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Abstract

Background: Two-sample summary data Mendelian randomization (MR) incor-
porating multiple genetic variants within a meta-analysis framework is a popular
technique for assessing causality in epidemiology. If all genetic variants satisfy the
instrumental variable (IV) and necessary modelling assumptions, then their individ-
ual ratio estimates of causal effect should be homogeneous. Observed heterogeneity
signals that one or more of these assumptions could have been violated.

Methods: Causal estimation and heterogeneity assessment in MR requires an ap-
proximation for the variance of each ratio estimate. We show that the most popular
(1st order) approximation can lead to an inflation in the chances of detecting het-
erogeneity when in fact it is not present. Conversely, an ostensibly more accurate
(2nd order) approximation can dramatically increase the chances of failing to detect
heterogeneity, when it is truly present. Here we derive a modified 2nd order approxi-
mation to the variance that makes use of the derived causal estimate to mitigate both
of these adverse effects.

Results: Using Monte Carlo simulations, we show that the modified 2nd order ap-
proximation outperforms both its 1st and 2nd order counterparts in terms of hetero-
geneity quantification and causal estimation. The added benefit is most noticeable
when the genetic instruments are weak, or the causal effect is large. We illustrate the
utility of the new method using data from a recent two-sample summary data MR
analysis to assess the causal role of systolic blood pressure on coronary heart disease
risk.

Conclusions: We propose the use of modified 2nd order weighting within two-sample
summary data MR studies for model fitting, quantifying heterogeneity and outlier de-
tection.

Key words: Two-sample summary data Mendelian randomization, Inverse variance
weighted estimate; Cochran’s Q statistic; Outlier detection.
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Introduction

Mendelian randomization (MR) [1] is an instrumental variable approach that uses
genetic data, typically in the form of single nucleotide polymorphisms (SNPs), to
assess whether a modifiable exposure exerts a causal effect on a health outcome in the
presence of unmeasured confounding. Traditionally, researchers have assumed that
SNPs used for MR studies are valid instrumental variables (IVs) for the purposes
of inferring the causal effect of an exposure, X, on an outcome, Y . Specifically,
the SNP is: associated with X (IV assumption 1 (IV1)); not associated with any
confounders of X and Y (IV2); and can only be associated with Y through X (IV3).
The IV assumptions are represented by the solid lines in Figure 1 for a SNP Gj,
with unobserved confounding represented by U . Dotted lines represent dependencies
between G and U , and G and Y that are prohibited by the IV assumptions.

X Y

U

G j
βIV1

IV2

IV3

Figure 1: Causal diagram representing the IV assumptions (and violations thereof) for
a SNP Gj, an exposure X and an outcome Y . The causal effect of X on Y , denoted
by β, is the quantity we wish to estimate.

Suppose initially that a SNP, Gj, is a valid IV. Further assume that the association
of Gj with X and X with Y are linear with no effect modification. The underlying
SNP-outcome association Γj - the increase in Y for a unit increase in Gj - can then be
expressed as a scalar multiple of the underlying SNP-exposure association estimate,
γj - the increase in X for a unit increase in Gj. That is: Γj = βγj, where β denotes
the causal effect of a unit increase in X on the outcome Y .

Figure 1 encodes the assumptions that are traditionally required for a single sam-
ple of individuals for whom G, X and Y are measured. A particular MR study design
gaining in popularity instead combines publically available summary data on SNP-
exposure and SNP-outcome associations from two separate studies for large numbers
of uncorrelated variants G1,...,GL within the framework of a meta-analysis. These
studies should ideally contain no overlapping individuals (to ensure independence)
but should also originate from the same source population. This is referred to as two-
sample summary data MR [2]. Providing the aforementioned modelling assumptions
are met and each SNP is a valid IV, when SNP-exposure and SNP-outcome associa-
tions are estimated from their respective samples the ratio β̂j = Γ̂j/γ̂j for any single
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variant should also provide a consistent estimate for β. Combining the set of L ratio
estimates obtained across all variants into an overall inverse variance weighted (IVW)
estimate using the standard meta-analytic formula:

β̂IV W =

∑L
j=1wjβ̂j∑L
j=1wj

where wj = var(β̂j)
−1, (1)

then provides an efficient and consistent estimate for β. For a more detailed descrip-
tion of the assumptions required by two-sample summary data MR, see Bowden et
al. [3] and Zhao et al. [4].

Heterogeneity assessment

If the aforementioned modelling and IV assumptions hold, then Cochran’s Q statistic:

Q =
L∑
j=1

Qj =
L∑
j=1

wj(β̂j − β̂IV W )2, (2)

should follow, asymptotically, a χ2 distribution on L-1 degrees of freedom. Excessive
heterogeneity could therefore indicate the modelling assumptions have been violated,
or that some of the genetic variants violate the IV assumptions.

For example, the modelling assumptions are very often knowingly violated in ap-
plied MR studies when the outcome is binary and the SNP-outcome association is
measured an odds ratio [5]. Indeed, the MR study we analyse in this paper relates to
a binary outcome. In this case, the causal effect identified by each SNP will in general
depend on its strength of association with the outcome, rather than being equal to a
constant value β. This will induce some theoretical heterogeneity amongst the causal
estimates, even when all variants are valid instruments. In practice, the magnitude
of this effect will be negligible because each SNP explains a very small amount of
variation in the outcome (see [6] for further details). It could instead be the case that
a SNP actually increases the exposure for one group of individuals and decreases it
for another, which would be a violation of the monotonicity assumption [7].

Another potential source of heterogeneity that has received a lot of attention in the
literature is that some or all of the SNPs may exert a direct effect on the outcome not
through the exposure [8] by violating assumptions IV2, IV3 or both, which is termed
’horizontal pleiotropy’ [9, 10]. ‘Vertical pleiotropy’ - in which the effect of a SNP on
the exposure of interest is actually mediated through other, earlier exposures, does
not pose a problem. For brevity we will refer to problematic horizontal pleiotropy
simply as pleiotropy from now on.

