
1 
 

Morphology-driven downscaling of Streptomyces lividans to micro-cultivation 

 

Dino van Dissel1 and Gilles P. van Wezel1,# 

 

1Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA, 

Leiden, The Netherlands; 

 

# To whom correspondence should be addressed. Tel: +3171527430; email: 

g.wezel@biology.leidenuniv.nl 

 

Keywords: High-throughput screening; micro-cultivation; morphology; antibiotic; enzyme; 

Actinobacteria  

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2017. ; https://doi.org/10.1101/159509doi: bioRxiv preprint 

https://doi.org/10.1101/159509


2 
 

 

ABSTRACT 

Actinobacteria are prolific producers of secondary metabolites and industrially relevant 

enzymes. Growth of these mycelial microorganisms in small culture volumes is challenging 

due to their complex morphology. Since morphology and production are typically linked, 

scaling down culture volumes requires better control over morphogenesis. In larger scale 

platforms, ranging from shake flasks to bioreactors, the hydrodynamics play an important 

role in shaping the morphology and determining product formation. Here, we report on the 

effects of agitation on the mycelial morphology of Streptomyces lividans grown in microtitre 

plates (MTP). Our work shows that at the proper agitation rates cultures can be scaled down 

to volumes as small as 100 µl while maintaining the same morphology as seen in larger 

scale platforms. Using image analysis we compared the morphologies of the cultures; when 

agitated at 1400 rpm the mycelial morphology in microcultures approached that obtained in 

shake flasks, while product formation was also maintained. Our study shows that the 

morphology of actinobacteria in microcultures can be controlled in a similar manner as in 

larger scale cultures by carefully controlling the mixing rate. This could facilitate high-

throughput screening and upscaling.  
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INTRODUCTION 

Actinobacteria produce a plethora of bioactive natural products, such as antibiotics, 

anticancer agents, immunosuppressants and antifungals (Barka 2016; Bérdy 2005; Hopwood 

2007). In addition, these bacteria produce many industrially relevant enzymes, such as 

cellulases, amylases and proteases (Vrancken and Anne 2009). Streptomycetes exhibit a 

complex multicellular life cycle (Claessen 2014). This starts with a single spore that 

germinates to form vegetative hyphae, which then grow out following a process of hyphal 

growth and branching to produce a branched vegetative mycelium (Chater and Losick 1997). 

Nutrient depletion and other environmental stresses induce development, whereby aerial 

hyphae are formed that differentiate into chains of spores following a complex cell division 

event whereby ladders of septa are produced within a short time span (Jakimowicz and van 

Wezel 2012; McCormick 2009). In a submerged environment streptomycetes grow as 

mycelial networks, typically forming large pellets or clumps. From the industrial perspective, 

growth as pellets is unattractive, in particular because of mass-transfer problems, slow 

growth and culture heterogeneity (van Dissel 2014; van Wezel 2009). 

High throughput (HT) cultivation methods at a small scale are highly desirable, among 

others to exploit the potential of newly isolated actinobacteria (Kolter and van Wezel 2016). 

Down-scaling of culture volumes, while maintaining key factors that influence the productivity 

seen in shake flasks or small scale bioreactors, is necessary to make large screening efforts 
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rapid and economically feasible (Long 2014). However, growing streptomycetes in small 

cultures is challenging. Streptomycetes typically display a wide range of morphologies in 

submerged cultures, including dense pellets as well as large mycelial mats (reviewed in (van 

Dissel 2014)). After inoculation, spores germinate and produce at least two different 

extracellular polysaccharides (EPS), a cellulose-like polymer CslA/GlxA (Liman 2013; Petrus 

2016) and a second EPS synthesized by MatAB (van Dissel 2015). Both polymers induce 

spore aggregation, and play a key role in pellet formation ((Zacchetti 2016) and our 

unpublished data). Spore aggregation promotes the formation of pellets, spatially 

heterogeneous structures with a largely physiologically inactive core, while the peripheral 

hyphae grow exponentially by tip extension and branching (Celler 2012). The relationship 

between pellet morphology, hydrodynamics (and oxygen supply) and production has been 

well studied for bioreactors (Tamura 1997; Roubos 2001; Ohta 1995) and for shake flasks 

(Mehmood 2012; Dobson 2008).  

