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Abstract: 20 

Background: Data sharing accelerates scientific progress but sharing individual level data while 21 

preserving patient privacy presents a barrier. 22 

  23 

Methods and Results: Using pairs of deep neural networks, we generated simulated, synthetic 24 

“participants” that closely resemble participants of the SPRINT trial. We showed that such 25 

paired networks can be trained with differential privacy, a formal privacy framework that limits 26 

the likelihood that queries of the synthetic participants’ data could identify a real a participant in 27 

the trial. Machine-learning predictors built on the synthetic population generalize to the original 28 

dataset. This finding suggests that the synthetic data can be shared with others, enabling them to 29 

perform hypothesis-generating analyses as though they had the original trial data.  30 

  31 

Conclusions: Deep neural networks that generate synthetic participants facilitate secondary 32 

analyses and reproducible investigation of clinical datasets by enhancing data sharing while 33 

preserving participant privacy. 34 

  35 
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Introduction:  36 

Sharing individual-level data from clinical studies remains challenging. The status quo often 37 

requires scientists to establish a formal collaboration and execute extensive data usage 38 

agreements before sharing such data. These requirements slow or even prevent data sharing 39 

between researchers in all but the closest collaborations. Individual-level data is critical for 40 

certain secondary data analyses (e.g. propensity score matching techniques) and subgroup 41 

analyses [1].  42 

 43 

Even for efforts specifically designed to highlight the value of sharing data, investigators have 44 

been required to execute data use agreements. The New England Journal of Medicine recently 45 

held the Systolic Blood Pressure Trial (SPRINT) Data Analysis Challenge to examine possible 46 

benefits of clinical trial data sharing [2,3]. The SPRINT clinical trial examined the efficacy of 47 

intensive lowering of systolic blood pressure (<120 mmHg) compared with treatment to a 48 

standard systolic blood pressure goal (<140 mmHg). Intensive blood pressure lowering resulted 49 

in fewer cardiovascular events, and the trial was stopped early for benefit. Reanalysis of the 50 

Challenge data led to the development of personalized treatment scores [4] and decision support 51 

systems [5], in addition to a more specific analysis of blood pressure management in participants 52 

with chronic kidney disease [6]. The goal of these agreements is to to maintain participant 53 

privacy by prohibiting re-identification or unauthorized disclosure. 54 

 55 

We sought to find a way to share data for initial and exploratory analyzes that does not require 56 

this data use agreement process. To do this we developed a technical solution for generating 57 

synthetic participants that were similar enough to the original trial data that both standard 58 
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statistical and machine learning analyses yield effectively the same answers. Other methods 59 

aimed at performing this task generally fall into two groups: 1.) sampling methods with a 60 

quantifiable privacy risk [7], or 2.) Generative Adversarial Networks (GANs) [8], which are 61 

neural networks that can generate realistic data from complex distributions. In a GAN, two 62 

neural networks are trained against each other: one is trained to discriminate between real and 63 

synthetic data (the discriminator), and the other is trained to generate synthetic data (the 64 

generator). GANs have become a class of widely used machine learning methods and have 65 

recently been used in biology and medicine [9] and have been used to generate biomedical data 66 

[10,11]. However, using traditional GANs for this task provides no guarantee on what the 67 

synthetic data reveal about true participants. It is possible that the generator neural network could 68 

learn to create synthetic data that reveals actual participant data. 69 

 70 

One way to avoid this scenario, in which a participant’s involvement in a trial could be revealed, 71 

is to limit the influence that any single study participant has on the paired neural networks’ 72 

training of one another. Differential privacy is a formal framework that provides tunable 73 

parameters that control the maximum possible privacy loss. That privacy loss comes in the form 74 

of  the contribution any single individual to the results of analyses researchers perform. Nissim et 75 

al. [12] provide a particularly useful primer on understanding differential privacy to a non-76 

technical audience as well as the implications of privacy loss in a legal context. Differential 77 

privacy has been adopted by the US Census Bureau for the 2020 US Census. The Census Bureau 78 

provides guidance on choosing an appropriate privacy loss [13,14]. A general background of 79 

differential privacy can be found in Dwork and Roth [15] and Abadi et al. introduced differential 80 

privacy for deep learning [16]. 81 
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 82 

