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 2

Abstract 24 

 25 

 We developed a new pipeline for simultaneous analyses of both rRNA profile 26 

as a taxonomic marker and mRNA profile as a functional marker, to understand microbial 27 

ecosystems in natural environments. Our pipeline, named All-RNA-Information 28 

sequencing (ARIseq), comprises a high-throughput sequencing of reverse transcribed 29 

total RNA and several widely used computational tools, and generates quantitatively 30 

reliable information on both community structures and gene expression patterns, which 31 

were verified by quantitative PCR analyses in this study. Particularly, correlation network 32 

analysis in the pipeline can reveal microbial taxa and expressed genes that share patterns 33 

of dynamics among different time and/or geographical points. The pipeline is primarily 34 

mapping-based, using a public database for small subunit rRNA genes and obtained 35 

contigs as the reference database for protein-coding genes. We applied this pipeline to 36 

biofilm samples, as examples, collected from an acidic spring water stream in the 37 

Chyatsubomi-goke Park in Gunma prefecture, Japan. Our analyses revealed the 38 

predominance of iron and sulfur-oxidizing bacteria and Pinnularia diatoms, and also 39 

indicated that the distributions of the iron-sulfur-oxidizing bacterial consortium and the 40 

Pinnularia diatoms largely overlapped but showed distinct patterns. In addition, our 41 

analyses showed that the iron-oxidizing bacterial genus Acidithiobacillus and 42 

co-occurring Acidiphilium shared similar distribution pattern whereas another 43 

iron-oxidizing genus Leptospirillum exhibited a distinct pattern. Our pipeline enables 44 

researchers to more easily capture the outline of microbial ecosystems based on the 45 

taxonomic composition, protein-coding gene expression, and their correlations. 46 

 47 

 48 

Introduction 49 

 50 

 Microbial communities play various and crucial roles in their habitat 51 

ecosystems. Because most microbial species in many environments are yet uncultivable, 52 

culture-independent approaches are generally adopted to reveal both taxonomic 53 
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compositions and potential functions. Sequencing analysis of small subunit (SSU) rRNA 54 

gene amplicons is widely used methodology to obtain information on the taxonomic 55 

composition of a microbial community. Metagenome and metatranscriptome analyses are 56 

also performed to investigate the community structure based on rRNA and/or other 57 

taxonomic marker genes as well as to obtain the functional information on the microbial 58 

community. In general, researchers choose a combination of these methodologies to 59 

comprehensively understand a microbial ecosystem. 60 

 Among these currently available methodologies, RNA-based analyses are 61 

essential to the assessment of microbial activities. The large proportion of rRNA, 62 

compared to mRNA, has been an obstacle to functional analyses based on mRNA 63 

sequences; however, high-throughput sequencing has enabled researchers to analyze 64 

sufficient mRNA sequences without depleting rRNA in many cases. Simultaneous 65 

acquisition of both mRNA sequences as functional markers and rRNA sequences as 66 

taxonomic markers from the same RNA sample is advantageous to depict the precise 67 

picture of a microbial ecosystem [1-4]. Furthermore, amplicon-based analyses of rRNA 68 

sequences are subjected to PCR amplification bias [5]. Thus, development of a simple 69 

and quantitatively reliable pipeline for the simultaneous analysis of both mRNA and 70 

rRNA data will greatly help researchers. 71 

 Here, we developed a pipeline comprising several steps: a standard quality 72 

filtering of sequence reads, mapping reads to a public SSU rRNA sequence database, de 73 

novo assembly of mRNA reads and annotation of the contigs, mapping reads to the 74 

mRNA contigs, and finally statistical analyses of the expression level of respective gene 75 

categories and the frequency of microbial taxa. Our pipeline, named 76 

All-RNA-Information sequencing (ARIseq), yields quantitatively reliable information 77 

for both microbial community structure and gene expression, which was tested by 78 

quantitative PCR (qPCR) analyses. The quantitative information is also used for a 79 

correlation network analysis, which can reveal microbial taxa and expressed genes that 80 

share patterns of dynamics among different time and/or geographical points. 81 

 We applied this newly developed tool, ARIseq, to an analysis of biofilm 82 

samples collected from an acidic spring water stream at the Chyatsubomi-goke Park in 83 