The presence of heterogeneity does not necessarily invalidate an MR study. For exam-
ple if the underlying cause of the heterogeneity is pleiotropy but, across all variants: (i)
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the amount of pleiotropy is independent of instrument strength (the InSIDE assump-
tion [11]) and (ii) it has a zero mean , then a standard random effects meta-analysis
will still yield reliable inferences [3, 11]. If the InSIDE assumption is satisfied but the
pleiotropy is instead ‘directional’ (i.e. it has a non-zero mean) then a random effects
meta-analysis will be biased, but MR-Egger regression [11] can still yield reliable in-
ferences. MR-Egger regression has been used extensively as a sensitivity analysis tool
since its proposal for this reason (see [12, 13, 14, 15, 16] for some recent examples),
although its estimate can often suffer from a lack of precision. In this paper we choose
to focus solely on the IVW estimate.

Choice of weights in two-sample summary data MR

Two popular choices for the inverse variance weights used to calculate both the IVW
estimate in (1) and Cochran’s Q in (2) are:

1st order weights: wj =
γ̂2j
σ2
Y j

(3)

2nd order weights: wj =

(
σ2
Y j

γ̂2j
+

Γ̂2
jσ

2
Xj

γ̂4j

)−1
(4)

where σ2
Y j represents the variance of Γ̂2

j and σ2
Xj represents the variance of γ̂2j . Provided

that the two samples used in the analysis are homogeneous, and the SNPs used as
IVs are mutually independent, the IVW estimate obtained using 1st order weights
is asymptotically equivalent to the two-stage least squares (TSLS) estimate for the
causal effect obtained using individual level data on G, X and Y from either sample,
if such data were available (see for example Section 2.2 in [17]). 2nd order weights
(see for example Thomas et al. [18]), which are derived via a Taylor series expansion,
attempt to acknowledge uncertainty in both the numerator and denominator of the
ratio estimate. In the two-sample setting, the Taylor series expansion is simplified
because it is not necessary to include terms involving the covariance of γ̂j and Γ̂j,
since they are obtained from independent samples.

Choice of weights and the NOME assumption

1st order weights ignore uncertainty in the denominator of the ratio estimate, which
is equivalent to making the ‘NO Measurement Error’ (NOME) assumption, as defined
by Bowden et al. [19] within the context of a two-sample MR analysis. The NOME
assumption reminds the practitioner that the SNP-exposure association estimates,
γ̂j, which play the role of the explanatory variable in both the IVW and MR-Egger
regression models, are only equal to the true associations, γj, when measured with
infinite precision. In practice, therefore, NOME is always violated, and so γ̂j can be
viewed as the association, γj, plus some uncertainty or error, with mean zero and
variance σ2

Xj. It is helpful to conceptualize this uncertainty as measurement error
because: (a) it induces classical regression dilution bias in the IVW estimate towards
the null, and (b); it can be detected (and corrected) using established methods from
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the measurement error literature, such as Simulation Extrapolation [3, 19, 20].

In practice when SNP-exposure association estimates are known very precisely, for
example when they are derived from a study with a large sample size, then the NOME
assumption is only very weakly violated. In this case, 1st and 2nd order weighting
will give near identical results. Unfortunately, this is not always the case, for example
if no SNPs can be identified at ‘genome-wide significance’ for the trait of interest and
a less stringent threshold is instead used.

Given that 2nd order weights provide an ostensibly more accurate reflection of the
variance of each ratio estimate, it would seem obvious that they should be used as
standard within an MR study to calculate the IVW estimate and Cochran’s Q. How-
ever, Thompson et al. [21] showed that 2nd order weights produce causal estimates
which are generally more biased than using 1st order weights. The reason for this
apparent paradox is that 2nd order weights can be highly correlated with the ratio
estimates themselves. Strict independence is required between the wj and β̂j terms
in (1) in order for the IVW estimate to function as intended.

Further remarks on Cochran’s Q

Following recent methodological work by Windmeijer [22] on the TSLS estimator in
the single sample setting, it is possible to view Cochran’s Q statistic not just as a
method for quantifying heterogeneity, but as a tool for directly estimating the causal
effect. That is, the IVW estimate β̂IV W in (1) actually minimises Cochran’s Q, so
that:

∂Q

∂β
(β = β̂IV W ) = 0.

This expression presents Cochran’s Q as an estimating equation for the causal
parameter β. We build on this idea by deriving an alternative estimating equation
based on an extended version of Cochran’s Q statistic, which uses (what we term)
‘modified 2nd order’ weights. Our new Q statistic is shown to yield IVW estimates
that outperform those obtained from either 1st or 2nd order weights, and also enables
heterogeneity to be more reliably detected. We conclude by applying our improved Q
statistic to a recent two-sample summary data MR study to determine the causal effect
of systolic blood pressure on the binary outcome of coronary heart disease originally
published by Ference et al. [23].

Methods

We start by motivating the derivation of the IVW estimate using 1st and 2nd order
weights. We assume the basic underlying model generating the observed SNP-outcome
association estimates:
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True model: Γ̂j = βγj + σY jεj, (5)

Here σY j is the known standard error of the jth SNP-outcome association and εj is
a standard normal random error variable with mean zero and variance 1. Note that
model (5) is a function of the true underlying SNP-exposure association γj. It is
also idealised, in the sense that it assumes a constant causal effect (see our earlier
discussion of binary outcomes). This simplification means that data generated under
model (5) contains no underlying heterogeneity (e.g. due to pleiotropy), so that we
can transparently assess the effect of different weighting schemes on the amount of
apparent heterogeneity actually detected.

In practice, when fitting this model we must work with the SNP-exposure associ-
ation estimate γ̂j (with variance σ2

Xj) instead. Substituting γ̂j into (5) in place of γj
therefore yields the fitted model:

Fitted model: Γ̂j = βγ̂j +
√
β2σ2

Xj + σ2
Y jε

′

j, (6)

where ε′j again represents a standard normal random error. Note that the random
variation around the fitted model is inflated compared to the true model by the
additional factor β2σ2

Xj. We can derive an expression for the ratio estimate β̂j and

its variance that is consistent with 2nd order weighting, by replacing β with Γ̂j/γ̂j in
equation (6), and by dividing through by γ̂j to give:

β̂j = β +

√
Γ̂2
j

γ̂4j
σ2
Xj +

σ2
Y j

γ̂2j
ε
′

j. (7)

Setting σ2
Xj in formula (7) to zero (the NOME assumption) yields an expression for

the ratio estimate β̂j and its variance that is consistent with 1st order weighting.

