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Deep convolutional and recurrent neural networks
for cell motility discrimination and prediction

Jacob C. Kimmel, Andrew S. Brack, and Wallace F. Marshall

Abstract—Cells in culture display diverse motility behaviors
that may reflect differences in cell state and function, providing
motivation to discriminate between different motility behaviors.
Current methods to do so rely upon manual feature engineering.
However, the types of features necessary to distinguish between
motility behaviors can vary greatly depending on the biological
context, and it is not always clear which features may be most
predictive in each setting for distinguishing particular cell types
or disease states. Convolutional neural networks (CNNs) are
machine learning models ideally suited to the analysis of spatial
data, allowing for relevant spatial features to be learned as
parameters of a model. Given that motility data is inherently
spatial, we apply CNNs to classify different motility behaviors
using two novel approaches. The first approach represents
motility explicitly as a 3D space with markers denoting a cell’s
location at each time point, and the second utilizes recurrent
long-term short-term memory (LSTM) units to represent the
temporal dimension implicitly. Both 3D CNNs and convolutional-
recurrent neural networks (RNNs) provide accurate classification
of simulated motility behaviors, the experimentally measured
motility behaviors of multiple cell types, and characteristic
motility behaviors of muscle stem cell differentiation states. The
variety of cell motility differences we can detect suggests that
the algorithm is generally applicable to novel cell and sample
types. 3D CNN and RNN based autoencoders were also effectively
trained using the explicit 3D representations to learn motility
features in an unsupervised manner. Additionally, adapted RNN
models effectively predict muscle stem cell motility from past
tracking data.

Index Terms—convolutional neural network, recurrent neural
network, cell motility, cell classification, long-term short-term
memory

I. INTRODUCTION

ELL motility is an emergent property of living matter

that spans the nanomolecular and macroscopic length
scales, involving a complex regulatory network and dynamic
reorganization of the cell’s geometry [1], [2]. Cells can display
a diverse set of motility behaviors, and these behaviors can
provide a useful window for inference of a cell’s functional
state. Neoplastic transformation has long been appreciated to
alter cell motility behaviors, increasing the migration rate of
various models in culture and serving as a mechanism for
metastasis [3l], [4], [S], [6], [7]. The motility behaviors of
cancer cells in culture can even be predictive of broader tumor
progression [8]].
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Likewise, the migration of progenitor cells is critical in early
development and tissue regeneration [9]]. Skeletal muscle stem
cells (MuSCs) provide an accessible platform to study stem
cell motility phenotypes in vitro by timelapse imaging. During
embryonic development, MuSC precursors must migrate from
early stage developmental structures (somites) to their adult
location along the edge of muscle fibers in the trunk and limbs
[LO], [11]. In the adult, motility continues to play a critical
role, as MuSCs migrate along muscle fibers in vivo to sites of
injury to initiate tissue repair [12], [[L3]. Motility behaviors are
heterogeneous between MuSCs and change during stem cell
activation [14], [15)]. Heterogeneous fitness for regeneration
within the MuSC pool is well appreciated [16], and analysis
of heterogeneous motility behaviors may provide an additional
lens through which to decompose different MuSC phenotypes.

Given the biological importance of motility phenotypes,
classification of cells based on motility behaviors has useful
applications in research and diagnostics. Similarly, explo-
ration of heterogeneity within the motility behaviors of a
cell population may provide biological insights. However,
it is often difficult to determine which features of motility
behavior will be predictive of a phenotype of interest, or
allow for discrimination of heterogeneous behavior. Different
phenotype classification tasks and cell populations may require
distinct feature sets to extract valuable biological information.
A method to algorithmically determine relevant features of
cell motility for a given classification or discrimination task is
therefore advantageous.

A. Related Work

To date, a number of tools have been proposed that rely
upon a set of handcrafted features to quantify cell motility
behaviors, providing some remarkable results [17], [18]], [19],
[20], [21]. Neural progenitor cells were discriminated by
morphology and motility behavior alone [21], and genes that
affect motility have been identified solely from timelapse
imaging data [17]. We have recently demonstrated that rates
of cell state transitions and the ordered or random nature of
these transitions may also be inferred from motility alone
[15]. These dramatic results demonstrate the potential insights
that may be gathered from more extensive analysis of cell
motility. However, these methods rely upon engineering of a
hand-crafted feature set, and have thus far focused largely on
features of speed and directional persistence. It is possible that
more complex features may allow for improved discrimination
of cell motility phenotypes, but it is difficult to predict what
these features may be in each context.