To successfully down-scale liquid-grown cultures, the morphology Streptomyces 

mycelia adapt in larger scale platforms (i.e. shake flasks or bioreactors) should be mimicked 

as closely as possible. The exact morphology, determined by size, density and shape, also 

depends on the characteristics of the environment (Wucherpfennig 2010). The 

hydrodynamics, in other words the characteristics of the agitated medium, is of particular 

importance as it influences among others the rate of fragmentation (Olmos 2013). Low 
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agitation causes poor distribution of nutrients and reduced oxygen transfer rates, stunting 

growth and production, while strong agitation can cause cell death (Roubos 2001). Examples 

of HT cultivation platform for filamentous microorganisms have been described (Minas 2000; 

Siebenberg 2010; Sohoni 2012). These authors made use of shaken deep-well plates, which 

results in higher oxygen transfer rates than in small-volume MTPs  (Duetz 2000). The 

Biolector system allows growth in 48 parallel 1-mL cultures (Rohe 2012; Huber 2009), which 

recently was successfully adapted for growth of streptomycetes (Koepff 2017).  

In this work we sought to further scale down Streptomyces cultures to 100 µl scale. 

As hosts we used Streptomyces coelicolor, a model streptomycete for the study of 

development and antibiotic production (Barka 2016), and the related Streptomyces lividans, 

the preferred enzyme production host (Anné 2012). Cultures were scaled down from shake 

flasks to 100 µl cultures, using a digital vortex to obtain the extensive mixing required to 

control pellet morphology. Using whole slide image analysis, the mycelia were quantified and 

compared in terms of size and shape. This allowed further optimization of growth in 

microcultures.  
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MATERIALS AND METHODS 

Bacterial strains, plasmids 

Streptomyces lividans 66 (Cruz-Morales 2013) was used for morphological analysis and 

enzyme production and Streptomyces coelicolor A3(2) M145 was used for antibiotic 

production. Plasmid pIJ703, which carries the melC1 and melC2 genes for heterologous 

tyrosinase production (Katz 1983), was transformed to its host by protoplast transformation 

(Kieser 2000). Spores were harvested from soy flour mannitol agar plates and stored in 20% 

glycerol at -200C as described (Kieser 2000). The spore titre was determined by plating serial 

dilutions on SFM agar plates and counting CFUs.  

 

Cultivation conditions 

For cultivation in shake flasks, S. lividans was grown in 30 mL tryptic soy broth (Difco) with 

10% sucrose (TSBS) in a 100 mL Erlenmeyer flasks equipped with a stainless steel spring. 

The flask was inoculated with 106 CFUs/ ml and cultivated at 300C in an orbital shaker with 1 

inch orbit (New Brunswick) at 200 RPM. For the production of tyrosinase 25 µM CuCl2 was 

added to the TSBS medium. For antibiotic production S. coelicolor was cultivated in Yeast 

Extract - Malt Extract (YEME; (Kieser 2000)) but without sucrose (YEME0). 

100 µL media with 106 cfu/mL spores was added to wells of a V-bottom 96 well MTP (Greiner 

Bio-One, Germany). To minimize evaporation, the plate was covered with a custom moulded 
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silicone sheet made from MoldMax40 (Materion, USA), using the 96 well plate as a mold. An 

AeraSeal film (Excel Scientific, USA) was added to the top for sterility, while allowing gas 

exchange. The combined silicone sheet and AeraSeal film were fastened to the plate using 

masking tape. A Microplate Genie Digital (Scientific Industries, USA) was used for agitation. 

This microtitre plate vortex has an orbit of 1 mm with accurate speed control. The rotation 

speed was confirmed using a Voltcraft DT-10L digital tachometer (Conrad, Germany). The 

entire setup was placed in a humidity-controlled incubator set to 70% RH and 300C. The 

evaporation rate was around 8 µL per well per day. 