Modified 2nd order weights

An iterative approach

Replacing β with Γ̂j/γ̂j in equation (6), as suggested by 2nd order weighting, means
that the variance of each ratio estimate will be a function of the ratio estimate itself.
It is easy to see that this will induce a negative bias in the IVW estimate because
whenever β̂j is randomly large, its contribution to (1) will be down-weighted (likewise

its contribution to (1) will be up-weighted when β̂j is randomly small). This negative
bias will also effect Cochran’s Q statistic. This problem is crudely avoided when using
1st order weights by artificially setting σ2

Xj to zero, but the obvious downside is that

the variance of each β̂j is then under-estimated. We therefore suggest the following
scheme to address both shortcomings, by plugging in an overall estimate for β in
model (6) instead. The procedure for calculating the weights is as follows:

1. Use 1st order weights and formula (1) to derive the IVW estimate, β̂IV W ;
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2. Calculate ‘modified 2nd order weights’ via the formula:

wj(β̂IV W ) =

(
σ2
Y j + β̂2

IV Wσ
2
Xj

γ̂2j

)−1
(8)

where β̂IV W is obtained from step 1;

3. Use the weights in step 2 to iteratively re-calculate β̂IV W and Cochran’s Q
statistic.

Completing steps 1-3 constitutes one full iteration of the re-weighting scheme.

Procedures like this have an established pedigree in econometrics within the generalized-
method-of-moments (GMM) framework, and is referred to as ‘two-step GMM’ [24].
Our contribution has been to describe how this procedure can be implemented using
Cochran’s Q statistic in the two-sample summary data MR setting.

An exact approach

It will be shown that iterative re-calculation of our modified 2nd order weights can
dramatically improve the statistical properties of Cochran’s Q statistic and its as-
sociated IVW estimate. However, regardless of the number of iterations performed,
this procedure will not in general yield the same Q statistic or IVW estimate as that
obtained from directly minimising the generalised Q statistic, Qm(β), where:

Qm(β) =
L∑
j=1

wj(β)(β̂j − β)2, (9)

and where wj(β) is taken from formula (8). That is, finding the value of β such that
∂Qm(β)
∂β

= 0. We refer to this approach as the ‘exact’ application of modified 2nd order
weights. It can be viewed as a procedure to obtain a limited information maximum
likelihood (LIML) estimate in the two-sample summary data MR setting [6]. We
will subsequently highlight the role that both iterative and exact weights can play in
improving the IVW analysis.

Performance of Cochran’s Q under no pleiotropy

We would like Cochran’s Q to follow a χ2
L−1 distribution as closely as possible when

no heterogeneity is present, to guard against the erroneous detection of pleiotropy.
To assess the performance of all weighting schemes in this regard, two-sample sum-
mary data MR studies comprising L=25 SNP-exposure and SNP outcome association
estimates (Γ̂j, γ̂j) were generated from the following normal models:

γ̂j ∼ N(γj, σ
2
Xj), Γ̂j ∼ N(βγj, σ

2
Y j) (10)
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given parameter vector values for (γj, σ
2
Xj, σ

2
Y j) and the causal parameter β. Under

these models, the F -statistic for SNP j can be approximated by γ̂2j /σ
2
Xj. Data gener-

ated under model (10) furnishes a set of ratio estimates between which no additional
variation should exist as their F -statistics grows large (because NOME is satisfied), or
if the causal effect (β) equals zero. To highlight this the γj parameters were simulated
from a Uniform(0.34,1.1) distribution and σXj was simulated from a Uniform(0.06,UB)
distribution. By varying UB between 0.095 and 1 we were able to mimic MR studies
with weak instruments (a mean F -statistic of 10) and strong instruments (a mean
F -statistic of 100). Data were simulated for a range of causal effects and, across all
scenarios, σY j was simulated from a uniform(0.015,0.11) distribution.

Table 1 (columns 2-9) show the mean Q statistic and the probability of the Q statistic
detecting heterogeneity at the 5% significance level (the type I error rate), when using
1st order, 2nd order and modified 2nd order weights. The results are the average of
10,000 simulations.

Mean 1st order wj 2nd order wj Modified 2nd order wj
Iterative Exact

F Q T1E(Q) Q T1E(Q) Q T1E(Q) Q T1E(Q)

No heterogeneity, β=0
100 23.9 0.044 22.8 0.022 23.9 0.044 23.9 0.044
61 24.1 0.052 21.9 0.016 24.1 0.051 24.1 0.051
40 23.9 0.049 20.3 0.006 23.9 0.048 23.9 0.048
25 24.0 0.052 17.7 0.002 23.9 0.051 23.9 0.051
10 24.0 0.052 12.3 0.000 23.6 0.047 23.4 0.042

No heterogeneity, β=0.05
100 24.2 0.053 22.9 0.028 24.0 0.049 24.0 0.049
61 24.4 0.058 21.9 0.017 24.0 0.051 24.0 0.051
40 24.7 0.064 20.3 0.007 23.9 0.050 23.9 0.049
25 25.9 0.092 17.8 0.002 24.1 0.052 23.9 0.048
10 31.4 0.272 13.4 0.000 25.6 0.095 23.7 0.043

No heterogeneity, β=0.1
100 24.7 0.065 22.8 0.027 23.9 0.052 23.9 0.051
61 25.6 0.084 21.8 0.017 23.9 0.048 23.9 0.047
40 27.3 0.132 20.5 0.009 24.1 0.053 24.0 0.050
25 31.7 0.282 18.2 0.003 24.4 0.060 23.9 0.048
10 53.9 0.792 15.8 0.004 27.8 0.166 23.9 0.051

Table 1: Mean Q statistic and type I error rate (T1E) of 1st order, 2nd order
and modified 2nd order weights (implemented using the iterative approach and exact
approaches). Results calculated over 10,000 simulated data sets. Type I error rate
(T1E(Q)) refers to the proportion of times Q is greater than the upper 95th percentile
of a χ2

24 distribution.

Our modified weights were implemented using the simple iterative approach (four
iterations were performed) and using the ‘exact’ approach previously described. Five
different mean F -statistic values were considered for β=0 (no causal effect), β=0.05
and β=0.1, giving 15 scenarios in total. We note that, in the absence of a causal effect
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(β=0), 1st order weights are exactly correct. In the presence of a causal effect, when
the mean F -statistic is 100 all weighting methods are near-exact. Under the causal
null, all weighting schemes control the type I error rate for detecting heterogeneity.
2nd order weighting is extremely conservative in this respect with weak instruments,
however (e.g. a type I error rate near zero when F=10).