Convolutional neural networks provide an approach to learn
relevant features from data, rather than handcrafting features
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based on a “best guess” of which features are relevant. In
the field of computer vision, convolutional neural networks
(CNNs) have recently made rapid advancements, demon-
strating state-of-the-art performance on a variety of image
classification tasks [22], [23], [24]], [25]. CNNs utilize a set of
parametrized kernels to extract spatial features, allowing dis-
tinct feature kernels to be learned for a given classification task
[26]. In this way, CNNs are able to learn a “representation” of
the problem’s feature space. Feature space representations may
also be learned in an unsupervised manner by training CNN
autoencoder architectures to encode and decode [27], [28].
This approach may be useful for learning relevant motility
features where an explicit classification task is not present.

While CNNs are most commonly applied to tasks involving
analysis in two-dimensional images at a single time-point,
convolution is a natural analytical tool for any input infor-
mation with spatial dimensions. CNNs have been successfully
applied to a diverse set of non-imaging domains, including
natural language processing [29], bird song segmentation [30],
and EEG recordings [31f]. Perhaps most clearly mirroring
our challenge of motion classification, CNNs have performed
well in the classification of video recordings [32], [33]], [341],
[35]. These successful implementations have simply extended
CNNSs to consider three-dimensional images as inputs, where
one axis is time. If the spatial nature of cell motility data
is represented explicitly as a 3D image, in the same manner
used for video classification, CNNs may allow for motility
phenotype classification and unsupervised feature learning,
without a priori definition of handcrafted features.

Deep neural networks have also been extensively applied
to the analysis of sequential inputs, such as natural language
sentences and biological polymer sequences [29]], [36], [37].
While simple 1D CNNs that consider raw sequence inputs can
be effective, the introduction of recurrent units such as long-
short-term memory (LSTM) units to learn temporal relation-
ships within the input sequence can improve performance and
effectively learn long-term dependencies [38]. Cell motility
data can be represented as a two-channel, 1D sequence, where
each channel contains position values for an axis in physical
space. In this representation, 1D CNN models with recurrent
units may also allow for motility phenotype analysis without
handcrafted features.

We investigated whether CNNs could be effectively applied
to the problem of cell motility phenotype classification utiliz-
ing either of these two representation schemes. Cell motility is
inherently 3D spatial data, where one dimension is time, such
that either explicit representation of the temporal dimension
in an image, or learning the temporal dimension relationships
with a recurrent unit, may allow for effective analysis.

Here, we present Lanternfish, a tool to represent motility
paths explicity as 3D images or implicity as multi-channel
time series, classify different motility behaviors, learn motility
features in an unsupervised fashion using deep neural net-
works, and predict future cell motility from past behavior.
Lanternfish represents cell motility using a set of positional
markers in a 3D volume, with the depth axis representing time,
or as a simple multi-channel time series, where time series
values are Cartesian coordinates. We demonstrate that standard

Fig. 1. Representative motility traces using different markers of location. (A)
Disk structuring element markers, (B) Gaussian distribution markers.

CNN architectures are sufficient to accurately distinguish
experimentally observed cell motility phenotypes represented
using either method. Autoencoder architectures based on these
models can be trained successfully on motility representations
for use as unsupervised feature extractors. Additionally, we
show that our RNN model can be adapted to predict cell
motility in subsequent frames.

II. METHODS

All implementations for work presented here are available
on Github at https://github.com/jacobkimmel/lanternfish.

A. Explicit Spatial Representations of Motility Paths

Motion data in a two-dimensional plane is inherently three
dimensional, with two dimensions in physical space (x and
y) and a single time dimension ¢. Each of these dimensions
has relevant spatial meaning, and spatial relationships are
required to fully represent the motion of an object. This spatial
nature makes motion an ideal candidate for the application of
convolutional neural networks, which specialize in learning
representations of spatial data.

One manner in which motility may be presented for analysis
by CNNs is in the form of a static 3D image. Representing
time as a spatial axis has allowed for successful time-series
analysis by CNNs in multiple other problem domains [32],
[33], [34]], [35]. Cell motility is typically recorded as the
position of the cell centroid at each time point. To represent
this time series of positions as a 3D image, we first produce a
simple 3D representation of an (z, y) path by placing a 1 pixel
(px) binary marker on the location of the object at each time
point ¢ in a single slice of a cube with dimensions (X,Y,T),
leaving all other values at 0, where x € X,y € Y, andt € T.
Viewed one plane at a time along the ¢ dimension, this cube
is simply a video of the 2D path representing the object’s lo-
cation with a 1 px marker. However, this trivial representation
presents a very sparse feature space, and intuitively may not
allow for efficient learning of convolutional kernels.