 

Image analysis 

Image analysis was performed as described by whole slide imaging combined with 

automated image analysis, using the SParticle algortihm that was developed specifically as 

Plugin for imageJ (Willemse 2017). In short, 100 µl sample was transferred to a glass 

microscope slide and covered by a 24x60 cover slip. The slide was mounted in an Axio 

Observer (Zeiss, Germany) equipped with an automated XY-stage, which allowed whole 

slide imaging using a 10x objective. The imageJ plugin for automated image analysis 

optimized for Streptomyces liquid morphology was used to obtain both the maximum Feret 

length and a shape description for circularity (Stojmenovic 2013) of each mycelial fragment 
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or pellet found in the sample. Incorrectly analysed pellets (e.g. out-of-focus mycelia) were 

removed manually. Further data processing and visualization was done in Microsoft Excel.  

 

Tyrosinase acitivity measurement 

Tyrosinase activity was measured by the conversion over time l-3,4-dihydroxyphenylalanine 

spectrophotometrically at a wavelength of 475 nm, as described (van Wezel 2006). 

 

Actinorhodin quantification 

The production of actinorhodin by S. coelicolor was determined as follows. Culture 

supernatant (40 µl) was treated with 0.5 μl 5 M HCl to pH 2 to 3, extracted with a 0.5 volume 

of methanol-chloroform (1:1), and centrifuged at 5,000 rpm for 10 min. The concentration 

was calculated from the A542 (ε542, 18,600). 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2017. ; https://doi.org/10.1101/159509doi: bioRxiv preprint 

https://doi.org/10.1101/159509


9 
 

RESULTS 

The morphology of S. lividans in shake flasks 

To scale down the culture volume, while retaining the morphology, we aimed at replicating 

key morphological parameters of the liquid-based growth of S. lividans in a shake flask, such 

as pellet formation and fragmentation. We applied the SParticle plugin for ImageJ to quantify 

the size and shape distribution of the pellets via whole-slide image analysis (Willemse 2017). 

As a reference, the morphological characteristics of shake flask cultures were 

investigated. Around 500 aggregates were analysed from three separate 24 h shake flask-

grown cultures, corresponding to the end of the exponential growth phase, which roughly 

corresponds to the moment of antibiotic production initiation (Nieselt 2010). Previous work 

comparing the maximum length of pellets revealed two different mycelial populations of S. 

lividans, one forming larger and one smaller pellets (van Veluw 2012). This separation is 

even more apparent when the shape of a particle, measured as the circularity, is taken into 

account. This revealed two distinct clusters of particles that not only differ in size, but also in 

shape (Fig. 1, scatter plot). One population had pellets with similar lengths of around 200 µm, 

but with a wide standard deviation in circularity (Fig. 1D, falling within the orange dotter oval 

and Fig. 1C). The other, representing the majority of pellets, were found in clusters and were 

more regularly shaped, often slightly oval and with homogenous density (Fig. 1C and Fig. 

1D, purple striped oval). Pellets with a large size frequently lost their structural integrity, 
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presumably as they were in the process of disintegration (Fig. 1B). Because of the effects of 

pellets on production and regulation it is important to capture all of these morphological 

characteristics when scaling down. 

 

Dependency of agitation rate on the morphology in micro-cultures. 

The insight that pellet formation is mostly the result of the hydrodynamic forces and/or the 

supply of sufficient oxygen, often described by the power dissipation (P) and the kLa, 

prompted new experiments to match the environmental properties with those found in shake 

flasks. Both of these properties can be changed with (and are linked to) the agitation rate. A 

digital vortex, designed for microtitre plate (MTP) mixing, with its variable speed setting 

allowed the study of  morphology in relation to the agitation speed. This was used to 

establish whether a population could be obtained with morphological characteristics similar to 

those found in larger scale cultures. 

