












 

 
Fig 3. A.) Synthetic participant scored a 2 by clinician expert. B.) Synthetic participant scored a 4 by 
clinician expert. C.) Synthetic participant scored a 6 by clinician expert. D.) Synthetic participant scored a 
8 by clinician expert. E.) Comparison of scores between real and synthetic participant (dotted red lines 
indicate means). F.) Distribution of scores between real (blue) and synthetic (green) patients. 
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Fig 4. Performance on transfer learning task by source of training data for each machine learning method. 
A.) Logistic Regression. B.) Random Forest. C.) Support Vector Machine. D.) Nearest Neighbors. 
 
We also sought to determine the extent to which the classifiers trained on real vs. synthetic data were 
relying on the same features to make their predictions (Supplemental Figure 5). We found that there was 
significant correlation between the importance scores (random forest) and coefficients (SVM and logistic 
regression) for the models trained on real vs. synthetic data (Supplemental Table 1). 
 
Privacy Analysis 
The formal definition of differential privacy has two parameters. The key parameter ε measures the 
“privacy loss” incurred by the computation. The second parameter δ bounds the probability that the 
privacy loss exceeds ε. Put in other words, ε represents the worst-case privacy loss where there is no 
privacy breach, and δ represents the probability of a privacy breach. Therefore, it is important to choose 
values for ε and δ that are satisfactory to the specific use case and correspond to the consequences of a 
privacy breach. The values of (ε, δ) accumulate as the algorithm repeatedly accesses the private data. In 
our experiment, our private AC-GAN algorithm is able to generate useful synthetic data with ε = 2 and δ 
< 10-5 (Fig. 5). The upper bound of the epoch selection task, (see Materials Methods) used (0.05, 0) per 
each model included for a total of (0.5, 0) differential privacy. This established a modest, single digit 
epsilon privacy budget of (2.5, 10-5). 
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Fig 5. The value of delta as a function of epoch for different epsilon values. An ε value of 2 allows for 
500 epochs of training and δ < 10-5. 
 
Predicting Heart Failure in the MIMIC Critical Care Database 
We tested whether our approach could be applied in a second dataset by predicting heart failure from the 
first five measurements for nine vital sign measurements in 7,222 patients from the MIMIC Critical care 
database. Performance on privately generated synthetic patients was on par with performance models 
trained on real patients (Fig. 6A-D). As in the SPRINT data, the coefficients for logistic regression and 
the support vector machine as well as the feature importances were significantly correlated between real 
and synthetic data (Supplemental Table 2).  
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Fig 6.  A-D.) Performance on transfer learning task by source of training data for each machine learning 
method. E.) Pairwise Pearson correlation between columns for the Original, real data F.) Pairwise 
Pearson correlation between columns for the Private synthetic data. 
 
Discussion 
Deep generative adversarial networks and differential privacy offer a technical solution to the challenge 
of sharing biomedical data to facilitate exploratory analyses. Our approach, which uses deep neural 
networks for data simulation, can generate synthetic data to be distributed and used for secondary 
analysis. We perform training with a differential privacy framework that limits study participants’ privacy 
risk. We apply this approach to data from the SPRINT clinical trial due to its recent use for a data 
reanalysis challenge 
 
We introduce an approach that samples from multiple epochs to improve performance while maintaining 
privacy. However, several challenges remain. Deep learning models have many training parameters and 
require substantial sample sizes, which can hamper this method’s use for small clinical trials or targeted 
studies. Another fruitful area of use may be large electronic health records systems, where the ability to 
share synthetic data may aid methods development and the initial discovery of predictive models. 
Similarly, financial institutions or other organizations that use outside contractors or consultants to 
develop risk models might choose to share generated data instead of actual client data. In very large 
datasets, there is evidence that differential privacy may even prevent overfitting to reduce the error of 
subsequent predictions (27). 
 
Though our approach provides a general framing, the precise neural network architecture may need to be 
tuned for specific use cases. Data with multiple types presents a challenge. EHRs contain binary, 
categorical, ordinal and continuous data. Neural networks require these types to be encoded and 
normalized, a process that can reduce signal and increase the dimensionality of data. New neural 
networks have been designed to deal more effectively with discrete data (28, 29). Researchers will need to 
incorporate these techniques and develop new methods for mixed types if their use case requires it. We 
expect this approach to be most well suited to sharing specific variables from clinical trials to enable wide 
sharing of data with similar properties to the actual data. We do not intend the method to be applied to 
generate high dimensional genetic data from whole genome sequences or other such features. Application 
to that problem would require the selection of a subset of variants of interest or substantial additional 
methodological work.  
 
