*, *133*(2), 251–259.
- 741 Wascher, C.A.F. (2014). [Prevalence of gastrointestinal parasite products in the
- 742 droppings of wild, cooperatively-breeding carrion crows in Northern Spain],
- 743 unpublished raw data.
- 744 Wascher, C. A. F. (2015). Individual performance in socio-cognitive tasks predicts

social behaviour in carrion crows. *Behaviour*, 152(5).

- 746 Wascher, C. A. F., Heiss, R. S., Baglione, V., & Canestrari, D. (2015). Behavioural
- responses to olfactory cues in carrion crows. *Behavioural Processes*, 111, 1–5.
- 748 Wascher, C. A. F., Núñez Cebrián, C., Valdez, J. W., Canestrari, D., & Baglione, V.
- 749 (2014). Social factors modulating attention patterns in carrion crows. *Behaviour*,
 750 151(5), 555–572.
- 751 Young, C., Majolo, B., Schülke, O., & Ostner, J. (2014). Male social bonds and rank
- 752 predict supporter selection in cooperative aggression in wild Barbary macaques.
- 753 *Animal Behaviour*, 95, 23–32.
- 754 Zuk, M., Kim, T., Robinson, S., & Johnsen, T. (1998). Parasites influence social rank
- and morphology, but not mate choice, in female red junglefowl, *Gallus gallus*.

- 756 *Animal Behaviour*, 56(2), 493–499.
- 757 Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed
- 758 *Effects Models and Extension in Ecology With R.* New York: Springer.

759

761 Appendix

762 **Appendix Table 1:** List of all focal individuals and background information

Name	Sex	Age	Phases	Comp	Group	Drop	Observ	CS	EloRat
Artemisa	F	adult	Nov2008	BL1	family	7	9	3.14	-153.3
Batman	М	2008	Nov2008	BL1	family	6	11	1.57	-132.5
BlackStripes	F	2011	Jan Feb 2013	BL2	flock	10	25	0.87	160.4
BluePoint	М	2012	Jan Feb 2013	FR2	flock	9	24	4.16	-127.C
			MavJune2013	FR2	flock	20	22	2.03	-92.75
BlueStripes	М	2012	JanFeb2013	FR2	flock	6	25	2.42	334
Diacompos			Mavlune2013	FR2	flock	16	21	2.44	315.0
Cabezon	М	2010	lanFeb2013	FI 2	pair	7	20	0.35	188.0
Gabezon		2010	Mavlune2013	FI 2	pair	, 20	10	0.35	188.0
			JanFeb2014	FI 2	pair	6	10	6.65	168.04
			Mavlune2014	FI 2	pair	14	10	4 74	-112 (
			SeptOct2014	FI 2	pair	12	9	0	-112 (
Caqui	F	2008	Nov2008	BI 1	family	6	11	21	-223
Castana	F	adult	Nov2008	FI 1	family	5	9	0.52	-148 6
Cerca	M	2008	Nov2008	RI 1	family	1	7	0.52	Q1 12
Donald	F	2008	Nov2008	ER1a	nair	19	, 10	3 67	100
Donalu	I	2008	N0V2008		flock	14	20	1 26	1/0
Fidal	N.4	a dul+	Nev2008		family	14	20	1.50	-140
Fluer		2008	Nov2008	FLI FD1a	ramiy	4	10	U E 24	-09.18
Flash	Г	2008	NOV2008	FRIA	pair flask	15	10	5.24	-100
<u> </u>	. 4	2011	Dec2008	FRI	TIOCK	11	20	6.8	242.8:
GreenO	IVI	2011	JanFeb2013	BL2	TIOCK	12	25	1.56	-370.0
			MayJune2013	BL2	TIOCK	10	23	1.63	-363.4
			JanFeb2014	BL2	pair	/	10	0	-369.7
			MayJune2014	FR2	pair	26	10	0	-337.7
			SeptOct2014	FR2	pair	9	9	0	-337.7
GreenZ	M	2011	JanFeb2013	BL2	flock	5	25	0.52	-8.34
			MayJune2013	BL2	flock	16	23	1.63	-2.11
			JanFeb2014	BL2	pair	5	10	1.38	-8.42
			MayJune2014	BL2	pair	28	10	0	5.8
			SeptOct2014	BL2	pair	12	9	0	5.8
Horst	М	2007	Nov2008	FL1	family	3	8	0	-102.1
biza	F	2010	JanFeb2013	BR2	pair	11	20	0.69	-100
			MayJune2013	BR2	pair	5	10	0.69	-100
			JanFeb2014	BR2	family	3	10	0.83	-23.51
			MayJune2014	BR2	family	14	10	2.84	-92.43
			SeptOct2014	BR2	family	5	8	3.21	49.73
Juana	Μ	2008	Nov2008	FR1b	pair	11	11	13.62	-88.04
			Dec2008	FR1	flock	14	19	12.24	-149.4
Margherita	Μ	2008	Nov2008	FR1c	pair	11	12	3.67	76.16
			Dec2008	FR1	flock	14	19	5.44	-183.4
Mari	Μ	2008	Nov2008	FR1b	pair	7	11	9.95	88.04
		2008	Dec2008	FR1	flock	10	18	2.04	-415.4
Martinez	Μ	2010	JanFeb2013	BR2	pair	12	20	0.52	100
			MayJune2013	BR2	pair	6	10	0.52	100
			JanFeb2014	BR2	family	6	10	1.38	177.3
			MayJune2014	BR2	family	10	10	3.32	-2.49
			SepOct2014	BR2	family	5	8	10.71	-144.6
Pelotudo	М	adult	Nov2008	BL1	family	6	9	1.57	109.1
Pity	М	2008	Nov2008	FL1	familv	5	9	0	242.32
, Pobla	F	2010	Jan Feb 2013	FL2	, pair	17	20	2.77	-188.0
	•		Maylune 2013	FI 2	pair	 20	10	2.77	-188 (
			JanFeb2014	FI 2	pair	6	10	3.6	-168 (
			Maylune2014	FI 2	pair	- 11	10	5.68	112 0
Pumuki	F	2008	Nov2008	FI 1	family	4	10	3 14	-127 5
	•					•			/.5