In 100 µl MTP cultures and at low agitation rates, the mycelia failed to aggregate into the 

dense pellets normally observed in shake flasks, showing instead a more irregularly shaped 

open morphology (Fig. 2A and 2G). Apart from the lower density, the average length of the 

mycelia was around 480 µm, but with a broad distribution; particle sizes ranged from 80 µm 

to huge aggregates of up to 1500 µm (Table 1). The low number of pellets per well may be 
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caused by extensive spore aggregation and/ or lack of mycelial fragmentation under these 

growth conditions. 

At 1000 rpm the mycelia formed denser pellets, typical of S. lividans grown in shake 

flasks or in the fermenter (Fig. 2H). However, the average pellet size of around 600 µm and 

the significantly smaller number of particles per culture volume suggest that the 

hydrodynamic forces in de micro-cultures were weaker than in shake flask-grown cultures 

(Fig. 2B). At 1200 rpm the average pellet size approached that found in shake flasks, but the 

pellets had a more elongated, oval-shaped morphology, with an average roundness close to 

0.2 (Fig. 2C and 2I). At this agitation rate a few pellets of the vertical cluster appeared, 

indicating that the shear stress was sufficiently high to induce fragmentation (Fig. 2C, inset). 

Increasing the mixing rate further to 1400 rpm lowered the circularity to the desired value of 

0.1, and now the average pellet length closely resembled that obtained in shake-flask 

cultures (Fig. 2D and 2J). Also the distribution of the pellet population closely resembled 

those formed in shake flasks, including the occurrence of the population of smaller oval-

shaped pellets (Fig. 2D, inset). When the agitation was further increased to 1600 rpm the 

morphological characteristics of the cultures showed again an increase in average length 

and a decrease in circularity (Fig. 2I and J). Also the Feret diameter of the second population 

pellets decreased strongly, indicating that the shear stress caused substantial cell damage. 

Increasing the agitation further to 1800 rpm resulted in a similar trend as seen in 1600 rpm 
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where larger pellets again appeared as part of the population. This may be explained by the 

culture fluid showing “out of phase” characteristics at high rotations speeds (Büchs 2000; 

Büchs 2001), which would result in a lower power consumption, and thus lower 

fragmentation rates and increased average pellet size. 

 

Production of heterologous enzymes and antibiotics 

Mycelia of 24 h old microcultures grown at an agitation speed of 1400 rpm generally had a 

morphology that was very similar to that observed for mycelia grown in shake-flasks. To 

analyse how similar the cultures were in terms of their producing capacity, we analysed the 

production of tyrosinase, which is a good model system for extracellular enzyme production, 

and was heterologously expressed in S. lividans by the introduction of plasmid pIJ703 (van 

Wezel 2006). A similar amount of active enzyme was produced in shake flasks (200 rpm, 1 

inch orbital) and in MTPs (1400RPM, 1 mm orbital), although production started slightly 

earlier in MTPs (Fig. 3).  

To study the effect on antibiotic production, we used Streptomyces coelicolor M145 

as the model organism, as this strain produces the pigmented polyketide antibiotics 

actinorhodin and undecylprodigiosin, which are readily assessed spectrophotometrically. For 

this study, we compared the production of the blue-pigmented actinorhodin between shake 

flasks and microcultures (Fig. 4). After 48 h of growth both cultures had produced 
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comparable amounts of actinorhodin, indicating that production of this antibiotic is 

comparable between the two culturing methods. 

 

 

DISCUSSION 

High-throughput screening of actinobacteria for natural products or enzymes typically takes 

place in micro-scale liquid-grown cultures in an MTP-based setup. The alternative is solid-

grown cultures, but it is very difficult to translate growth conditions from solid- to liquid-grown 

cultures. A drawback of screening of actinobacteria in submerged cultures is the formation of 

large mycelial networks, which show flocculation or attachment to abiotic surfaces and are 

associated with slow growth (van Dissel 2014). Additionally, cultures tend to be highly 

heterogeneous due to the large surface area of the mycelial clumps. Recently, we showed 

that aggregation of germlings increases culture heterogeneity (Zacchetti 2016). Because 

heterogeneity creates a distribution of morphologies, all contributing to production differently 

(van Veluw 2012; Martin and Bushell 1996), a large population is often required to maintain 

reproducibility. As heterogeneity is influenced by environmental parameters, careful control is 

needed to mimic the morphology of a shake flask in small-scale cultivation platform. 