Due to the fluid nature of security and best practices, it is important to choose a method which is 
mathematically provable and ensures that any outputs are robust to post-processing. Differential privacy 
satisfies both needs and is thus being relied upon in the upcoming 2020 United States Census (30). It is 
imperative to remember that to receive the guarantees of differential privacy a proper implementation is 
required. We believe testing frameworks to ensure accurate implementations are a promising direction for 
future work, particularly in domains with highly sensitive data. like healthcare. 
 
The practice of generating data under differential privacy with deep neural networks offers a technical 
solution for those who wish to share data to the challenge of patient privacy. This technical work 
complements ongoing efforts to change the data sharing culture of clinical research. 
 
Materials and Methods 
We developed an approach to train auxiliary classifier generative adversarial networks (AC-GANs) in a 
differentially private manner to enable privacy preserving data sharing. Generative adversarial networks 
offer the ability to simulate realistic-looking data that closely matches the distribution of the source data.  
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AC-GANs add the ability to generate labeled samples. By training AC-GANs under the differential 
privacy framework we generated realistic samples that can be used for initial analysis while guaranteeing 
a specified level of participant privacy.  
 
The source code for all analyses is available under a permissive open source license in our repository 
(https://github.com/greenelab/SPRINT_gan). In addition, continuous analysis (31) was used to re-run all 
analyses, to generate docker images matching the environment of the original analysis, and to track 
intermediate results and logs. These artifacts are freely available (https://hub.docker.com/r/brettbj/sprint-
gan/ and archival version: https://doi.org/10.6084/m9.figshare.5165731.v1). 
 
SPRINT Clinical Trial Data 
The SPRINT was a randomized, single blind treatment trial where participants were randomized into two 
groups, an intensive treatment group with a systolic blood-pressure target of less than 120 mmHg and a 
standard treatment group with a systolic blood-pressure target of less than 140 mm Hg. The trial included 
a total of 9,361 participants. We included 6,502 participants from the trial by filtering for all participants 
that had blood pressure measurements for each of the first 12 measurements (RZ, 1M, 2M, 3M, 6M, 9M, 
12M, 15M, 18M, 21M, 24M, 27M). We included measurements for systolic blood pressure, diastolic 
blood pressure and the count of medications prescribed to each participant. This provided an input vector 
of shape (3, 12).  
 
Auxiliary Classifier Generative Adversarial Network 
We implemented the AC-GAN as described in Odena et al. (9) using Keras (32) to simulate systolic and 
diastolic blood pressures as well as the number of hypertension medications prescribed. Results shown 
use a latent vector of dimension 100, a learning rate of 0.0002, and a batch size of 1 trained for 500 
epochs. To conform with the privacy claims laid out in Abadi et al. (25), gradients must be clipped per 
example, in our implementation this requires the batch size to be 1. To handle edge cases and mimic the 
sensitivity of the real data measurements, we take the floor of zero or the simulated value and convert all 
values to integers. Full implementation details can be seen in the GitHub repository 
(https://github.com/greenelab/SPRINT_gan/blob/master/ac_gan.py). 
 
Clinician Evaluation 
Three physicians made a “real or synthetic” determination for each of 100 figures showing systolic blood 
pressure, diastolic blood pressure, and number of medications at each of 12 visits. The cardiologists 
classified how realistic the patients looked (from 1-10 where 10 is most realistic) and whether the patients 
were a part of the standard or intensive treatment plan. Prior to reviewing the figures and regularly during 
the review of figures, the clinicians reviewed the published SPRINT protocol to help contextualize the 
data. We performed a Mann-Whitney U test to evaluate whether the real or synthetic samples received 
significantly different scores and compared the accuracy of the treatment plan classifications. 
 