In the presence of a causal effect, 1st order weights under-estimate the true vari-
ability amongst the ratio estimates as the mean F -statistic reduces. The associated
Q statistics are then too large on average (i.e. positively biased beyond their ex-
pected value of 24). This inflates the type I error rate for detecting pleiotropy beyond
nominal levels (e.g. a type I error rate of ≈ 80% when F=10 and β=0.1). 2nd or-
der weighting continues to over-correct the Q statistic so that it is negatively biased,
thereby removing any ability to detect heterogeneity at all. In contrast, modified 2nd
order weights (applied iteratively) are much more effective at preserving the type I
error rate of the Q statistic at its nominal level, unless the mean F -statistic is very
low (indicating weak instruments). When used within an exact analysis, modified 2nd
order weighting perfectly controls the type I error rate of Cochran’s Q across all the
scenarios considered.
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Figure 2: Distribution of Q statistics using 1st order, 2nd order and modified 2nd
order weights (exact implementation) when β=0.1, and F equals 100 (left) and 10
(right) respectively.

Figure 2 (left and right) shows the distribution of Q statistics using 1st order, 2nd
order and modified 2nd order weights (exact implementation) when β=0.1 and when
the mean F -statistic is 100 and 10. This illustrates how modified 2nd order weighting
ensures Cochran’s Q statistic is faithful to its correct null distribution.
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Power to detect pleiotropy

In Table 1 the type I error rate of Cochran’s Q statistic for detecting heterogeneity
using 2nd order weights was below its nominal level. This is detrimental if it translates
into a low statistical power to detect heterogeneity when it is truly present. In order
to investigate this, let αj represent the pleiotropic effect of SNP j on the outcome not
via the exposure and let µα and σ2

α denote the sample mean and variance, respectively,
of all L pleiotropic effects. Suppose that the pleiotropic effects collectively satisfy the
InSIDE assumption, and that the mean pleiotropic effect µα = 0. This is referred to
as ‘balanced’ pleiotropy, and will induce heterogeneity amongst the ratio estimates.
If heterogeneity is detected, inferences about the causal effect need to be adjusted
to take this additional uncertainty into account, by assuming either by an additive
random effects model [25] or a multiplicative random effects model [26]:

Additive pleiotropy model: Γ̂j = βγj +
√
σ2
α + σ2

Y jεj (11)

Multiplicative pleiotropy model: Γ̂j = βγj +
√

1 + σ2
ασY jεj. (12)

In applied MR analyses, the multiplicative approach is much more common, be-
cause it is automatically implemented when the IVW estimate is obtained from fitting
a regression model. Figure 3 (left) shows the power of Cochran’s Q to detect hetero-
geneity at the 5% significance level as a function of 1st order, 2nd order and modified
2nd order weights when data are simulated under a multiplicative random effects
model (11) with balanced pleiotropy for increasing values of

√
1 + σ2

α between 1 and
2 (so that the value ‘1’ indicates no heterogeneity). The simulation is repeated for MR
analyses with L = 10, 25 and 100 SNPs. For all simulations, the causal effect equalled
0.05 and the mean F -statistic equalled 61. We see that the power of Cochran’s Q to
detect heterogeneity approaches 100% for all weighting schemes as σα increases. Power
also increases with the number of SNPs. The power of modified 2nd order weights
is near identical using either the iterative or exact approach, therefore we only show
results for the exact implementation for clarity. The most striking result in this plot
is that the power of 2nd order weighting always lags considerably behind that of 1st
order or modified 2nd order weights. Results for data simulated under an additive
pleiotropy model are shown in Supplementary Online Material, and are highly similar.

Figure 3 (right) shows the results of a near identical simulation for the case L=25,
except that the causal effect is set to 0.1 and the mean F -statistic is equal to 25.
We see that the power to detect heterogeneity is always greatest when using 1st or-
der weights, but only because its power curve starts at a baseline level of 28% when
there is no pleiotropy. This corresponds to the type I error rate observed in row 14
of Table 1. The power of modified 2nd order weights starts at the correct 5% level,
and rapidly increases to 100% as the pleiotropy variance increases. The two imple-
mentations of our modified weights can be differentiated in this simulation, with the
iterative approach being slightly more powerful. The power of 2nd order weighting,
unsurprisingly, lags considerably behind the rest.
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Figure 3: Left: Power of Cochran’s Q statistic to detect heterogeneity as a function of
the pleiotropy variance and number of SNPs (L) using 1st order, 2nd order and mod-
ified 2nd weights (ex=exact). Pleiotropy is simulated under a multiplicative random
effects model. The causal effect is equal to 0.05 and the mean F -statistic is 61. Right:
Equivalent power plot except the causal effect is equal to 0.1 and the mean F -statistic
is 25 (ex=exact, it=iterative).

Detecting outliers using individual components of Q

When heterogeneity is detected by the IVW model, it is interesting to investigate
whether this is contributed to by all SNPs, or if instead a small number of SNPs are
responsible. Under the null hypothesis of no heterogeneity, Q should follow a χ2

L−1
distribution. Likewise, each component of Q, Qj, can be approximated by a χ2

1 distri-
bution. If an individual SNP’s Qj is extreme (for example above the 5% threshold of
3.84), then it may be desirable to exclude the SNP in a sensitivity analysis. Although
we do not want to advocate a rigid, blanket policy of outlier removal, we illustrate
how the reliability of such a procedure depends on the choice of weights. Motivated
by the real data example in the following section, 10,000 summary associations are
simulated for 25 SNPs for a range of mean F -statistics, a causal effect of 0.05 and
under the assumption of no heterogeneity due to pleiotropy. That is, just as for rows
6-10 in Table 1. Each data set of 25 SNPs is then augmented with a single outlying
SNP (with a fixed pleiotropic effect) which almost triples the magnitude of the ob-
served heterogeneity across all 26 SNPs, as measured by Cochran’s Q. Table 2 shows,
for each weighting scheme: the mean Q statistic, the median and mean number of
‘outliers’ detected at the 5% level and the proportion of times that the true outlier
is detected (P ∗) as F is varied from 100 to 10. Figure 4 shows equivalent box plots
of the outlier data, to highlight further summary quantities such as the inter quartile
range.
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We would expect approximately 25×0.05 = 1.25 of the normal, non-heterogeneous
SNPs to be declared outliers by chance at the 5% significance level, and hope that
the true outlier is detected as often as possible, giving an ideal mean total of 2.25.
As the mean F -statistic decreases, the total number of outliers detected using 1st or-
der weights steadily increases beyond this value (although the probability of decting
the true outlier stays constant at ≈ 95%). By contrast, the total number of outliers
detected using 2nd order weights substantially decreases, as well as the ability to de-
tect the true outlier. For example, when F is 10, the true outlier is detected in less
than 30% of cases. The performance of modified 2nd order weights is much more
stable across the range of instrument strengths, with the median and mean number
of outliers never increasing beyond 2 and 3 respectively. However, in this case it is
the iterative rather than the exact weights that appear to perform best. For example,
when the mean F -statistic is 10 the power to detect the true outlier drops to only 87%
using the exact approach, but stays at 94% for the iterative approach. Moreover, the
box plots in Figure 4 show that the number of outliers detected across the simulations
is much more variable for the exact, compared to the iterative implementation.