Growth in small volumes typically favours pellet formation, and genetically engineered 

strains have been developed that result in dispersed growth, via over-expression of the cell 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2017. ; https://doi.org/10.1101/159509doi: bioRxiv preprint 

https://doi.org/10.1101/159509


14 
 

division activator gene ssgA (van Wezel 2006; Traag and van Wezel 2008; van Dissel 2015). 

However, such genetic manipulation often has major consequences for product formation. 

Recently, the Biolector system, allows parallel growth of 48 cultures in a MTP with around 1 

mL volume, was successfully adapted for growth and screening of streptomycetes (Koepff 

2017). The authors obtained promising results, obtaining growth parameters that could be 

compared to thse seen in 1 L cultures. In this study, we show that streptomycetes can be 

successfully cultivated even in 100 µl microcultures, without the use of specialized 

equipment, while maintaining the same morphology as in large shake flasks. Our data show 

that the distribution of a heterogeneous mycelial population is highly dependent on the 

agitation rate in 96-well MTPs. Especially at insufficient mixing rates the mycelia failed to 

aggregate into typical pellet structures. Possibly this is in part the result of insufficient oxygen 

supply. The relationship between oxygen supply and morphology is not well understood, but 

preliminary experiments where the oxygen supply was limited in a shake flask by reducing 

the gas exchange, resulted in pellets with a reduced density similar to what was found in 

poorly agitated MTPs (DvD and GPvW, unpublished results). Although the kLa was not 

measured in this study, initial calculations using equations for orbital mixing (Seletzky 2007) 

showed that the oxygen transfer could be lower than adequate, with a kLa as low as 40 h-1, 

for a mixing rate of 800 rpm. This low value is suggestive of oxygen limitation as the cause of 

the morphology observed at low agitation rates and that in part the change in morphology by 
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increased agitation is the result of an increased oxygen supply. While these observations are 

indicative of oxygen limitation as determining factor for mycelial morphology, oxygen transfer 

and hydrodynamic stress are coupled processes for orbital shaken cultivation methods (and 

to some extent also for bioreactors). At least for pristinamycin production hydrodynamic 

stress, described as the power input, was more descriptive for both pellet morphology and 

production levels (Mehmood 2012). Downscaling to 100 µl is feasible for the filamentous 

Streptomyces, even if it aggregates into dense pellets. How precisely agitation affects 

morphogenesis in MTP plates is as yet unclear and requires further study.  

Matching the environment, including the physical hydrodynamic forces that determine 

the morphology is due to its complex nature a difficult task. Our study also illustrates the 

utility of image analysis to quantify the morphology and assist in the down-scaling process. It 

follows that detailed comparison of mycelial morphologies by image analysis allows selection 

of the appropriate culturing conditions to obtain a preferred average pellet size and structure. 

Comparison of maximal pellet length and circularity provides more detailed insights into the 

exact morphology of the pellets, which aids the down-scaling process. Besides providing the 

option of medium- to high-throughput screening, the ability to grow Streptomyces with a 

native morphology on a very small scale also allows studies that involve for example the 

addition of expensive or low abundance chemicals or enzymes.  
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CONCLUSION 

The complex morphology displayed by filamentous actinobacteria in liquid-grown cultures 

greatly influences their productivity. Screening these bacteria for new therapeutic agents in 

an MTP-based setup without affecting normal growth and morphology would be a major 

advantage. This is particularly important in the light of upscaling, so as to maximise the 

chance that productivity is maintained. We have been able to translate growth and 

morphology from shake flasks to 100 µL micro cultures by carefully tuning the rate of 

agitation. The resulting growth and average pellet size in standard HTS-compatible MTPs 

was reproducibly comparable to those in larger scale cultures, which is an important 

contribution to the state of the art. 
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Table 1. Average length and circularity of the population of mycelial aggregates under 

different growth conditions. 