In this work, we introduce differential privacy to the GAN framework and evaluate the extent to 83 

which differentially private GANs could generate biomedical data that can be shared for valid 84 

reanalysis while controlling participant privacy risks. We achieve differential privacy by limiting 85 

the maximum influence of any single participant during training and then adding a small amount 86 

of random noise [16]. More detailed technical explanations of our usage of differential privacy 87 

can be found in the Online Methods section. We evaluated usefulness by: 1.) comparing variable 88 

distributions between the real and simulated data, 2.) comparing the correlation structure 89 

between variables in the real and simulated data, 3.) a blinded evaluation of individual-level data 90 

by three clinicians, and 4.) comparing predictors constructed on real vs. simulated data. The 91 

method generates realistic data by each of these evaluations.  92 

 93 

Methods: 94 

We used a type of GAN known as an Auxiliary Classifier Generative Adversarial Network (AC-95 

GAN) [17] to simulate participants based on the population of the SPRINT clinical trial.  We 96 

included all participants with measurements for the first twelve SPRINT visits (n=6,502), 97 

dividing them into a training set (n=6,000) and a test set (n=502). To evaluate the effect of 98 

applying differential privacy during the generation of synthetic participant data, we trained two 99 

AC-GANs using the training set: a traditional, standard AC-GAN (results termed “non-private” 100 

throughout the remainder of this manuscript) and an AC-GAN trained under differential privacy 101 

(results termed “private”). We used both GANs to simulate data that we then compared to the 102 

real SPRINT data by visualizing participant blood pressure trajectories, analyzing variable 103 

correlation structure and evaluating whether predictive models trained on synthetic data achieve 104 
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similar performance ot models trained on real data. Three clinicians attempted to predict whether 105 

participants were real or synthetic and whether they were in the standard or intensive treatment 106 

group. 107 

 108 

Auxiliary Classifier GAN for SPRINT Clinical Trial Data 109 

An AC-GAN (Supp. Fig. 1A) is made up of two neural networks competing with each other. 110 

Details about the neural network architectures are available in the Supplementary Online 111 

Methods.  We trained the Generator (G) to take in a specified treatment arm (standard/intensive) 112 

and random noise and generate new participants that can fool the Discriminator (D). The 113 

generator takes in specified treatment arm in order to generate participants that belong to the 114 

specified arm. This labelling and additional task is the difference between an AC-GAN and a 115 

standard GAN. The generator simulated a systolic blood pressure, diastolic blood pressure and a 116 

number of medications for each synthetic patient for each of 12 SPRINT study visits. We trained 117 

the discriminator to differentiate real and simulated data from a dataset containing both groups. 118 

We repeated this process until the generator created synthetic participants that were difficult to 119 

discriminate from real ones (i.e. the accuracy of the discriminator could not improve much above 120 

~50%). 121 

 122 

Training with Differential Privacy 123 

In order to limit the possibility that a participant’s trial involvement could be identified, we need 124 

to limit the influence any single study participant has on the neural network training of the 125 

Discriminator, the only part of the AC-GAN that accesses real data. Neural networks are trained 126 

using gradient descent, by adjusting weights according to the gradient of a loss function. Non-127 
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technically this means taking a series of steps that provide a more accurate output. To 128 

incorporate differential privacy, we limit the maximum distance of any of these steps and then 129 

add a small amount of random noise. For a detailed explanation on the processes we used please 130 

see the online methods and refer to Abadi et al. [16]. 131 

 132 

SPRINT Clinical Trial Data 133 

SPRINT was a randomized, single blind treatment trial that divided hypertensive participants to 134 

either intensive treatment with a systolic blood pressure target of less than 120 mmHg or 135 

standard treatment with a systolic blood pressure target of less than 140 mm Hg. The trial 136 

included a total of 9,361 participants. We included 6,502 participants who had blood pressure 137 

measurements for each of the first 12 measurements (RZ, 1M, 2M, 3M, 6M, 9M, 12M, 15M, 138 

18M, 21M, 24M, 27M). We included measurements for systolic blood pressure, diastolic blood 139 

pressure and the count of medications prescribed to each participant, for a total of 3 parameters 140 

assessed at 12 time points. 141 

 142 

Clinician Evaluation 143 

Three physicians made a blinded “real or synthetic” judgment for each of 100 figures showing 144 

systolic blood pressure, diastolic blood pressure, and number of medications at each of 12 visits. 145 

These cardiologists classified how realistic the patients looked (from 1-10 where 10 is most 146 

realistic) and whether the patients had been randomized to SPRINT’s standard or intensive 147 

treatment arm. Prior to reviewing the figures and regularly during the review of figures, the 148 

clinicians reviewed the published SPRINT protocol to help contextualize the data. We performed 149 
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a Mann-Whitney U test to evaluate whether the real or synthetic samples received significantly 150 

different scores and compared the accuracy of the treatment arm classifications. 151 