RedCross	F	2012	JanFeb2013	FR2	flock	4	25	3.64	-156.C
			MayJune2013	FR2	flock	10	23	1.63	-177.3
RedPoint	М	2012	JanFeb2013	FR2	flock	10	27	2.6	86.32
			MayJune2013	FR2	flock	15	22	4.07	67.88
Robin	F	2008	Nov2008	BL1	family	2	11	0.52	308.74
Sancho	F	2008	Nov2008	FL1	family	5	10	1.57	205.2
Sigur	F	2008	Nov2008	FR1c	pair	10	12	7.33	-76.16
			Dec2008	FR1	flock	9	20	7.48	186.6:
Sombra	F	2008	Dec2008	FR1	flock	10	19	2.72	266.8
Valencia	М	2013	JanFeb2014	BR2	family	6	10	0.28	-100
			MayJune2014	BR2	family	4	10	0.28	-100
White	F	2008	Jan Feb 2013	BL2	flock	5	22	1.21	217.8
			MayJune2013	BL2	flock	12	20	2.44	237.4
			MayJune2014	BL2	flock	10	10	0	147.4
			SeptOct2014	BL2	flock	7	7	1.07	147.4
WhiteCross	Μ	2012	JanFeb2013	FR2	flock	6	20	2.25	-58.45
			MayJune2013	FR2	flock	9	22	2.44	-35.53
			JanFeb2014	FR2	pair	5	10	1.11	262.9 [,]
			MayJune2014	FR2	pair	6	10	0	248.72
WhitePoint	Μ	2012	JanFeb2013	FR2	flock	6	24	0.87	53.82
			MayJune2013	FR2	flock	13	22	1.22	63.43
WhiteStripes	F	2012	JanFeb2013	FR2	flock	3	23	1.56	-132.6
			MayJune2013	FR2	flock	5	22	2.03	-140.7
			JanFeb2014	FR2	pair	7	10	0	-160.6
			MayJune2014	FR2	pair	8	10	0	-192.5
Xufa	F	2013	JanFeb2014	BR2	flock	3	10	1.38	-153.7
			MayJune2014	BR2	flock	8	10	0.47	-52.54

763 Sex (F = female, M = male), age (year of hatching; if not known, individuals are

classified as adult), phases of data taking during which the individual was recorded,

765 compartment (comp), group composition (group: family, flock, pair), number of

766 droppings (drop) and behavioural focal observations (observ) collected, maximum

767 composite sociality index (CSI), elo rating.

783 **Appendix Table 2:** Results of the full generalized mixed linear model investigating

784 factors relating to patterns of coccidian oocyst excretion. Bonferroni adjusted significant

785 values ($P \le 0.025$) are highlighted in bold.