Mean 1st order wj 2nd order wj Modified 2nd order wj
Iterative Exact

‘Outliers’ detected ‘Outliers’ detected ‘Outliers’ detected ‘Outliers’ detected
F Q (Median,Mean,P ∗) Q (Median,Mean,P ∗) Q (Median,Mean,P ∗) Q (Median,Mean,P ∗)

No heterogeneity for 25 SNPs + 1 outlier, β=0.05
100 67.6 (2,2.54,0.94) 42.3 (2,1.98,0.93) 64.1 (2,2.44,0.94) 63.4 (2,2.69,0.94)
61 68.5 (2,2.55,0.94) 37.0 (2,1.78,0.90) 62.8 (2,2.38,0.94) 61.4 (2,2.77,0.94)
40 69.6 (2,2.58,0.94) 31.6 (1,1.50,0.81) 60.4 (2,2.32,0.94) 57.9 (2,2.82,0.94)
24 71.2 (2,2.71,0.95) 25.8 (1,1.10,0.62) 56.8 (2,2.25,0.94) 52.6 (2,2.82,0.94)
10 80.0 (3,3.27,0.95) 17.5 (0,0.53,0.28) 53.2 (2,2.23,0.94) 41.1 (2,2.58,0.87)

Table 2: The number of outliers detected at the 5% level by Cochran’s Q statistic
when using 1st order, 2nd order and modified 2nd orders weights for MR summary
data containing 25 non-heterogeneous SNPs and 1 outlier.

Estimator performance with and without pleiotropy

Table 3 shows the performance of the 1st order, 2nd order and iterative modified 2nd
order weighting in providing accurate point estimates, standard errors and confidence
intervals for the causal effect. Only the mean causal estimate obtained via exact
modified 2nd order weighting is shown in the last column of Table 3. This is because
no simple, general and reliable formula for the variance of this estimate could be found.
Rows 1-15 are for data simulated without heterogeneity due to pleiotropy, identical
to that described in Table 1. In this case, all three of methods return unbiased
estimates when β = 0. Correct coverages are also observed at the causal null, with
the exception of 2nd order weighting when F=10. In the presence of a non-zero causal
effect, a decreasing mean F -statistic leads to increased bias in the IVW estimate and
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a drop in confidence interval coverage for all approaches, which can be equated with
their statistical power.
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Figure 4: Box plots summarising the total number of outliers detected by Cochran’s Q
statistic using 1st order, 2nd order and modified 2nd order weights (iterative ‘it’ and
exact ‘ex’ implementations, respectively) when the mean F -statistic is varied betwen
100 (top-left) and 10 (bottom-right). Each box shows the 1st quartile, median line
and 3rd quartile, so that its height represent the inter quartile range. Box ‘whiskers’
representing the full outlier range are also shown.

Iterative modified 2nd order weighting is least affected, however. The IVW es-
timate is known to suffer from regression dilution bias towards zero by an amount
approximately proportional to the inverse of the mean F -statistic. This dilution can
be mitigated by applying bias adjustment techniques from the measurement error
literature, such as simulation extrapolation [3, 19, 20]. For brevity, we do not addi-
tionally assess SIMEX correction here.

Rows 16-25 of Table 3 show results for data simulated under multiplicative pleiotropy
model (12) with

√
1 + σ2

α = 1.4. This gives rise to data with associated Q statistics
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of 50 - double the expected magnitude under the null hypothesis of no pleiotropy.

Mean 1st order wj 2nd order wj Modified 2nd order wj
Iterative Exact

F β̂IV W (SE); CF β̂IV W (SE); CF β̂IV W (SE); CF β̂IV W

No heterogeneity, β=0
100 0.000 (0.011) 0.950 0.000 (0.011) 0.948 0.000 (0.011) 0.950 0.000
61 0.000 (0.011) 0.951 0.000 (0.011) 0.951 0.000 (0.011) 0.952 0.000
40 0.000 (0.011) 0.948 0.000 (0.010) 0.946 0.000 (0.011) 0.950 0.000
25 0.000 (0.011) 0.949 0.000 (0.009) 0.942 0.000 (0.011) 0.951 0.000
10 0.000 (0.009) 0.948 0.000 (0.007) 0.928 0.000 (0.009) 0.955 0.000

No heterogeneity, β=0.05
100 0.050 (0.011) 0.949 0.049 (0.011) 0.951 0.050 (0.011) 0.951 0.050
61 0.049 (0.011) 0.946 0.047 (0.011) 0.943 0.049 (0.011) 0.949 0.050
40 0.048 (0.011) 0.945 0.045 (0.011) 0.924 0.048 (0.011) 0.950 0.050
25 0.046 (0.011) 0.914 0.041 (0.010) 0.825 0.046 (0.012) 0.926 0.051
10 0.032 (0.010) 0.580 0.027 (0.008) 0.275 0.034 (0.011) 0.668 0.051

No heterogeneity, β=0.1
100 0.099 (0.011) 0.944 0.098 (0.011) 0.944 0.099 (0.012) 0.950 0.100
62 0.098 (0.011) 0.938 0.095 (0.011) 0.922 0.098 (0.012) 0.948 0.100
40 0.096 (0.012) 0.912 0.091 (0.011) 0.858 0.096 (0.012) 0.935 0.100
25 0.091 (0.012) 0.842 0.082 (0.011) 0.643 0.092 (0.013) 0.897 0.100
10 0.065 (0.013) 0.341 0.055 (0.010) 0.093 0.072 (0.015) 0.516 0.102