Japan. This acidic stream is a well-known ecosystem for bio-mineralization by 84 

iron-oxidizing microbial consortia [6]. ARIseq successfully provided quantitative 85 
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information on both the microbial community structure and gene expression. The results 86 

showed that the similarity and dissimilarity of distribution patterns among dominant 87 

organisms and expressed genes. 88 

 89 

 90 

Materials and Methods 91 

 92 

Sample collection 93 

 Biofilm samples were collected at three different points along an acidic stream 94 

at the Chyatsubomi-goke Park in Gunma prefecture, Japan [6]. The stream originated 95 

from an acidic spring and then flowed down to the inlet point of the Shirakinu waterfall. 96 

The three points were: site 1 upstream point (36°38'58.14"N 138°35'10.66"E), site 2 97 

upstream point (36°38'58.14"N 138°35'11.24"E), and site 3 downstream point 98 

(36°38'57.05"N 138°35'27.82"E). A schematic drawing of these sampling sites with 99 

water temperature, pH, and 57Fe element concentration was shown in Fig 1. The values of 100 

pH and water temperature were directly measured by a portable pH meter, HM-30P (TOA 101 

DDK, Tokyo, Japan). The total iron concentration in the stream water was determined for 102 

57Fe element in the diluted solution by 0.01 mol L-1 hydrochloric acid (088-02265, 103 

WAKO, Japan) by an inductive coupled plasma mass spectrometry, NexION300 104 

(PerkinElmer Japan, Yokohama, Japan). 105 

 106 

Fig 1. Schematic drawing of sampling site topology and physical and chemical 107 

conditions. 108 

 109 

 Three stones (indicated as a, b, c) per site were sampled. Each stone was rinsed 110 

with purified water, and biofilm was brushed off from the stone surface using a sterile 111 

toothbrush and purified water. Suspension of the collected biofilm was filtered with a 112 

0.22-µm polyvinylidene difluoride (PVDF) Durapore® membrane (Millipore, Billerica, 113 

MA, USA). The filter membrane with trapped materials was preserved in 1 ml of 114 

RNAlater® solution (Ambion, Austin, TX, USA) at -80°C until being processed. In total, 115 

nine samples were collected (designated as samples 1a–c, 2a–c, and 3a–c). 116 
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 117 

RNA extraction and sequencing 118 

The materials trapped on the filter membrane was resuspended in RNAlater® 119 

by pipetting, and precipitated by centrifugation at 15,000 rpm for 5 min. The pellet was 120 

subjected to RNA extraction, using the PowerBiofilm RNA Isolation Kit (MO Bio, 121 

Carlsbad, CA, USA), according to the manufacturer’s instructions. RNA was eluted with 122 

100 µl of purified water. RNA concentration was measured using a Qubit system 123 

(Invitrogen, Carlsbad, CA, USA) and adjusted to 100 ng/µl with purified water. RNA was 124 

not sufficiently recovered from samples 1b, 1c, and 3c, which were removed from further 125 

experiments. 126 

Sequencing libraries were prepared using the SMARTer® Stranded RNA-Seq 127 

Kit for Illumina (Takara, Kyoto, Japan), following the manufacturer’s instructions. The 128 

concentration and length of DNA fragments in the sequence library were measured using 129 

the Qubit system and a Bioanalyzer 2100 (Agilent Technologies, Carlsbad, CA, USA). 130 

When libraries contained DNA fragments < 80 bp, the libraries were further processed 131 

with the Agencourt AMpure XP (Beckman Coulter, Brea, CA, USA) to remove small 132 

fragments, according to the manufacturer’s instructions. Sequencing was performed on 133 

the Illumina MiSeq platform (Illumina, CA, USA) with the Reagent Kit v3 (600 cycles, 134 

paired-end mode). Sequence data have been deposited at DDBJ with the accession 135 

number DRA005571. 136 

 137 

Processing sequence data 138 

The scheme of sequence processing is outlined in Fig. 2. Sequence reads were 139 

trimmed and quality-filtered using program Trimmomatic [7] in paired-end mode with a 140 

seed mismatch value of 5, a palindrome clip threshold of 30, a simple clip threshold of 7, 141 

a minimum read length of 100 bp and a headcrop of 6 bp. Trimmed reads were used for 142 

mapping to the SSU rRNA sequence database SILVA release 108 for QIIME [8,9]. 143 

Mapping was performed using Bowtie2 [10] with a local alignment mode and single- or 144 

paired-end modes. The data generated by Bowtie2 were converted to the sorted binary 145 

sequence alignment/map (BAM) format, using samtools [11], and the number of mapped 146 

reads were counted using the eXpress program package [12]. The read count data were 147 
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integrated into taxon information and utilized for secondary analyses (see below). 148 