				Odds	Lower 2.5%	Upper
Parameters	Estimate ± SE	z	Ρ	Ratio	CI	97.5% CI
Intercept	0.1 ± 0.37	0.28	0.78	-0.031	-0.67	0.83
Maximum CSI	-0.15 ± 0.05	-2.84	0.004	-0.14	-0.26	-0.04
Group Size	-0.11 ± 0.07	-1.5	0.13	-0.03	-0.26	0.03
Number of						
related	-0.15 ± 0.1	-1.48	0.14	-0.17	-0.36	0.06
individuals						
Sex	-0.2 ± 0.32	-0.64	0.52	-0.14	-0.88	0.46
Elo-rating	0 ± 0	1.85	0.06	0	-0	0

787 788

Appendix Table 3: Results of the full generalized mixed linear model investigating

790 factors relating to patterns of nematode egg excretion. Bonferroni adjusted significant

791 values ($P \le 0.025$) are highlighted in bold.

				Odds	Lower 2.5%	Upper
Parameters	Estimate ± SE	z	Ρ	Ratio	CI	97.5% CI
Intercept	-3.19 ± 0.54	-5.96	<0.001	-3.19	-4.27	-2.13
Maximum CSI	0.02 ± 0.07	0.34	0.72	0.02	-0.13	0.16
Group Size	0.03 ± 0.08	0.44	0.66	0.03	-0.12	0.19
Number of						
related	-0.02 ± 0.15	-0.14	0.89	-0.02	-0.35	0.27
individuals						
Sex	0.68 ± 0.48	1.41	0.16	0.68	-0.35	1.62
Elo-rating	-0 ± 0	-0.58	0.56	-0	-0	0

Table 1. Model selection of analyses that examined the occurrence of coccidian

804 oocysts, related to maximum CSI value (max CSI), number of related individuals (nr

805 related), Elo-rating scores, group size and sex.

	Models	df	LogLik	AICc	ΔAICc	Weight	R^2 marginal
(a) Coccidia	Max CSI, Elo-rating, group size	5	-165.45	341.7	0.00	0.15	0.0
	Max CSI, Elo-rating, nr related	5	-165.58	341.95	0.25	0.13	0.09
	Max CSI, Elo-rating, group size, nr related	6	-164.44	342	0.31	0.13	0.09
	Max CSI, group size	4	-167.07	342.66	0.96	0.09	0.06
	Max CSI, group size, nr related	5	-166.14	343.07	1.37	0.08	0.08
	Max CSI, nr related	4	-167.32	343.16	1.46	0.07	0.07
	Max CSI, Elo-rating, group size, sex	6	-165.26	343.64	1.94	0.06	0.06
(b) Nematodes	Null model	2	-103.42	210.99	0	0.16	0
	Sex	3	-102.57	211.46	0.47	0.13	0.02
	Elo-rating	3	-103.27	212.85	1.86	0.06	0

807 Individual identity was fitted as a random term in all models. LogLik: log-likelihood,

808 df: degrees of freedom, Δ AICc: difference in AICc to the best model, marginal and

809 conditional \mathbb{R}^2 . Models are ranked according to their Akaike weight (Weight).

- Table 2. Results of model averaged generalized linear mixed model investigating
- factors affecting patterns of coccidian oocyst excretion.

Parameters	Estimate ± SE	Z	Р
Max CSI	-0.11 ± 0.02	4.28	<0.001
Group size	-0.07 ± 0.01	4.59	<0.001
Nr related	-0.07 ± 0.03	2.6	0.01
Elo-rating	0.06 ± 0.03	1.81	0.07
Sex	-0.01 ± 0.04	0.33	0.74

Significant values (Bonferroni corrected alpha-level: P<0.025) are highlighted in bold.

863 **Figure 1.**

- 864 Percentage of samples containing coccidan oocysts in carrion crow droppings in relation
- to the maximum CSI. The predicted values are shown as solid line and 95% CI as
- 866 shaded area. Black dots present individual values per phase.
- 867
- 868

869 **Figure A1.**

- 870 Sketch of the aviary setup. Aviary consisted of four separate compartments, in visual,
- but not acoustic separation from each other. Aviary was kept in two separate locations,
- in La Solanilla, León in 2008 and 2009 (42°37'23.4336 N, 5°27'3.1788 W), and
- 873 Navafría, León in 2013 and 2014 (42°36'33, N 5°26'56 W).

2008/09: BL1 2013/14: BL2		2008/09: BR1 2013/14: BR2
2008/09: FL1 2013/14: FL2		2008/09: FR1 a-c 2013/14: FR2