  152 

Transfer Learning Task in the SPRINT trial 153 

Each of the 6,502 participants in our analytical dataset was labeled by treatment arm. We 154 

evaluated machine learning methods (logistic regression, support vector machines, and random 155 

forests from the scikit-learn [33] package) by their ability to predict a participant’s treatment 156 

arm. This was done by splitting the 6,502 participants into a training set of 6,000 participants 157 

(referred to as ‘real’ in this manuscript) and a test set of 502 participants. We then trained two 158 

AC-GANs using the 6,000-participant training set, 1.) an AC-GAN model trained without 159 

differential privacy (referred to as ‘non-private’) and 2.) an AC-GAN trained with differential 160 

privacy (referred to as ‘private’). Each classifier was then trained on three datasets, 1.) the real 161 

training dataset, 2.) synthetic participants generated by the non-private AC-GAN and 3.) 162 

synthetic participants generated by the private AC-GAN. Each classifier was then evaluated on 163 

the same, real test set of participants. This allows for a comparison of classification performance 164 

between models trained on the real data, synthetic data and private synthetic data. We evaluated 165 

both accuracy as well as the correlation between important features (random forest) and model 166 

coefficients (logistic regression and support vector machine). 167 

 168 

Predicting Heart Failure in the MIMIC Critical Care Database 169 

We generated synthetic patients for the purpose of predicting heart failure. MIMIC is a database 170 

of 46,297 de-identified electronic health records for critical care patients at Beth Israel. We 171 

defined patients who suffered from heart failure as any patient in MIMIC diagnosed with an 172 
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ICD-9 code included in the Veterans Affairs’ Chronic Heart Failure Quality Enhancement 173 

Research Initiative’s guidelines: (402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 174 

404.91, 404.93, 428, 281.1, 428.20, 428.21, 428.22, 428.23, 428.30, 428.31, 428.32, 428.33, 175 

428.40, 428.41, 428.42, 428.43, and 428.9). We performed complete case analysis for patients 176 

with at least five measurements for mean arterial blood pressure, arterial systolic and diastolic 177 

blood pressures, beats per minute, respiration rate, peripheral capillary oxygen saturation 178 

(SpO2), mean non-invasive blood pressure and mean systolic and diastolic blood pressures. For 179 

patients with more than five measurements for these values, the first five were used. This yielded 180 

8,260 total patients and 2,110 cases of heart failure. We included the first 7,500 patients in the 181 

training set and the remaining 760 in a validation set. The training and transfer learning 182 

procedures matched the SPRINT protocol.  183 

 184 

 185 

Results: 186 

We trained a differentially private AC-GAN to generate synthetic participants that resemble the 187 

real trial participants (Figure 1). We compare the median systolic blood pressures over time 188 

(Figure 2) of three groups, 1.) real participants (“real”), 2.) simulated participants via a non-189 

private AC-GAN (“non-private”) and 3.) simulated participants via the differentially private AC-190 

GAN (“private”). The non-private participants generated at the end of training appear similar to 191 

the real participants. The private participants have wider variability because of the noise added 192 

during training (Fig. 1A).  193 
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 194 

Figure 1. Median Systolic Blood Pressure Trajectories from initial visit to 27 months. 195 

 196 

Table 1 compares how close statistics calculated between the three groups were, as well as a 197 

comparison of treatment decisions between the real and synthetic participants. In particular, we 198 

examined the proportion of times an additional medication was added when a participant was 199 

above the target systolic blood pressure goal for their treatment arm (120 mm Hg for intensive, 200 

140 mm Hg for standard). For this task the private synthetic participants closely reflected the 201 

original trial (15.51% vs 15.14%). This demonstrates the potential to meaningfully ask questions 202 

using synthetic data prior to acquiring and confirming a putative relationship in the real data. 203 

 204 

Table 1. Summary statistic comparison between Real, Non-Private Synthetic and Private 205 

Synthetic Participants - mean (standard deviation). 206 

 Real Non-Private Synthetic Private Synthetic 
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Systolic Blood 

Pressure 

129.01 (15.14) 128.96 (14.76) 128.74 (15.21) 

Diastolic Blood 

Pressure 

72.02 (11.43) 72.86 (10.93) 72.92 (11.47) 

Medications 2.27 (1.15) 2.04 (1.12) 2.25 (1.14) 

% SBP above target 39.56% 40.48% 39.80% 

% SBP above target 

where medication 

added 

15.14% 14.99% 15.51% 

 207 

As another method of determining whether the resulting synthetic data are similar to the real 208 

data, we measured the correlation between each study visit’s systolic blood pressure, diastolic 209 

blood pressure, and medication count. We performed this analysis within the SPRINT dataset 210 