In expectation of this sparsity problem, we produced tools
to build representations that mark an object’s location in each
(X,Y,T) plane with a binary disk of arbitrary size or Gaussian
distribution of arbitrary variance, instead of a single 1 px point.
Gaussian distributions are scaled [0, 1] for each o value. The
resulting representation resembles a “stack of dinner plates”
(Fig. 1). These representations contain information about the
objects location at more (z,y) coordinates within a plane than
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the 1 px representations, so we reasoned that they may aide
learning of 3D convolutional kernels.

Further information can be encoded by setting the amplitude
of the disk or distribution in each ¢ plane based on some
real valued measurement. For instance, instantaneous speed
or object size could be encoded as amplitudes. Compression
of motion paths may be necessary due to GPU memory
constraints. For all experiments performed here, motion paths
were compressed 4- or 6-fold in the (x,y) dimensions by
simple integer division of (X,Y") coordinates.

B. Multi-channel Time Series Representation of Motility Paths

Cell motility is also naturally represented as a two-channel
time series, where the values of each channel are the Carte-
sian coordinates X and Y. This representation is obviously
extensible to the 3D motion case with the simple addition of
a third channel for the Z axis. CNNs may be applied with
1D convolutional filters to these multi-channel time series.
Multiple problem domains have shown success in applying
CNNs to multi-channel time series data in this manner [39],
[40]. This approach is inherently simpler than the explicit
representation described above. However, 1D representation
requires a model to implicitly learn kernels to preserve the
relationship between X and Y dimensions in higher layers.
We reasoned that there may be cases where this implicit
representation is inferior to an explicit representation based
on this principle.

C. 3D Classification architecture

For classification of different types of motion represented
as 3D images, we apply a standard CNN architecture utilizing
3D convolutional and max pooling layers, diagrammed in
(Fig. 2A). 3D Convolutional layers convolve the 3D motion
cube inputs with a set of parametrized kernels, passing the
convolutional outputs to the layers above. The max pooling
layers perform a max operation for voxels in an 3D-window,
reducing the input size, and returns the resulting output to
the layer above. This architecture is similar to well known
2D classification architectures [22], [41]. All convolutional
layers are paired with a rectified linear unit (ReLU) activation
(max(0, x)) [42]], utilize unit strides s = 1, and convolve with
(3,3, 3) kernels. Convolutional layers pad input images by 1
px by reflecting edge values to avoid reduction of input size
by convolution. Max pooling layers use kernels of size (2,2)
and a corresponding stride of s = 2.

Fully connected layers are the same as in a traditional neural
network, in which each perceptron unit considers input from
all units in the previous layer, and outputs to all units in the
next layer [43]. Dropout layers eliminate a random proportion
p of fully connected units from a fully connected layer during
each forward pass, reducing reliance upon individual units
and preventing overfitting [44]]. Two fully connected layers
with dropout (p = 0.3, where p is the proportion of neurons
dropped per epoch) and ReLU activations are utilized at the
bottom of the network. Final class outputs are returned by a
fully connected layer with a number of neurons equal to the
number of classes and a softmax activation (Fig. 2A).

3D CNN classification networks were trained using stochas-
tic gradient descent with momentum (u = 0.5). Categorical
crossentropy was used as a loss function. We find that training
is sensitive to the learning rate €, and thus utilize a low initial
learning rate ¢y = 0.005 with a rapid decay function

€; = EodZ

where i € [0, N] is the training epoch, €y is the initial
learning rate, and d is a decay coefficient, set to d = 0.8
for our experiments.

D. 1D Recurrent Classification Architecture

Recurrent classification networks follow a similar standard
architecture, utilizing 1D convolutional layers with size 3
kernels at the base followed by a max pooling layer with
kernel size 2 and stride s = 2. The center of the network
contains an LSTM layer with n = 256 units. Following the
LSTM layer are two fully-connected layers with Dropout (as
above) and a final softmax classification layer (Fig. 2C).

E. 3D Autoencoder Architecture

The 3D CNN autoencoder architecture is similar to the
classification network, employing stacked 3D convolutional
and max pooling layers at the bottom of the network to
encode the input, followed by fully-connected layers to reduce
dimensionality and subsequent stacked 3D convolutions and
upsampling layers to decode the input (Fig. 2B). As in the
classification architecture, all convolutional layers are paired
with a ReLU activation. 3D CNN autoencoder networks were
trained with the Adadelta optimization algorithm [45]], utilizing
crossentropy or mean-squared error as the loss function for
binary and Gaussian representations respectively. This archi-
tecture resembles others in the literature [26l], [27]].