Heterogeneity, β=0
100 0.000 (0.015) 0.950 0.000 (0.015) 0.948 0.000 (0.015) 0.950 0.000
61 0.000 (0.015) 0.951 0.000 (0.015) 0.952 0.000 (0.015) 0.952 0.000
40 0.000 (0.015) 0.948 0.000 (0.014) 0.946 0.000 (0.015) 0.950 0.000
25 0.000 (0.015) 0.949 0.000 (0.013) 0.942 0.000 (0.015) 0.953 0.000
10 0.000 (0.013) 0.948 0.000 (0.009) 0.927 0.000 (0.013) 0.959 0.000

Heterogeneity, β=0.1
100 0.100 (0.016) 0.947 0.096 (0.016) 0.944 0.100 (0.016) 0.951 0.101
62 0.098 (0.016) 0.944 0.092 (0.015) 0.922 0.098 (0.016) 0.954 0.100
40 0.096 (0.016) 0.930 0.087 (0.015) 0.858 0.097 (0.017) 0.947 0.100
25 0.091 (0.016) 0.885 0.078 (0.015) 0.662 0.092 (0.018) 0.923 0.101
10 0.065 (0.016) 0.445 0.051 (0.012) 0.124 0.072 (0.018) 0.631 0.099

Table 3: Mean causal estimate β̂IV W , standard error (SE) and coverage frequency
(CF) of the 95% confidence interval when using 1st order, 2nd order and modified 2nd
order weights.

All three methods perform essentially the same as with non-heterogeneous data,
except that their confidence interval coverages are improved when the mean F -statistic
is low. The final column of Table 3 shows the mean IVW estimate obtained from the
exact implementation of modified 2nd order weights. When calculating this estimate
for heterogeneous data, a slight modification of the weighting procedure is necessary.
Specifically we use the following scheme:

• Calculate Cochran’s Q statistic using 1st-iteration modified 2nd order weights
under no heterogeneity. That is, use equation (8) to define Q, where β̂IV W is
the estimate obtained using 1st order weights;
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• Calculate the quantity φ̂ = Q/(L-1), φ̂ being an estimate for 1 + σ2
α;

• Replace the original weights in equation (9) with

wj(β̂IV W ) =

(
φ̂σ2

Y j + β̂2
IV Wσ

2
Xj

γ̂2j

)−1
(13)

and minimise to obtain a new heterogeneity-adjusted IVW estimate.

Table 3 demonstrates that the IVW estimates obtained from the exact implemen-
tation of modified 2nd order weighting are essentially free from regression dilution bias.
Promising preliminary work to obtain a reliable variance formula for this estimator is
underway [6], which we describe further in the discussion.

Applied example

Figure 5 (top) shows a scatter plot of summary data estimates for the associations of 26
genetic variants with systolic blood pressure (SBP, the exposure) and coronary heart
disease (CHD, the outcome). SNP-exposure association estimates were obtained from
the International Consortium for Blood Pressure consortium (ICBP) [27]. SNP-CHD
association odds ratios were collected from Coronary ARtery Disease Genome-Wide
Replication And Meta-Analysis (CARDIoGRAM) consortium [28], which are plotted
(and subsequently modelled) on the log odds ratio scale by making a normal approx-
imation, as discussed in the introduction. These data have previously been used in a
two-sample summary data MR analysis by Ference et al. [23] and Lawlor et al. [15],
but we extend their original analysis here by applying modified 2nd order weights and
conducting a more in depth inspection of each variant’s contribution to the overall
heterogeneity. The mean F -statistic for these data is 61. Using 1st order weights
the IVW estimate, which represents the causal effect of a 1mmHg increase in SBP
on the log-odds ratio of CHD, is 0.053. This is shown as the slope of a solid black
line passing through the origin (note: the origin is not visible because of a truncated
x-axis). Cochran’s Q statistic based on 1st order weights is equal to 67.1, indicating
the presence of substantial heterogeneity.

Table 4 shows the results of further IVW analyses using all three weighting schemes.
All three schemes detect significant heterogeneity. As expected, the observed het-
erogeneity is largest when using 1st order weights, smallest when using 2nd order
weights, and in between the two when using modified 2nd order weights. Point esti-
mates and standard errors are in good agreement across the different weights, because
the mean instrument strength is high. Modified 2nd order weighting gives the largest
point estimate of 0.054, followed by 1st order and then 2nd order weights respectively.
This ordering is as expected, given their relative susceptibility to regression dilution
bias. For comparison, we apply the Simulation Extrapolation (SIMEX) to adjust the
IVW estimate for regression dilution. Reassuringly, its estimate is identical to that
obtained using the exact implementation of modified 2nd order weights.
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Finally, we calculate the Weighted Median MR [29], β̂WM , that can identify the causal
effect when up to (but not including) half of the information in the analysis stems
from genetic variants that are invalid IVs. Its estimate, which is calculated using 1st
order weights, is 0.063.
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Figure 5: Top: Scatter plot of SNP-outcome associations Γ̂j versus SNP-exposure
associations γ̂j. IVW estimate shown as a black slope. Bottom-left: Q contribution
plots for the same data. Bottom-right: Q contributions after removal of rs17249754.

Figure 5 (bottom-left) shows the individual contribution to Qj under each weight-
ing scheme. Horizontal lines have been drawn to indicate the location of the 5th, 1st
and 0.19th percentile of a χ2

1 in order to help assess the magnitude of the contribu-
tions. The 0.19th percentile is derived as a 0.05 threshold adjusted for multiple testing
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using the Bonferroni correction. We see that the eighth SNP in our list (rs17249754)
is responsible for the vast majority of the excess heterogeneity. Its contribution, Q8,
ranges from approximately 24.5 to 28 depending on weighting.