Reads unmapped to the SILVA SSU rRNA database by paired-end mode were 149 

assembled using the Trinity program package [13] with the Jaccard clip option, to 150 

construct contigs. Open reading frames (ORFs) and the encoded protein sequences were 151 

predicted using the TransDecoder program package (https://transdecoder.github.io/). The 152 

ORF data were used as the reference database for mapping reads. Functional annotation 153 

of the identified ORFs was conducted with the Trinotate program package 154 

(https://trinotate.github.io/) that uses a combination of a BlastP search against the 155 

“UniProt/Swiss-Prot database for Trinotate”, an hmmer search in the Pfam database, and 156 

RNAMMER analysis. BlastP searches against the non-redundant (nr) and standard 157 

Swiss-Prot/UniProtKB databases were conducted, and the results were added to the 158 

annotation. Furthermore, a Ghost KOALA search provided by the Kyoto Encyclopedia of 159 

Genes and Genomes (KEGG) [14] was performed, and a K number was assigned to each 160 

of the ORFs. These functional annotations were combined with the read count data, and 161 

rank abundance curves were constructed. 162 

 163 

Secondary analysis 164 

 The read count data for both SSU rRNA and ORFs were subjected to secondary 165 

analyses. First, we performed normalization of the read count data, following a negative 166 

binomial distribution with generalized linear model, using the DESeq2 package [15]. For 167 

this analysis, the reads were divided into two groups: the “upstream group” (samples 1a 168 

and 2a–c) and the “downstream group” (samples 3a, b). SSU rRNA reads or ORFs with 169 

less than 10 mapped reads in total from all samples were excluded. The calculation with 170 

the DESeq2 package was performed using the TCC package in R [15]. 171 

Network analysis was performed based on Spearman’s rank correlation 172 

coefficient matrix, calculated using R, for the normalized read count datasets. The results 173 

were visualized using the Gephi program package [16] with a transformed matrix of 174 

connection between source and target with collected high positive correlation coefficient 175 

(r > 0.7) from correlation coefficient matrix [17]. The raw read count datasets were used 176 

also for calculating rarefaction curves using Past3.14 [18]. 177 

 178 
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Quantitative PCR experiments 179 

We performed qPCR to quantify the expression level of genes and to compare 180 

the results with those obtained from our pipeline. We selected two SSU rRNA sequences 181 

and two contigs each containing an ORF (ORF contig) as examples that showed 182 

differential expression patterns. We chose taxon 17056 (18S rRNA of Pinnularia cf. 183 

gibba) and the ORF contig TRINITY_DN8038_c26_g13_i2|m.9499 (peptide 9499), as 184 

they were highly expressed in the “upstream group”, and taxon 50111 (18S rRNA of 185 

Chironomus tentans) and the ORF contig TRINITY_DN6923_c3_g1_i3|m.6571 (peptide 186 

6571), as they were highly expressed in the “downstream group”. Peptide 9499 was 187 

annotated as an “uncharacterized protein” by both the Trinotate pipeline and a BlastP 188 

search against the Swiss-Prot/UniProtKB database. Peptide 6571 was predicted to be 189 

3-dehydroquinate dehydratase/shikimate dehydrogenase (K13832) by Ghost KOALA or 190 

putative alpha-L1 nicotinic acetyl choline receptor by a BlastP search against the 191 

Swiss-Prot/UniProtKB database. Primer sequences for qPCR are shown in Table. 1. 192 