F. ID Recurrent Autoencoder Architecture

As with the 3D CNN autoencoders, our RNN autoencoder
architecture resembles the corresponding classification net-
work. Following the fully-connected layers in the classification
architecture, the RNN autoencoder appends a 1D upsampling
layer and mirror 1D convolutional layers to return the input
back to the original size (Fig. 2D). Mean-squared error (MSE)
against the input sequence was utilized as a loss function
for training. RNN autoencoders were trained with the Adam
optimizer with a learning rate of € = 0.001.

G. ID Recurrent Motility Prediction Archiecture

We adapt our RNN autoencoder architecture to a prediction
architecture by removing the max pooling, fully-connected,
and dropout layers. Sequences are convolved by four 1D
convolutional layers, as in the autoencoder, before being
passed to a linearized LSTM and convolved by four more
1D convolutional layers. The final convolutional layer uses a
linear activation function rather than a ReLLU. Input sequences
length 7;,, are provided in the same multi-channel time series
format as our other RNN architectures, and output sequences
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Fig. 2. Cell motility classification and autoencoder architecture overview. (A) 3D CNN classification and (B) autoencoder architectures, where k is the number
of parameterized kernels used by 3D convolutional layers in each block and m is the number of nodes in a fully-connected layer. (C) 1D recurrent neural
network classification and (D) autoencoder architectures, where k is the number of parameterized kernels used by each 1D convolutional layer and n is the
number of nodes in a fully-connected layer or LSTM unit. Convolutional layers and paired with a rectified linear unit activation. Pooling and upsampling
layers operate with isotropic kernels of size 2 and stride of 2. Zero padding is performed as needed in autoencoder models to match input size.

are multi-channel time series of length 7,,;. The number of
LSTM units is adjusted to n = 27,,,; depending on the length
of desired output sequences. Mean squared error between the
predicted path and the ground truth path was used as the loss
function and the Adam optimizer was used with learning rate
€ = 0.001 (Fig. 6C).

H. Baseline Motility Classification

As a baseline motility classifier, a heuristic feature extractor
is paired with a Random Forest (RF) classifier [46]. The fea-
ture extractor calculates four parameters of motion: (1) mean
displacement, (2) displacement variance, (3) total distance
traveled, and (4) net distance traveled. These four heurstics are
commonly employed in the quantitative cell motility literature
[210, [47]], [48]]. The RF classifier utilizes 10 estimators and
scikit-learn default parameter settings. Code for the baseline
classifier is available on Github.

1. Baseline Kinematic Motion Prediction

A linear kinematic model is used for baseline motility
predictions. The kinematic model calculates the mean velocity

-
L 1 -
v:fE dv;
T
i=1

across the last 7 time steps in the preceding track and
projects the object by ¥ for each predicted time step. The
temporal window 7 is optimized by parameter search.

J. Cell Culture

Mouse embryonic fibroblasts, muscle stem cells, and my-
oblasts were cultured as previously described [15]. Neoplastic
MEFs were generated as described and generously donated by
the authors of [49].

K. Timelapse Cell Imaging

Timelapse cell imaging, cell segmentation, and cell tracking
was performed as described [15]]. Briefly, cells were imaged
for 10 hours in DIC at 6.5 minute intervals using a stagetop
incubator at 37°C and 5% CO,. Images were segmented
using common heuristic techniques and tracking was per-
formed using a modified version of uTrack [50]. Cell tracking
data is available on the “Heteromotility” Github repository
https://github.com/cellgeometry/heteromotility.

III. EXPERIMENTAL RESULTS
A. Motility Simulations

To determine if CNNs could discriminate between different
types of motion under ideal conditions, we trained both 3D
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CNN and RNN classification networks on simulated data from
3 distinct, biologically relevant models of motion, namely
random walking, Levy flights, and fractional Brownian motion.
Random walking is motion with normally distributed random
step sizes and directionality. Random walking is observed
in freely diffusing biomolecules [51]]. Levy flights similarly
display random directionality, but step sizes are instead chosen
from a long-tailed Levy distribution. Levy flights are observed
in multiple biological systems and optimize path finding [52],
53], [54], [55]. Fractal Brownian motion models a random
walk with long term dependence, similarly relevant as a
representation of regulated motion in biology [56], [57]. By
starting with simulated data we can optimize parameters using
large sample sizes that would be difficult to obtain with living
cells.

Random walks, Levy flights, and fractal Brownian motion
were simulated for classification, each with a mean displace-
ment of 5 (z,y) units per time step. Simulations were carried
out for 100 time steps and restricted to a (2048, 2048) pixel
plane, representing the field-of-view that might be expected
using a standard 4 megapixel microscopy camera.