Transfer Learning Task 
Each of the 6,502 participants in our analytical dataset is labeled by treatment group. We evaluate 
machine learning methods (logistic regression, support vector machines, and random forests from the 
scikit-learn (33) package) by their ability to predict which group a participant belongs to. This was done 
by splitting the 6,502 participants into a training set of 6,000 participants (labeled real) and a test set of 
502 participants. A vanilla AC-GAN was trained using the 6,000-participant training set providing a 
simulated training set (labeled non-private). A differentially private AC-GAN was trained using the 
6,000-participant training set providing a differentially private training simulated training set (labeled 
private). Each classifier was then trained on the real, non-private and private training sets and evaluated 
on the same, real test set of participants. This allows for a comparison of classification performance 
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between models trained on the real data, synthetic data and private synthetic data. We evaluated both 
accuracy as well as the correlation between important features (random forest) and model coefficients 
(logistic regression and support vector machine). 
 
Differential Privacy 
Differential privacy is a stability property for algorithms, specifically for randomized algorithms (34). 
Informally, it requires that the change of any single data point in the data set has little influence on the 
output distribution by the algorithm. To formally define differential privacy, let us consider X as the set of 
all possible data records in our domain. A dataset is a collection of n data records from X. A pair of 
datasets D and D’ are neighboring if they differ by at most one data record. In the following, we will write 
R to denote the output range of the algorithm, which in our case correspond to the set of generative 
models. 
 
Definition 1 [Differential Privacy (35)]: Let ε, δ > 0. An algorithm A: Xn → R satisfies (ε, δ)-differential 

privacy if for any pair of neighboring datasets D, D’, and any event S ⊆ R, the following holds 

Pr[A(D) ∈ S ] ≤ Pr[A(D’) ∈ S ] exp(ε) + δ,  

where the probability is taken over the randomness of the algorithm. 
 
A crucial property of differential privacy is its resilience to post-processing --- any data independent post-
processing procedure on the output by a private algorithm remains private. More formally: 
 
Lemma [Resilience to Post-Processing]: Let algorithm A: Xn → R be an (ε, δ)-differentially private 
algorithm. Let A’ : R → R’ be a “post-processing” procedure. Then their composition of running A over 
the dataset D, and then running A’ over the output A(D) also satisfies (ε, δ)-differential privacy. 
 
Training AC-GANs in a Differentially Private Manner 
During the training of AC-GAN, the only part that requires direct access to the private (real) data is the 
training of the discriminator. To achieve differential privacy, we only need to “privatize” the training of 
the discriminators. The differential privacy guarantee of the entire AC-GAN directly follows because the 
output generative models are simply post-processing from the discriminator. 
 
To train the discriminator under differential privacy we add noise to the stochastic gradient descent 
process as outlined in Abadi et al. (25). First, we provide an upper bound onto the norm of the gradient at 
any individual step. This is done by clipping the ℓ2-norm of the gradient. Next, we perturb each 
coordinate of the gradient by adding noise drawn from a Gaussian distribution with a variance 
proportional to the gradient clipping. The more noise we added (relative to the clipped norm of the 
gradient) the better privacy guarantee. To achieve a modest privacy budget, we found we could clip the 
ℓ2-norm of the gradient at 0.0001 and add noise from a normal distribution with a σ2 of 1 (�(μ, 1 * 
(0.00012))). This is substantially higher than previously shown, likely due to either the dynamic nature of 
GAN training where the target is inexact and changes over time or averaging over many mini-batches. 
We used the moments accountant described in Abadi et al. (25) to compute the privacy parameters (ε, δ). 
These parameters were determined after running a grid search for noise (0.25, 0.5, 1, 1.5, 2, 3, 4, 8) and 
gradient clipping (0.1, 0.01, 0.001, 0.0001, 0.00001) to determine how long models could be trained 
under (ε, δ) of (2.5, 10-5). 
 
Differentially Private Model Selection 
We found that sampling from multiple different epochs throughout training provided a more diverse 
training set. This provided summary statistics closer to the real data and higher accuracy in the transfer 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2018. ; https://doi.org/10.1101/159756doi: bioRxiv preprint 

https://doi.org/10.1101/159756
http://creativecommons.org/licenses/by/4.0/


learning task. During the GAN training, we saved all the generative models across all epochs. We then 
generated a batch of synthetic data from each generative model, and used a machine learning algorithm 
(logistic regression or random forest) to train a prediction model based on each synthetic batch of data. 
We then tested each prediction model on the training set from the real dataset and calculate the resulting 
accuracy. To select epochs that generate training data for the most accurate models under differential 
privacy, we used the standard “Report Noisy Min” subroutine: first add independent Laplace noise to the 
accuracy of each model (drawn from Lab(1/(n*ε)) to achieve (ε, 0) differential privacy where n is the size 
of the private dataset we perform the prediction on and output the model with the best noisy accuracy.   
  
