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618  Supplemental Figure 6. A.) Random forest variable importance scores by training data. B.)
619  Logistic Regression variable coefficients by training data. C.) Support Vector Machine variable
620 coefficients by training data.
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624  Supplemental Figure 7. Feature correlation between cross-validation for the real data.
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627  Supplemental Table 1. Spearman Correlation between variable importance scores (Random
628  Forests) and model coefficients (Support Vector Machine and Logistic Regression) for the
629  SPRINT trial data.
Random Forest Support Vector Logistic Regression
Machine
Correlation P-Value Correlation P-Value Correlation P-Value
Real - Non- | 0.7207 7.1518e-07 0.5279 9.35794e-04 | 0.6973 2.2950e-06
Private
Real - 0.6123 7.21008e- | 0.6517 1.6644¢-05 | 0.6893 3.3310e-06
Private 05
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633  Supplemental Table 2. Spearman Correlation between variable importance scores (Random
634  Forests) and model coefficients (Support Vector Machine and Logistic Regression) for the
635  MIMIC critical care data.

Random Forest Support Vector Logistic Regression
Machine
Correlation P-Value Correlation P-Value Correlation P-Value
Real - Non- | 0.4059 0.00566 0.2952 0.04894 0.4268 0.00345
Private
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