For 3D CNN classification with explicit representations, 4-
fold compression and cropping were performed to meet GPU
memory constraints. Compressed tracks traveling more than
156 px from the origin in any direction were removed from
analysis, to prevent dilution of the representation space by
a few outlier tracks. Remaining tracks were represented in
(156,156, 101) vx cubes. Nvidia GTX 1080 (Pascal) and Titan
Xp GPUs were used for all experiments.

B. CNNs accurately classify simulated motility behaviors us-
ing both representations

Experiments to classify explicit 3D representations were
performed using binary disks of three diameters d € {1, 5,25}
and broad Gaussian distributions of different variance o €
{3,10,20} as place markers. 12,000 samples per class were
used for training, 1,500 for stopping criteria, and 1,500 for
final validation. Early stopping was performed in all models
after the testing loss failed to improve for 3 consecutive epochs
[58]. Models were evaluated based on the prediction accuracy
on the validation set.

The largest binary disk representations achieved "95% val-
idation accuracy after 30 epochs, and the largest Gaussian
representations of the same data yielded "81% validation after
30 epochs of training (Fig. 3A). Using binary distributions,
accuracy increased as the marker sized increased. At all
marker sizes, binary markers perform better than Gaussian
markers. Both binary and Gaussian representations appear to
overfit in later epochs, as evidenced by the divergence of the
training performance from validation performance (Fig. 3B). A
baseline random forest (RF) classifier model utilizing heuristic
motility features (see Methods) reached "54% (5-fold cross-
validation). The 3D CNN approach therefore represents a 75%
improvement over the heuristic RF baseline.

These results suggest that 3D CNNs are sufficient to dis-
tinguish different classes of motion represented as 3D images,
that multiple representation schemes can be effective, and that

3D CNNs can beat baseline heuristic classification methods by
a wide margin. Large binary representation schemes appear
to be the most effective representation scheme we tested.
Therefore, we utilize large binary representations for all further
3D CNN experiments with live cell data.

Experiments to classify 1D multi-channel time series repre-
sentations were performed using the same train, test, validation
data split described above for 3D CNN experiments. Convolu-
tional recurrent neural network (RNN) models train two orders
of magnitude more rapidly than comparable 3D CNN models,
and the reduced memory requirements allow for much larger
batch sizes than in the 3D case. RNN classifiers achieve "99%
validation accuracy, demonstrating superior performance to the
3D CNN models on simulated data. These results indicate that
RNN models are sufficient to distinguish different models of
motion represented as multi-channel time series, and that this
classification scheme is superior to both a baseline heuristic
approach and the 3D CNN approach for this task.

C. CNNs accurately discriminate cell types by motility behav-
ior

After validating that CNNs were sufficient to distinguish
simulated classes of motion, we applied the same classification
networks to distinguish different types of experimentally mea-
sured cell motility. Cell motility was tracked in three different
cell types by timelapse imaging for 10 hours, followed by
segmentation and tracking by standard methods. Mouse em-
bryonic fibroblasts (MEFs) are commonly used for in vitro cell
culture assays, and neoplastic transformation of these cells has
been demonstrated to alter their motility behaviors [15]. We
tracked both wild-type and neoplastic (c-Myc overexpression,
HRas-V12) MEFs to compare their motility behaviors. Muscle
stem cells (MuSCs) are the obligate stem cell of the skeletal
muscle, and their motility is known to be effected by their
activation state [14]. Activated MuSCs commit to become
myoblasts, a transit amplifying myogenic progenitor cell.
We tracked both MuSCs and myoblasts to compare motility
between these states of myogenic commitment (see Methods
for culture details).

To determine if 3D CNNs could distinguish cell types based
on experimentally measured motility, we trained a 3D CNN
to discriminate between MEF and MuSC motility, represented
using large binary disks (diameter = 25 px) in 3D space as
described above. RNN models were trained as on simulated
models of motion above. Both networks were initialized with
weights from the corresponding trained simulation classifier.

The 3D CNN classification network was trained for 30
epochs and RNN classifiers for 1000 epochs. Early stopping
as above was performed with a 3 epoch and 100 epoch
patience period for 3D CNNs and RNNss, respectively. Training
was performed on MuSC motility traces and MEF motility
traces (n = 405 per class). Testing and validation were each
performed with n = 50 samples per class.

Each network type was trained five separate times to account
for variability in stochastic optimization. Mean validation
accuracy on this cell type classification task was "91.2% for
3D CNN models and 792.6% for RNN models (Fig. 4A). Mean
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Fig. 3. 3D CNN and RNN classifiers effectively distinguish simulated models of motion. (A) 3D CNN classifier performance using different marker sizes.
(B) 3D CNN classifier training progress with different binary marker sizes. (C) RNN and 3D CNN (binary marker, 25 px) classifier performance.

validation accuracy for our heuristic RF baseline model was
"86.6%. These results indicate that even with a small data set
such as this, both 3D CNNs and RNNs can be effectively
trained to discriminate different types of cell motility and are
superior to a baseline heuristic model (Fig. 4A).