Sequencing libraries were used as templates for qPCR, although one of the 193 

downstream samples (sample 3b) was excluded because the library DNA ran out by 194 

sequencing. Four samples (1a and 2a–c) from the upstream group and one (3a) from the 195 

downstream group were subjected to qPCR using the KAPA™ SYBR® Fast qPCR Kit 196 

(KAPA Biosystems, MA USA), according to the manufacturer’s instructions. The qPCR 197 

was performed in a Thermal Cycler Dice® Real Time System TP850 (Takara) in 25-µl 198 

reaction volume, and the PCR program was as follows: initial denaturation at 95°C for 30 199 

sec and 40 cycles of 95°C for 30 sec and 60°C for 1 min. The dilution rate of the samples 200 

was 1/200. The calibration curve was constructed using sample 2c with dilution rates 201 

1/100, 1/200, 1/400, 1/800, 1/1600, and 1/3200. The experiments were conducted in 202 

triplicate. The amount of template DNA was adjusted, using the KAPA™ Library 203 

Quantification Kit for Illumina (KAPA Biosystems, MA USA). 204 

 205 

 206 

Results and Discussion 207 

 208 
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Mapping-based analysis of total RNA sequences 209 

 Total RNA sequencing of the six biofilm samples (1a, 2a–c, and 3b,c) 210 

generated 770,334 to 1,320,217 read pairs, and >80% reads passed the quality check 211 

(Table 2). These reads were analyzed using our mapping-based ARIseq pipeline (Fig 2). 212 

Of the reads, 45.7% were mapped to the SILVA SSU rRNA sequence database, using the 213 

single-end mode option of Bowtie2 (Table 2). When using the paired-end mode, mapped 214 

reads were only 5.1%; thus, we used the results obtained using the single-end mode for 215 

quantification data. We here only considered quantification of SSU rRNA genes sharing a 216 

high sequence identity with those in the reference database, Therefore, the unmapped 217 

reads should contain other SSU rRNA, large subunit rRNA, and non-coding RNA, which 218 

can be identified and removed in the following annotation step. 219 

 220 

 221 

Fig 2. Schematic flow chart of the ARIseq pipeline. Green arrows indicate the flow of 222 

rRNA gene data, and red arrows indicate the flow of the other RNA. 223 

 224 

 Unmapped reads against the SILVA database by paired-end mode mapping 225 

were used for a de novo assembly process using Trinity, and then ORFs on the contigs 226 

were predicted by using TransDecoder. These ORFs were used as the reference sequence 227 

database for mapping analysis to obtain gene expression profiles. In the single-end mode 228 

of Bowtie2, 17.2% of the reads were mapped onto this self-made database, whereas only 229 

2.7% of the reads were mapped in the paired-end mode, (Table 2). Here, we again 230 

employed the results from the single-end mode for subsequent analyses. 231 

 Read count data for both SSU rRNA and ORFs were obtained using the 232 

eXpress program package. Fig 3 shows rarefaction curves, which indicated that the 233 

sequence efforts (i.e., number of reads) for both rRNA and ORFs were sufficient or nearly 234 

sufficient to obtain most variations in the RNA samples except for the SSU rRNA of the 235 

downstream samples 3a and 3b. All read count datasets were subjected to the 236 

normalization processes with DESeq2 and annotation using Trinotate, BlastP, and Ghost 237 

KOALA (see Materials and Methods for details). The annotation and normalization 238 

results were listed in S1 and S2 Tables. 239 
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 240 

Fig 3. Rarefaction curves. (a) Rarefaction curves of taxa based on SSU rRNA sequences. 241 

Taxa was defined as reads mapped OTUs. (b) Rarefaction curves of protein-coding genes 242 

(ORF) based on cDNA sequences from mRNA. Sample names are shown aside the 243 

curves. 244 

 245 

 In the normalized read count data, gene expressions of several rRNA or ORFs 246 

greatly differed between the upstream and the downstream sample groups. For example, 247 

mapping data suggested that, a diatom, Pinnularia cf. gibba (taxon 17056), was abundant 248 

in the upstream samples but less represented in the downstream sample 3a based on the 249 

rRNA read count data (Fig 4a). In contrast, aquatic larvae of the non-biting midge 250 

Chironomus tentans (taxon 5111) were found abundant only in the downstream sample 3a 251 