In practice, we choose the top five models that performed best on the transfer learning task for the 
training data using both logistic regression classification and random forest classification (for a total of 10 
models). We performed this task under (0.5, 0)-differential privacy. In each of the ten rounds of selection 
epsilon was set to 0.05. This achieves a good balance of accuracy while maintaining a reasonable privacy 
budget. 
 
Predicting Heart Failure in the MIMIC Critical Care Database 
We applied the method to the MIMIC Critical Care Database (36) to demonstrate its generality. We 
generated synthetic patients for the purpose of predicting Heart Failure. MIMIC is a database of 46,297 
de-identified electronic health records for critical care patients at Beth Israel. We defined patients who 
suffered from Heart Failure as any patient in MIMIC diagnosed with an ICD-9 code included in the 
Veterans Affair’s Chronic Heart Failure Quality Enhancement Research Initiative’s guidelines (402.01, 
402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 404.91, 404.93, 428, 281.1, 428.20, 428.21, 428.22, 
428.23, 428.30, 428.31, 428.32, 428.33, 428.40, 428.41, 428.42, 428.43, and 428.9). We performed 
complete case analysis for patients with at least five measurements for mean arterial blood pressure, 
arterial systolic and diastolic blood pressures, beats per minute, respiration rate, peripheral capillary 
oxygen saturation (SpO2), mean non-invasive blood pressure and mean systolic and diastolic blood 
pressures. For patients with more than five measurements for these values, the first five were used. This 
yielded 8,260 total patients and 2,110 cases of heart failure. We included the first 7,500 patients in the 
training set and the remaining 760 in a hold-out test set. The training and transfer learning procedures 
matched the SPRINT protocol. Because the classes were unbalanced, we used f1 score to evaluate the 
results from the transfer learning exercise. 
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the NHLBI (https://biolincc.nhlbi.nih.gov/studies/sprint_pop/), the source code is available via GitHub 
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Supplemental Materials  
 
 
Supplemental Figure 1. AC-GAN architecture and training. A.) Structure of an AC-GAN. B.) The 
generator model takes a class label representing the treatment group (e.g. intensive or standard care 
group) and random noise as input and outputs a 3x12 vector for each participant (SBP, DBP and 
medication counts at each time point). C.) The discriminator model takes both real and simulated samples 
as input and learns to predict the source and a class label (i.e. normal or intensive treatment group). D.) 
Training loss for a non-private AC-GAN. E.) Training loss for a private AC-GAN. 
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Supplemental Figure 2. Random noise breaks equilibrium. 
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Supplemental Figure 3. Top Ranking Epochs for Transfer Learning Exercise 
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Supplemental Figure 4. Scores vs. Epoch for Transfer Learning Task. 
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Supplemental Figure 5. A.) Random forest variable importance scores by training data.  B.) Logistic 
Regression variable coefficients by training data. C.) Support Vector Machine variable coefficients by 
training data. 

 
Supplemental Table 1. Spearman Correlation between variable importance scores (Random Forests) and 
model coefficients (Support Vector Machine and Logistic Regression). 

 Random Forest Support Vector Machine Logistic Regression 

 Correlation P-Value Correlation P-Value Correlation P-Value 

Real - Non-
Private 

0.7207 7.1518e-07 0.5279 9.35794e-04 0.6973 2.2950e-06 

Real - 
Private 

0.6769 5.7988e-06 0.6895 3.2918e-06 0.6692 8.0932e-06 
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Supplemental Table 2. Spearman Correlation between variable importance scores (Random Forests) and 
model coefficients (Support Vector Machine and Logistic Regression). 

 Random Forest Support Vector Machine Logistic Regression 

 Correlation P-Value Correlation P-Value Correlation P-Value 

Real - Non-
Private 

0.4059 0.00566 0.2952 0.04894 0.4268 0.00345 
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