D. CNNs provide discriminative power between stem cell
activation states

To determine if CNNs can distinguish between more nu-
anced differences in cell state, both 3D CNN and RNN
classifiers were trained to discriminate between myogenic
activation states. Training was performed on n = 200 MuSCs
and myoblasts per class, with testing on n = 50 samples and
validation on n = 27 samples. Dynamic data augmentation
was utilized in the 3D CNNs due to the small available
sample size. Motion cubes were horizontally and vertically
flipped to increase training set diversity without perturbing
the representation of motility. No augmentation was used for
RNN models.

As above, five independent training experiments were per-
formed for each network. Transfer learning was employed,
taking advantage of weights learned from simulated data
classification. Mean validation accuracy reached "90.7% for
3D CNN classifiers, 790.4% for RNN classifiers, and “88.5%
for our heuristic baseline (Fig. 4A). These results demonstrate
that both 3D CNN and RNN models can discriminate between
stem cell activation states based on motility alone and are
superior to a baseline heuristic model, even with small data
sets.

Classifiers were also trained in the same manner to discrim-
inate between wild-type and neoplastic MEFs with transfer
learning from the simulated motion classifier. Training was
performed on n = 160 samples per class, with testing and
validation on n = 30 samples per class. Classification failed to
achieve validation accuracy >64% for either 3D CNN or RNN
models (Fig. 4A). However, this is still notably superior to
the baseline heuristic model, which performed with accuracy
near the noise floor at 54.6%. The more nuanced phenotypic
difference between wild-type and neoplastic MEFs may be
an inherently more challenging classification problem. The
small available sample size likely compounds this difficulty
and exacerbates the classifier’s poor performance.

E. Cell mimetic pretraining

Given the success of pre-training by classification of sim-
ulated models of motion, we next attempted to generate
simulated data that more accurately reflected real cell motility
to enhance pre-training efficacy. For a set of real cell motility
data, we measure the displacements and turning behavior of
each cell. Displacements are measured simply as the Euclidean
distance between each set of sequential timepoints. The turning
direction at a point ¢; is determined as the angle between the
vectors that connect points ¢;_; to ¢; and ¢; to ¢;11.

Cells are decomposed into a set of k clusters by k-means
clustering on a set of parameters measured from these dis-
placement and turn angle distributions. The number of clusters
k = 5 was chosen empirically to capture the diversity of the
cell phenotypes while still leaving non-trivial numbers of cells
in each cluster. For each cluster, a bounded Johnson distribu-
tion is fit to the aggregate distribution of displacements and
the aggregate distribution of turn angles. Simulated samples
are generated by randomly sampling displacement magnitudes
and turn angles from the fitted Johnson distributions for T'
time steps. To represent a population of cells, the proportion
of simulations generated from each cluster is equivalent to the
cluster’s prevalence in the original cell data. This approach
may be conceptually likened to the bag-of-words model [59]],
in which k-means clustering is used to decompose features
into a representative “vocabulary.” By sampling from each
of k clusters proportionally, we aim to capture and simulate
heterogeneous phenotypes within a cell population, rather than
simply reproducing a single averaged phenotype that may not
be representative of any true cell phenotype.

We generated “cell mimetic” simulations for MuSCs and
myoblasts by the above method, with n = 15,000 simulated
samples for each of the two activation states. 3D CNN and
RNN classifiers were pretrained by classifying between the
two simulated data sets, reaching "97% validation accuracy for
the 3D CNN classifier and "99% for the RNN classifier. The
weights from this pretrained network were used to initialize
classifiers for the myogenic activation task outlined above.

Training speed appeared to increase for 3D CNNs and
remain unchanged for RNN classifiers (Fig. 4B). Mean val-
idation accuracies were effectively unchanged at "91.1% for
3D CNN classifiers and “88.8% for RNN classifiers. These
results indicate that “mimetic” pretraining may aide training


https://doi.org/10.1101/159202

bioRxiv preprint doi: https://doi.org/10.1101/159202; this version posted February 9, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

PRE-PRINT VERSION, FEBRUARY 2018

A Cell Phenotype Classification

*%

Accuracy

Cell Type MEF Neoplasia Myo. Activation

Classification Task

Myo. Act. (Mimesis)

B Myo. Activation Pretraining Comparison

N RNN

= Simulation Train
—— Simulation Test

0.5

Mimetic Train

Mimetic Test

Loss

Fig. 4. CNNs can discriminate between different cell types and cell states based on motility. (A) Validation prediction accuracy for 3D CNN and RNN models
on cell type classification, MEF neoplastic state classification, and myogenic activation state classification with either simulated or “mimetic” pretraining.
(**t-test p < 0.001) (B) Representative training progress for 3D CNN classifiers pretrained with either generic simulation classification wieghts or mimetic
simulation classification weights. (C) Representative images of different cell types, from left to right: MuSC, myoblast, neoplastic MEF, and wild-type MEF.