(Fig 4a). Although insects are not microbes, we here included them because they 252 

probably have a great impact on the biofilm ecosystem. These expression patterns were 253 

well congruent with the results obtained by qPCR analyses (Fig 4b). ORF read count data 254 

showed that the ORF for peptide 9499 was most highly expressed in the upstream 255 

samples, whereas ORFs for peptide 6571 was most highly expressed in the downstream 256 

samples (Fig 5a). These results were also congruent with those from qPCR analyses (Fig 257 

5b). Thus, our ARIseq analysis pipeline generated quantitatively reliable results for both 258 

rRNA and expressed ORFs. 259 

 260 

Fig 4. Quantitative analysis of rRNA data. (a) Normalized read counts for an 261 

upstream-specific taxon, 17056, and a downstream-specific taxon, 5111. (b) Relative 262 

abundance of these taxa evaluated by qPCR. 263 

 264 

Fig 5. Quantitative analysis of ORF data. (a) Normalized read counts of an 265 

upstream-specific ORF for peptide 9499 and a downstream-specific ORF, 6571. (b) 266 

Relative abundance of these ORFs evaluated by qPCR. 267 

 268 

Biofilm community structure in the acidic stream 269 

 Fig 6 shows SSU rRNA-based taxonomic compositions at the domain level. 270 
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Eukaryotes or bacteria predominated in all samples; only a few archaeal sequences were 271 

detected. The distribution pattern of each taxon was summarized by a correlation network 272 

analysis (Fig 7a). Six clusters were recognized, and each distribution pattern is shown in 273 

Fig 7b. Here, a “cluster” is defined as a group of taxa that exhibit similar distribution 274 

pattern among the samples. Members of cluster 1 mainly inhabited the downstream sites 275 

(samples 3a,b), whereas members of clusters 3, 4, and 5 were found mostly at upstream 276 

sites (samples 1a and 2a–c). Because the reads assigned to clusters 2, 5, and 6 were 277 

relatively few, we focused only on clusters 1, 3, and 4 for comparisons. 278 

 279 

Fig 6. Taxonomic comopistions at domain level. Normalized read counts are used for 280 

the calculation. 281 

 282 

Fig 7. Correlation network analysis of SSU rRNA data. (a) A network drawn for 283 

relationships with positive correlation indexes > 0.7. (b) Normalized read counts of SSU 284 

rRNA for taxa assigned to each cluster. 285 

 286 

 Fig 8 shows the taxonomic composition of each cluster at the genus level. 287 

Chironomus midge larvae, Pinnularia diatoms, and Acidithiobacillus bacteria 288 

predominated in clusters 1, 3, and 4, respectively. This at once indicated that Chironomus 289 

predominated in the downstream regions, and that Pinnularia and Acidithiobacillus did in 290 

the upstream regions. Acidithiobacillus is a well-known acidophilic bacterial genus that 291 

oxidizes sulfur and iron, and is frequently found in acid mine drainage [19-22]. In this 292 

acidic stream, the presence of bacteria attached to iron precipitate with 293 

phosphorous/sulfur crystals was previously reported [6]. It is highly possible that 294 

Acidithiobacillus members with co-occurring, possibly symbiotic Acidiphilium [23], the 295 

second-dominant genus in cluster 4, mainly cause iron/sulfur oxidation. 296 

 297 

Fig 8. Taxonomic compositions of each cluster generated by network analysis of 298 

SSU rRNA data. Normalized read counts are shown at the genus level. The taxonomy 299 

was based on the SILVA database release 108. Original data are shown in S3 Table. 300 

 301 

 Pinnularia diatoms are also frequently found in acid mine drainage [19,24] and 302 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


 11 

comprise a biofilm community [25]. The presence of Pinnularia-like diatoms in this 303 

acidic stream was previously reported: the cells were found around or attached to 304 

precipitated Fe-P materials [6]. As shown in Fig 8, overlapping but distinct distribution 305 

pattern is observed between Pinnularia and Acidithiobacillus in the upstream region. 306 

This pattern suggested that the primary production at the upstream site 2a is largely 307 

attributable to the iron-sulfur oxidation by Acidithiobacillus, while photosynthesis by 308 

Pinnularia contributes to the primary production broadly in the upstream region 309 