Method (weights) Estimate S.E. P-value Het. Stat (p)
All 26 SNPs

Causal estimate

IVW (1st) β̂IV W : 0.053 0.010 3.01×10−5 Q = 67.1 (1.03×10−5)

IVW (2nd) β̂IV W : 0.050 0.010 4.54×10−5 Q = 58.8 (1.54×10−4)

IVW (Mod 2nd, iterative) β̂IV W : 0.054 0.010 2.40×10−5 Q = 62.7 (4.43×10−5)

IVW (Mod 2nd, exact) β̂IV W : 0.054 Q = 62.4 (4.84×10−5)
Weighted median (1st order weights)

Weighted Median β̂WM : 0.063 0.011 4.90×10−6 -
SIMEX adjusted IVW estimate (1st order weights)

IVW (1st) β̂IV W : 0.054 0.011 3.9×10−5 -

SNP rs17249754 removed

Causal estimate

IVW (1st) β̂IV W : 0.066 0.008 2.63×10−8 Q = 35.0 (0.068)

IVW (2nd) β̂IV W : 0.063 0.008 4.06×10−8 Q = 30.6 (0.164)

IVW (Mod 2nd, iterative) β̂IV W : 0.066 0.008 2.90×10−8 Q = 32.8 (0.108)

IVW (Mod 2nd, exact) β̂IV W : 0.067 Q = 32.8 (0.108)
Weighted median (1st order weights)

Weighted Median β̂WM : 0.065 0.010 1.81×10−6 -
SIMEX adjusted IVW estimate (1st order weights)

IVW (1st) β̂IV W : 0.067 0.008 2.35×10−8 -

Table 4: IVW and Weighted Median analyses of the causal effect of SBP on CHD
risk using 1st order, 2nd order and modified 2nd order weights for the complete data
(top) and with SNP rs17249754 removed (bottom). β̂IV W is the IVW estimate. β̂WM

is the Weighted Median estimate. SIMEX refers to estimates obtained by the method
of simulation extrapolation.

Variant rs17249754 sits in the ATPase plasma membrane Ca2+ transporting 1
(ATP2B1) gene, which is involved in intracellular calcium homeostasis, and is strongly
associated with higher SBP. However, in the CARDIoGRAM consortium it is associ-
ated with reduced CHD. It could be that rs17249754 truly increases SBP in the ICBP
population but decreases it in CARDIoGRAM, which would be a violation of the
monotonicity assumption. Alternatively, rs17249754 could be exerting a pleiotropic
effect on CHD not through SBP in a consistent manner for both the ICBP and CAR-
DIoGRAM study populations, which is then reflected in the CARDIoGRAM estimate.
As previously discussed, incorporating odds ratios into an MR analysis can lead to het-
erogeneity amongst causal estimates. However, this could only ever do so by shrinking
estimates towards zero, not changing their sign [5]. We can therefore rule out this
explanation here.
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Since rs17249754 is also a strong instrument, and is potentially pleiotropic, its pres-
ence in the data could lead to the InSIDE assumption being violated. We therefore
opt to remove it in a further sensitivity analysis, and Table 4 show the results. All
IVW estimates increase by around 20% (lying between 0.063 and 0.067), but are or-
dered as before. We apply SIMEX to the IVW estimate using 1st order weights, and
again observe that this agrees with the estimate obtained using exact modified 2nd
order weights (0.067). The weighted median estimate without rs17249754 is 0.065
(compared to 0.063 with). This highlights its inherent robustness to outliers, which
is a major strength.

Figure 5 (bottom-right) shows the updated contributions of each SNP to the Q statis-
tic after removing rs17249754. If only 1st order weighting were available, it might be
tempting to exclude further variants from the analysis, but this signal is appropriately
tempered when using modified 2nd order weights.

Discussion

In this paper we have demonstrated the limitations of 1st and 2nd order weighting
when used for IVW analysis in two-sample summary data Mendelian randomiza-
tion. Most importantly, we highlight the potential for serious type I error inflation of
Cochran’s Q statistic when using standard 1st order weights with weak instruments.
In recent work, Verbank et al. [30] also noted this same tendency and proposed a
simulation-based alternative to 1st order weighting named ‘MR-PRESSO’. Our simu-
lations show that modified 2nd order weights can deliver much more accurate causal
estimates and reliable tests for heterogeneity than either 1st or 2nd order weighting,
and suggests that the computationally intensive MR-PRESSO approach is unneces-
sary.

Modified 2nd order weights should also prove a more reliable tool for the detection
and removal of outliers in a given data set, as apposed to 1st order weights (which
may detect too many outliers) and 2nd order weights (that may detect too few).
Our simulations suggest that the exact implementation of modified 2nd order weights
should be used when testing for the overall presence of heterogeneity (referred to as
the ‘global’ test by Verbank et al. [30]). However, they also suggest that the iterative
implementation is preferable if looking at the individual contribution of each SNP to
the Q statistic to decide on its status as an outlier. We suspect this is because ex-
act weighting makes a more aggressive correction for regression dilution than iterative
weighting. Its resulting estimate then makes more variants appear as outliers, because
their ratio estimates are further away from it. In this paper we used heterogeneity
statistics for outlier detection, but many other test statistics such as Cook’s distance
have been used for this purpose in MR (see for example [31]). Modified 2nd order
weights are likely to improve their performance too, but again this requires further
investigation.
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When implementing the Weighted Median estimate, 1st order weights were used.
Another pleiotropy robust MR method - the Mode-based estimate [32] - also makes
use of 1st order weights. As future work we will investigate whether modified 2nd or-
der weights can improve the performance of both approaches, modifying their precise
form in each case if necessary.

An exciting finding of this paper is that the exact implementation of modified 2nd
order weights yields causal estimates that are remarkably robust to regression dilution
bias. This is perhaps not surprising, given its connection to LIML. In the example
analysis we showed that this approach, (a simple analytic formula) gave estimates in
very close agreement to those obtained from applying SIMEX (a more complicated
simulation-based method). Unfortunately, we were not able to derive a general ex-
pression for the variance of our analytic formula. In preliminary work, Zhao et al.
[6] conduct a thorough theoretical investigation of the estimate obtained from exact
modified 2nd order weights, and show that it can also be viewed as a profile likelihood
maximisation problem. Their work suggests a variance formula can be derived under
an additive random effects model. In the future we hope that this approach will be
properly validated and extended to the multiplicative random effects model used pre-
dominantly in applied MR studies, and by ourselves in this paper.

A further interesting consequence of the apparent robustness of modified 2nd order
weighting to weak instruments is that it opens up the potential for the significance
threshold used to select SNPs as instruments to be substantially dropped, thus yield-
ing many more instruments for a given trait, whilst at the same time improving the
accuracy of MR estimates. This issue is also explored in further detail by Zhao et al.
[6].

Limitations

Our conclusions regarding the use of modified 2nd order weights are limited to the
two-sample summary setting where SNP-outcome and SNP-exposure associations are
estimated in independent but homogeneous samples. Further research would be re-
quired to decide if modified 2nd order weights should be used in MR analyses of
summary data estimates when there is partial overlap between samples, or in the
single sample (total overlap) setting.