Colored markers indicate the cell’s path along the substrate over time.

speed for 3D CNN motility classification networks, and has
little effect on final classification accuracy.

F. Autoencoders allow unsupervised learning of representa-
tions in motion feature space

Results up to this point indicate that supervised classifi-
cation of different cell motility phenotypes using both 3D
CNN and RNN models is effective. However, in the analysis
of motility data, supervised classification data is not always
available. For instance, to explore the heterogeneity of types
in a given population, there is no obvious method to generate
supervised classification data that may be used to learn relevant
feature kernels by optimization of a standard classification loss
function. This would also be an issue in the identification of
heterogeneous motility behaviors in patient biopsy samples,
in which the distinguishing features are not known a priori.
Training CNNs as autoencoders in an unsupervised fashion
has been used in other contexts to learn relevant feature
kernels where no obvious classification problem is present
[27], [28]. We next attempted to train autoencoders on our 3D
representations of cell motility and multi-channel time series
to learn relevant feature kernels in the absence of a supervised
classification problem.

A 3D CNN autoencoder architecture was formulated us-
ing stacked convolutions, followed by fully-connected lay-
ers, upsampling, and stacked convolutional layers (Fig. 2B).
Similarly, an RNN autoencoder was formulated by append-
ing upsamping and convolutional layers following the fully-
connected layers in our classification architecture (Fig. 2D).

Both autoencoders were trained on n = 12,000 samples
of each class for three types of simulated motion (random
walk, Levy flight, fractal Brownian motion), with training and
validation each on n = 1, 500 samples per class. Large binary

disk representations were used for 3D CNN autoencoder
experiments. Binary crossentropy was used as a loss function
with 3D CNN models, while mean squared error was used
to as a loss function for RNN models. All autoencoders
successfully reduced loss over several training epochs. When
visually inspected, 3D CNN autoencoder outputs appear to
accurately reflect input motility representations (Fig. 5A, B).
However, RNN autoencoder outputs consistently fail to capture
the full extent of a cell’s motility, though some degree of path
shape is preserved (Fig. 5D).

To determine if 3D CNN or RNN autoencoders trained
on motility representations could be employed as feature
extractors, we utilized the output of the autoencoders’ central
layer (the encoded representation) as features. To quantify
the amount of class information preserved by the encoded
representations, we trained a Random Forest classifier to
distinguish the simulation classes using either 3D CNN au-
toencoder features or RNN autoencoder features. Random
Forests trained on 3D CNN autoencoder features achieved
"62.3% and RNN autoencoder features achieved "58.2% ac-
curacy on this 3 class problem. Both Random Forests trained
on autoencoder features are notably more effective than our
heurstic RF baseline, which achieved "54.3% accuracy on the
same task. These results indicate that both 3D CNN and RNN
autoencoders are able to learn meaningful motility features in
an unsupervised manner. In this context, 3D CNN autoencoder
features appear to be marignally more predictive than RNN
autoencoder counterparts.

Autoencoders are often used for unsupervised pre-training
prior to a classification problem. To determine if autoencoder
features could effectively aide motility classification by trans-
fer learning, we initialized and 3D CNN and RNN models
with autoencoder weights and trained these classifiers to dis-
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output. (C) Classification accuracies of Random Forest classifiers trained on 3D CNN or RNN autoencoder features. (D) RNN autoencoder sample input and
output. (E) Training comparison of de novo trained simulated motility classifiers to classifiers with autoencoder transfer learning.

tinguish the simulated motion models. Transfer learning with
autoencoder features appears to increase RNN training speed,
but decrease 3D CNN training speed (Fig. 5E). This result
indicates that autoencoding motility data may be effective
pretraining for our RNN classification architectures, but not
their 3D CNN counterparts.