 In the downstream samples, the larvae of the non-biting midge genera 310 

Chironomus and Acricotopus were predominant (Fig 8). These chironomid larvae are 311 

detritivores and frequently found in biofilms in freshwater [26]. The third-dominant 312 

genus in the downstream samples in cluster 1 was Leptospirillum. Leptospirillum 313 

members are also iron-oxidizers in general and produce iron/sulfur granules inside their 314 

extracellular polymeric substances that compose the biofilm [19,27,28]. This different 315 

distribution pattern between Acidithiobacillus and Leptospirillum as revealed in our 316 

correlation analysis implies their niche differentiation. 317 

 318 

Gene expression profiles and correlation with taxonomic 319 

compositions 320 

 ORFs showing a similar expression pattern among the samples were also 321 

clustered by a correlation network analysis (Fig 9a). Two large clusters were generated: 322 

cluster 1 comprised ORFs that were highly expressed in the downstream samples; cluster 323 

2 comprised those highly expressed in the upstream samples (Fig 9b). In cluster 2, genes 324 

related to photosynthesis, such as electron transportation and photosystem components 325 

were dominant (Table 3). This coincided with the predominance of diatoms including 326 

Pinnularia in the upstream region (Fig 8). 327 

 328 

Fig 9. Correlation network analysis of expressed ORF data. ORFs were categorized 329 

and bundled according to the KEGG orthology. Normalized read counts were used for the 330 

analysis. (a) A network drawn for relationships with positive correlation indexes >0.7. (b) 331 

Normalized read counts of expressed ORFs assigned to each cluster. 332 

 Furthermore, we constructed a correlation network based on expression 333 
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patterns of both rRNA and ORF datasets (Fig 10). Here, “cluster” comprised both SSU 334 

rRNA and ORFs that exhibited similar distribution patterns among the sampling sites. 335 

The clustering pattern resembled that based on SSU rRNA (Fig 8 and 11); the ORF 336 

expression patterns and the SSU rRNA distribution patterns were well congruent. 337 

Dominant gene categories in each cluster were mostly house-keeping genes (Tables 4 and 338 

5) or photosynthesis-related genes (Table 6). Rank abundance curves of taxa that 339 

expressed genes related to photosynthesis and assigned to cluster 6 are shown in Fig 12, 340 

which suggested that photosynthesis-related genes were mainly originated from diatoms. 341 

In Fig 12, closest species that were identified by BlastP searches against the 342 

SwissProt/UniProtKB database are shown. Phaeodactylum tricornutum, listed as the 343 

predominant species in Fig 12, is a marine diatom and one of the few diatoms with 344 

genome sequence being analyzed [29]; thus, this most likely represented the predominant 345 

diatom Pinnularia in the upstream region of this acidic stream. 346 

 347 

Fig 10. Correlation network analysis of combined data of SSU rRNA and expressed 348 

ORFs. (a) A network was drawn for relationships with positive correlation indexes >0.7. 349 

(b) Normalized read counts of SSU rRNA-based taxa and expressed ORFs assigned to 350 

each cluster. 351 

 352 

Fig 11. Taxonomic compositions of each cluster generated by network analysis of 353 

combined data of SSU rRNA and expressed ORFs. The taxonomic compositions were 354 

based only on the SSU rRNA data. Original data are shown in S4 Table. See also the 355 

legend to Fig 8. 356 

 357 

Fig 12. Rank abundance curves of taxa expressing genes involved in photosynthesis. 358 

The species names are the closest taxa found by BlastP searches for 359 

photosynthesis-related genes against the SwissProt/UniprotKB database. Genes assigned 360 

to cluster 6 in Fig 10 were used for the analysis. (a) Rank abundance curves of organisms 361 

that expressed genes related to electron transportation (K00330, K00339, K00343, 362 

K00412, K02256, K02261, K02262, K03881, K03883, K03934, and K03935). (b) Rank 363 

abundance curves of organisms that expressed genes related to photosystem (K02689, 364 

K02690, K02703, K02704, L02705, K02706, and K08910). (c) Rank abundance curves 365 
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of organisms that expressed genes for the RuBisCO components (K01601 and K01602). 366 