When Cochran’s Q statistic detects significant amounts of heterogeneity, it is pru-
dent to test whether it is meaningfully biasing the analysis. This would indeed be the
case if the heterogeneity were caused in part by directional pleiotropy with a non-zero
mean. This would lead to bias in the IVW estimte, unless of course it was caused
by a small number of SNPs that could be identified and removed from the analysis.
MR-Egger regression [3, 11] could instead be used to address this. This approach
simply regresses SNP-outcome associations on the SNP-exposure associations, tests
for bias via its intercept, and estimates a bias-adjusted causal effect via its slope. Ob-
served heterogeneity around the MR-Egger fit can then be quantified using Rücker’s
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Q
′

statistic [3, 33] and each variant’s contribution to Rücker’s Q
′

statistic can be
used as the basis for outlier detection. Currently MR-Egger and Rücker’s Q

′
statistic

use 1st order weights. Preliminary work suggests that modified 2nd order weighting
can be applied to MR-Egger regression to improve its performance - both in terms of
causal effect estimation and heterogeneity quantification - just as for an IVW analysis,
but further development and validation of this method is required.

R code is provided in Supplementary On line Methods to implement modified 2nd
order weighting within an IVW analysis

Key messages:

• Two-sample summary data Mendelian randomization requires the specification
of inverse variance weights for model fitting, heterogeneity quantification and
outlier detection amongst a set of causal estimates.

• Heterogeneity indicates a possible violation of the necessary IV or modelling
assumptions.

• 1st order weights can inflate the type I error rate of Cochran’s Q statistic for
detecting heterogeneity about the IVW estimate when the NOME assumption
is strongly violated (as judged by a low F -statistic), and the true causal effect
of interest is non-zero.

• 2nd order weights can reduce the power of Cochran’s Q statistic for detecting
heterogeneity about the IVW estimate when the NOME assumption is violated.

• Modified 2nd order weights (developed in this paper) preserve the type I error
rate of Cochran’s Q statistic, whilst maintaining its statistical power, and
naturally correct for regression dilution bias due to NOME violation.

• ‘Exact’ modified 2nd order weights should be used for global tests of
heterogeneity. ‘Iterative’ modified 2nd order weights should be used to assess
the outlier status of individual SNPs.
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On-line supplementary material

R code

# Load in data set ‘data’ and vector of

# SNP-exposure associations BetaXG and S.Es seBetaXG

# SNP-outcome associations BetaYG and S.Es seBetaYG

BetaXG = data$BetaXG

BetaYG = data$BetaYG

seBetaYG = data$seBetaYG

seBetaXG = data$seBetaXG
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# mean F statistic

F = BetaXG^2/seBetaXG^2

# Degree of freedom for Cochran’s Q

DF = length(BetaYG)-1

# IVW analysis

# 1st order and 2nd order weights

BIV = BetaYG/BetaXG

W1 = 1/(seBetaYG^2/BetaXG^2)

BIVw1 = BIV*sqrt(W1)

W2 = 1/(seBetaYG^2/BetaXG^2 +

(BetaYG^2)*seBetaXG^2/BetaXG^4)

BIVw2 = BIV*sqrt(W2)

sW2 = sqrt(W2)

sW1 = sqrt(W1)

IVWfitR1 = summary(lm(BIVw1 ~ -1+sW1)) # 1st order

IVWfitR2 = summary(lm(BIVw2 ~ -1+sW2)) # 2nd order

##########################################

# Modified 2nd order weights (iterative) #

##########################################

Bhat1 = IVWfitR1$coef[1] # initialise

Bhat2 = IVWfitR2$coef[1]

Bhat3 = IVWfitR1$coef[1]

for(gg in 1:4){

W3 = 1/(seBetaYG^2/BetaXG^2 + (Bhat1^2)*seBetaXG^2/BetaXG^2)

BIVw3 = BIV*sqrt(W3)

sW3 = sqrt(W3)

IVWfitR3 = summary(lm(BIVw3 ~ -1+sW3))

Bhat3 = IVWfitR3$coef[1]

phi_IVW3 = IVWfitR3$sigma^2

if(gg==1){phi_IVW31 = IVWfitR3$sigma^2}

print(Bhat3)

print(phi_IVW3)

}

# General inference #

IVWfitR3

################################################

# In order to stop the analysis adjusting #
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# for under-dispersion - making the estimates #

# more precise than under a standard #

# fixed effects meta-analysis, the following #

# code can be used #

################################################

SE_IVWR3 = IVW2FitR3$coef[1,2]/min(IVW2FitR3$sigma, 1).

# Global test for heterogeneity

phi_IVW3 = IVWfitR3$sigma^2

QIVW3 = DF*phi_IVW3 # Cochran’s Q

Qp3 = pchisq(QE3, DF, lower.tail=FALSE) # Cochran’s Q p-value

# Individual contribution to Q

Q3ind = W3*(BIV - Bhat3)^2

######################################

# Modified 2nd order weights (Exact) #

######################################

# Full maximisation

PL = function(a){

b = a[1]

w = 1/(seBetaYG^2/BetaXG^2 + (b^2)*seBetaXG^2/BetaXG^2)

q = sum(w*(BIV - b)^2)

}

Bhat4 = optimize(PL,interval=c(-2,2))$minimum # (change interval if needed)

# Global test for heterogeneity

W4 = 1/(seBetaYG^2/BetaXG^2 + (Bhat4^2)*seBetaXG^2/BetaXG^2)

QIVW4 = sum(W4*(BIV - Bhat4)^2)

Qp4 = pchisq(QIVW4, DF, lower.tail=FALSE)

# Individual contribution to Q

Q4ind = W4*(BIV - Bhat4)^2

# Exact IVW estimate (accounting for heterogeneity)

PL2 = function(a){

b = a[1]

PHI = max(phi_IVW31,1)

w = 1/(PHI*seBetaYG^2/BetaXG^2 + (b^2)*seBetaXG^2/BetaXG^2)

q = sum(w*(BIV - b)^2)

}

Bhat5 = optimize(PL2,interval=c(-2,2))$minimum
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Additional Figures
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Figure 6: Left: Power of Cochran’s Q statistic to detect heterogeneity as a function of
the pleiotropy standard deviation (σα) and number of SNPs (L) using 1st order, 2nd
order and modified 2nd weights under an additive pleiotropy model.
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