G. RNNs predict muscle stem cell motility

Tracking individual cells in timelapse microscopy experi-
ments is a difficult multi-object tracking problem [60]. Popu-
lar tracking methods utilize a motion model to predict cell
motility in advance of the next frame to improve tracking
performance [[61]]. This motion prediction is especially useful
in the event of “missed detections,” where a cell is not
detected or segmented for a given set of frames but is detected
later on. The most common motion models employed are
based on linear kinematics, with Kalman filters serving as a
popular choice [50]]. However, cell motion does not adhere to
kinematic assumptions in all cell types, with myogenic cells
being an excellent example of such a system. A motion model
specifically tailored to the cell type of interest may therefore
be useful to improve tracking performance, but such specific
tailoring would require a prior knowledge of the very motion
features that the live cell experiment is designed to analyze.
Some way to tailor prediction models on the fly could help
solve this problem.

Recurrent neural networks have been effectively utilized for
sequence prediction in multiple fields [62], [63], [64], [65]].
We adapted the convolutional RNN autoencoder model to a
sequence prediction model by removing the pooling layers

and fully-connected layers and altering the number of nodes
in the central LSTM layer (Fig. 6C). As a prediction task, we
trained the RNN prediction model on 7;, = 20 time steps of
motion and predicted 7,,; = 10 time steps into the future. As
a data set, we split MuSC motion paths into subpaths of length
Teotal = 30 for a total of n = 8,676 paths. A validation set of
10% of all tracks was held out, and the remaining tracks were
split with 80% used for training and 20% used for testing.

As a baseline for comparison, we performed a simple
kinematic prediction of MuSC paths that assumes persistence
of the velocity from preceding time points. The velocity for
prediction was obtained by averaging instantaneous velocity
for 7 = 15 time points prior to the track terminus, where
T was optimized by parameter search. This baseline model
leads to an average mean squared error (MSE) (30 train/test
splits) of 220. The RNN prediction model by comparison
produces a significantly lower MSE of "192 (¢-test p < 0.001),
indicating that the RNN model is a superior motion predictor
in the MuSC context (Fig. 6B). Representative track endings
(Iength 7,5, = 10) produced by the RNN prediction model
are displayed alongside the preceding track beginnings (length
Tin = 20) and the ground truth track endings (Fig. 6A). In
most cases the motion prediction reasonably approximates the
cell’s ground truth direction, but does not closely mirror the
exact path (Fig. 6A, inset i and ii). In some events, the RNN
model fails to predict even the correct direction of motion (Fig.
6A, inset iii). We performed the same experiment with mimetic
myoblast simulations using n = 10° total samples, holding
n = 5000 samples for validation. Similar to the MuSC results,
RNN motion predictors achieved a markedly lower MSE of
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Fig. 6. RNN models predict MuSC motility more effectively than linear kinematics. (A) Representative samples of MuSC tracks used for prediction with
predicted track endings and true track endings. (B) Performance of the RNN motion prediction model relative to a linear kinematic baseline model, determined
as the mean squared error between ground truth and predicted track endings. (**#-test p < 0.001) (C) RNN motility prediction architecture, where k is the
number of kernels in each 1D convolutional layer and n is the number of units in the LSTM. All convolutional layers except the final layer are paired with

a ReL.U activation.

~1195, relative to the baseline kinematic model MSE of “9797
(t-test p < 0.001).

These results indicate that convolutional RNN models can
be effective cell motility prediction models and are superior
to simple linear kinematic approaches in some real world
circumstances. RNN motility prediction models may therefore
offer a scalable way to fit a uniquely tailored motion model
to specific cell biology contexts. These cell-context specific
RNN motility predictors may be useful to improve multi-cell
tracking performance, as outlined above.

IV. CONCLUSION

Convolutional neural networks enable representation learn-
ing, or learning of features relevant for the description of a
feature space. By representing cell motility as a 3D image,
we show that 3D CNNs may be applied as an effective
analytical tool. Using RNNs, motility may also be analyzed in
the native multi-channel time series representation. Our results
demonstrate that both approaches are capable of discriminating
between simulated models of motion and multiple types of ex-
perimentally measured cell motility behaviors and are superior
to a baseline heuristic model. In our experimentally measured
cell motility data, we find that both CNN models effectively
discriminate between different cell types, and different states
of myogenic progenitor activation. We also find that CNN
autoencoders can be trained effectively on either motion repre-
sentation representations in an unsupervised fashion. Adapting
the convolutional RNN autoencoder for motility prediction, we
find that the RNN model is more effective at predicting MuSC
motility than a kinematic model. Such prediction models may
be useful for cell tracking. While we apply the methods
described here to cell biology, there is no conceptual limitation
that prevents application to other fields where discrimination
based on motion recordings is desired. In the field of cell

biology, analysis of motility with CNNs may allow for useful
insights to be gathered in contexts where relevant features are
non-obvious or laborious to construct.
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