Asterisks indicate diatoms. 367 

 368 

Conclusions 369 

Our All-RNA-Information Sequencing analysis (ARIseq) successfully revealed both 370 

microbial community structures and expressed gene categories in quantitatively reliable 371 

forms. Particularly, our ARIseq pipeline was able to show the correlation among the 372 

community members based on rRNA frequency and also the correlation among the gene 373 

categories in the biofilm samples collected from the acidic spring water stream. Our 374 

pipeline is suitable for researches to capture comprehensive information from one RNA 375 

sequencing analysis and facilitates understanding of ecological functions of organismal 376 

communities in natural environments. 377 

 378 

 379 

Acknowledgements 380 

Sampling was carried out in an environmental research permitted by the board of 381 

education, Gunma Prefecture, Japan. 382 

 383 

 384 

References 385 

1. Urich T, Lanzén A, Stokke R, Pedersen RB, Bayer C, Thorseth IH, et al. Microbial 386 

community structure and functioning in marine sediments associated with diffuse 387 

hydrothermal venting assessed by integrated meta�omics. Environ Microbiol. 388 

2014;16: 2699–2710. doi:10.1111/1462-2920.12283 389 

2. Berry D, Schwab C, Milinovich G, Reichert J, Ben Mahfoudh K, Decker T, et al. 390 

Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state 391 

in acute murine colitis. ISME J. 2012;6: 2091–2106. doi:10.1038/ismej.2012.39 392 

3. Radax R, Rattei T, Lanzén A, Bayer C, Rapp HT, Urich T, et al. 393 

Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny 394 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


 14

and function of its microbial community. Environ Microbiol. 2012;14: 1308–1324. 395 

doi:10.1111/j.1462-2920.2012.02714.x 396 

4. Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous 397 

Assessment of soil microbial community structure and function through analysis 398 

of the meta-transcriptome. PLoS ONE. 2008;3: e2527. 399 

doi:10.1371/journal.pone.0002527.s019 400 

5. Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF. PCR-induced 401 

sequence artifacts and bias: insights from comparison of two 16S rRNA clone 402 

libraries constructed from the same sample. Appl Environ Microbiol. 2005;71: 403 

8966–8969. doi:10.1128/AEM.71.12.8966-8969.2005 404 

6. Akai J, Akai K, Ito M, Nakano S, Maki Y. Biologically induced iron ore at Gunma 405 

iron mine, Japan. Am Min. 1999;84: 171-182  406 

7. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina 407 

sequence data. Bioinformatics. 2014;30: 2114–2120. 408 

doi:10.1093/bioinformatics/btu170 409 

8. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA 410 

ribosomal RNA gene database project: improved data processing and web-based 411 

tools. Nucleic Acids Res. 2013;41: D590–D596. doi:10.1093/nar/gks1219 412 

9. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, 413 

et al. QIIME allows analysis of high-throughput community sequencing data. Nat 414 

Methods. 2010;7: 335–336. doi:10.1038/nmeth.f.303 415 

10. Ben Langmead, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 416 

Methods. 2012;9: 357–359. doi:10.1038/nmeth.1923 417 

11. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence 418 

alignment/map format and SAMtools. Bioinformatics. 2009;25: 2078–2079. 419 

doi:10.1093/bioinformatics/btp352 420 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


 15

12. Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of 421 

sequencing experiments. Nat Methods. 2013;10: 71–73. doi:10.1038/nmeth.2251 422 

13. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. 423 

Full-length transcriptome assembly from RNA-Seq data without a reference 424 

genome. Nat Biotechnol. 2011;29: 644–652. doi:10.1038/nbt.1883 425 

14. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG 426 

Tools for functional characterization of genome and metagenome sequences. J 427 

Mol Biol. 2016;428: 726–731. doi:10.1016/j.jmb.2015.11.006 428 

15. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion 429 

for RNA-seq data with DESeq2. Genome Biol. 2014;15: 550. 430 

doi:10.1186/s13059-014-0550-8 431 

16. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring 432 

and manipulating networks. Proceedings of the Third International ICWSM 433 

Conference. 2009: 361–362.  434 

17. Ito K, Sakata K, Date Y, Kikuchi J. Integrated analysis of seaweed components 435 

during seasonal fluctuation by data mining across heterogeneous chemical 436 

measurements with network visualization. Anal Chem. 2014;86: 1098–1105. 437 

doi:10.1021/ac402869b 438 

18. Hammer Ø, Harper D, Ryan PD. PAST: Paleontological Statistics Software 439 

Package for Education and Data Analysis. Palaeontol Electronica. 2001;4: 1–9.  440 