Culture Length [µm] Circularity [-] 

  Average Deviation* Average Deviation* 

Shake flask 372  ± 19 104  ± 24 0.11   ± 0.02 0.07  ± 0.03 

800 rpm 463 ± 58 310  ± 2 0.22  ± 0.00 0.07  ± 0.01 

1000 rpm 623 ± 88 189  ± 4 0.16  ± 0.00 0.06  ± 0.01 

1200 rpm 415 ± 36 100  ± 20 0.18  ± 0.03 0.05  ± 0.00 

1400 rpm 378 ± 51 104  ± 22 0.10  ± 0.00 0.06  ± 0.01 

1600 rpm 412 ± 62 170  ± 12 0.12  ± 0.02 0.08  ± 0.02 

1800 rpm 423 ± 3 135  ± 40 0.10  ± 0.02 0.07  ± 0.00 

*the deviation describes how wide the population is distributed. 

± describes the difference between the separate experiments 
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Figure legends 

 

Figure 1. Morphological characterization of S. lividans in shake flask cultures. Spores 

of S. lividans 66 were inoculated at 106 CFU/ml into a shake flask (equipped with a coiled 

spring) containing 30 mL TSBS. The culture was grown for 24 h in an orbital shaker set to 

30oC. Three 100 µL samples from two independent cultures were taken at 24 h and 

subjected to image analysis to obtain the maximum length and circularity of each 

distinguishable mycelial aggregate. Light micrographs A, B and C represent the three 

archetypes of the pellet morphologies seen in the culture, and corresponds to the indicated 

locations in the particle size (x-axes) and circularity (y-axes) scatterplot (D). Two distinct 

clusters can be distinguished (yellow and blue dotted circles)The data is obtained from three 

biological replicates. Bar, 100 µm. 

 

Figure 2. Growth of S. lividans in 100 µL MTP cultivation at different agitation rates. 

Spores of S. lividans 66 were inoculated at 106 CFU/ml into 100 µL in a 96 well MTP with V-

shaped bottom. The MTPs were agitated using a digital MTP vortex, which was set in a 

humidified incubator with temperature set to 30oC. The agitation rate was changed between 

experiments ranging from 800 rpm (A,G), 1000 rpm (B,H), 1200 rpm (C,I), 1400 rpm (D,J), 

1600 rpm (E,K) and 1800 rpm (F,L) and the effects on morphology of each aggregate after 
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24 h of cultivation was analysed in respect to its circularity (y-axes) and maximum length (x-

axes) and are displayed in a scatter plot (A,B,C,D,E,F). Agitation rates were analysed twice 

(replicates presented in blue and red) and the centroids calculated (black crosses). C,D,E: 

image showing an aggregate of the smaller population. G,H,I,J,K,L: examples of a typical 

pellet found near the centroid. Scale bars: 50 µm (E) or  100 µm (all other images). 

 

Figure 3. Tyrosinase production by S. lividans in shake flasks and 100 µL cultures. 

Transformants of S. lividans 66 heterologously expressing the secreted enzyme tyrosinase 

from plasmid pIJ703 were grown in TSBS in either shake flasks or V-bottom MTPs. The 

graph represents the conversion rate of l-3,4-dihydroxyphenylalanine by the culture 

supernatant, which is indicative of tyrosinase activity. The shake flasks were run in duplicate, 

while the tyrosinase was measured in three independent wells in the MTP. 

 

Figure 4. Actinorhodin production by S. coelicolor after 48 h of growth. S. coelicolor 

M145 was cultivated in minimal media for 48 h. The shake flasks were run in duplicate, while 

antibiotic production was measured in three different wells in the MTP. Actinorhodin was 

extracted by chloroform/methanol and measured spectrophotometrically at 542 nm. The 

average amount of actinorhodin (in arbitrary units) concentration and the SEM of three 

independent cultures are shown. 
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