19. MÃ ndez-GarcÃ a C, PelÃ ez AI, Mesa V, SÃ nchez J, Golyshina OV, Ferrer M. 441 

Microbial diversity and metabolic networks in acid mine drainage habitats. Front 442 

Microbiol. 2015;6: 687. doi:10.1002/mbo3.17 443 

20. Hua Z-S, Han Y-J, Chen L-X, Liu J, Hu M, Li S-J, et al. Ecological roles of 444 

dominant and rare prokaryotes in acid mine drainage revealed by metagenomics 445 

and metatranscriptomics. ISME J. 2014;9: 1280–1294. 446 

doi:10.1038/ismej.2014.212 447 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


 16

21. Bonnefoy V, Holmes DS. Genomic insights into microbial iron oxidation and iron 448 

uptake strategies in extremely acidic environments. Environ Microbiol. 2011;14: 449 

1597–1611. doi:10.1111/j.1462-2920.2011.02626.x 450 

22. Hedrich S, Schlomann M, Johnson DB. The iron-oxidizing proteobacteria. 451 

Microbiology. 2011;157: 1551–1564. doi:10.1099/mic.0.045344-0 452 

23. Liu H, Yin H, Dai Y, Dai Z, Liu Y, Li Q, et al. The co-culture of Acidithiobacillus 453 

ferrooxidans and Acidiphilium acidophilum enhances the growth, iron oxidation, 454 

and CO2 fixation. Arch Microbiol. 2011;193: 857–866. 455 

doi:10.1007/s00203-011-0723-8 456 

24. DeNicola DM. A review of diatoms found in highly acidic environments. 457 

Hydrobiologia. 2000;433: 111–122.  458 

25. Aguilera A, Souza-Egipsy V, Gómez F, Amils R. Development and structure of 459 

eukaryotic biofilms in an extreme acidic environment, Río Tinto (SW, Spain). 460 

Microb Ecol. 2007;53: 294–305. doi:10.1007/s00248-006-9092-2 461 

26. K Johnson R, Boström B, van de Bund W. Interactions between Chironomus 462 

plumosus (L.) and the microbial community in surficial sediments of a shallow, 463 

eutrophic lake. Limnol Oceangr. 1989;34: 992–1003. 464 

doi:10.4319/lo.1989.34.6.0992 465 

27. Sand W, Gehrke T. Extracellular polymeric substances mediate 466 

bioleaching/biocorrosion via interfacial processes involving iron(III) ions and 467 

acidophilic bacteria. Res Microbiol. 2006;157: 49–56. 468 

doi:10.1016/j.resmic.2005.07.012 469 

28. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, et al. 470 

Community structure and metabolism through reconstruction of microbial 471 

genomes from the environment. Nature. 2004;428: 37–43. 472 

doi:10.1038/nature02340 473 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


 17

29. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K. The Phaeodactylum 474 

genome reveals the evolutionary history of diatom genomes. Nature. 2008;456: 475 

239–244. doi:10.1038/nature07410 476 

 477 

 478 

Contributions 479 

SM, AT, and YH designed the research. AT and MI performed the sampling. AT and SM 480 

performed the experiments and analyses. AT, SM, and YH wrote the paper. 481 

 482 

 483 

Competing interests 484 

The authors declare no competing financial interests. 485 

 486 

 487 

Corresponding author 488 

Shigeharu Moriya 489 

 490 

 491 

Supporting information 492 

S1_Table. Annotation of SSU rRNA and data matrix.  493 

S2_Table. Annotation of expressed ORFs and data matrix. 494 

S3_Table. Taxonomic composition of each cluster based on SSU rRNA. 495 

S4_Table. Taxonomic composition of each cluster based on SSU rRNA and 496 

expressed ORFs.  497 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159293doi: bioRxiv preprint 

https://doi.org/10.1101/159293
http://creativecommons.org/licenses/by/4.0/