(“real correlation structure”) and within the datasets generated by the GAN without and the GAN 211 

with differential privacy (“non-private correlation structure” and “private correlation structure,” 212 

respectively). The Pearson correlation structure of the real SPRINT data (Fig. 2A) was closely 213 

reflected by the correlation structure of the non-private generated data (Fig. 2B). Of note was 214 

initial positive correlation between the number of medications a participant was taking and the 215 

early systolic blood pressures, but this correlation decreased as time goes on. The correlation 216 

matrices between the real SPRINT data (i.e., the training data) and the non-private data were 217 

highly correlated (Spearman correlation = 0.9645, p-value < 0.0001). Addition of differential 218 

privacy during the synthetic data generation process (i.e., the “private dataset”) generated data 219 

generally reflecting these trends, but with an increased level of noise (Fig. 2C). The correlation 220 
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matrices between the real SPRINT data and the private generated data were only slightly less 221 

correlated (Spearman correlation = 0.9185, p-value < 0.0001). The noisy training process of the 222 

private discriminator places an upper bound on its ability to fit the distribution of data. Increased 223 

sample sizes (such as in EHRs or other real-world data sources) would help to clarify this 224 

distribution and because larger sample sizes cause less privacy loss, less noise would need to be 225 

added to achieve an acceptable privacy budget. 226 

 227 

 228 

Fig. 2. Pairwise Pearson correlation between columns for the A.) Original, real data, B.) Non-229 

private, AC-GAN simulated data C.) Differentially private, AC-GAN simulated data. (RZ, 230 

randomization visit; 1M, 1 month visit; 2M, 2 month visit; 3M, 3 month visit; 6M, 6 month visit; 231 

9M, 9 month visit; 12M, 12 month visit; 15M, 15 month visit; 18M, 18 month visit; 21M, 21 232 

month visit; 24M, 24 month visit; 27M, 27 month visit). 233 

 234 
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Human Comparison of Real vs. Synthetic Participants 235 

To ensure similarity between the synthetic and real SPRINT data persists during rigorous 236 

inspection at more granular scale, we asked three clinicians to judge whether individual 237 

participant data were real SPRINT data, or synthetic data. These three physicians, experienced in 238 

the treatment of hypertension and familiar with the SPRINT trial, were asked to determine in a 239 

blinded fashion whether 100 participants (50 real, 50 synthetic) looked real. The clinicians 240 

looked for data inconsistent with the SPRINT protocol or that otherwise appeared anomalous. 241 

For example, the clinicians were alert for instances in which the systolic blood pressure was less 242 

than 100 mm Hg, but the participant was prescribed an additional medication. The clinicians 243 

classified each record on a zero to ten realism scale (10 was the most realistic), as well as 244 

whether the data correspond to standard or intensive treatment (Fig. 3A-D). The mean realism 245 

score for synthetic patients was 5.18 and the mean score for the real patients 5.26 (Figure 3E). 246 

We performed a Mann-Whitney U test to evaluate whether the scores were drawn from 247 

significantly different distributions and found a p-value of 0.333. The clinicians correctly 248 

classified 76.7% of the real SPRINT participants and 82.7% of the synthetic participants as the 249 

standard or intensive group. 250 

 251 
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 252 

Fig 3. A.) Synthetic participant scored a 2 by clinician expert. B.) Synthetic participant scored a 253 

4 by clinician expert. C.) Synthetic participant scored a 6 by clinician expert. D.) Synthetic 254 

participant scored a 8 by clinician expert. E.) Comparison of scores between real and synthetic 255 

participant (dotted red lines indicate means). F.) Distribution of scores between real (blue) and 256 

synthetic (green) patients. 257 

 258 
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Machine Learning Models Trained on Simulated Participants are Accurate for Real Participants 259 

Clinician review, visualizations of participant distributions and variable correlations showed that 260 

synthetic participants appeared similar to real participants. Next, we sought to determine whether 261 

or not subsequent data analyses using synthetic data matched that of the real data. To do this, we 262 

trained machine learning classifiers using four methods (logistic regression, random forests, 263 

support vector machines, and nearest neighbors) to distinguish treatment arms on three different 264 

sources of data: real participants, synthetic participants generated by the non-private model, and 265 

synthetic participants generated by the private model. We compared performance of these 266 

classifiers on a separate holdout test set of 502 real participants that were not included in the 267 

training process (Fig. 4). A drop in performance was expected because adding noise to maintain 268 

privacy reduces signal. If desired, training a non-private model could provide an approximate 269 

upper bound for expected performance. 270 

 271 
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 272 

Fig 4. Accuracy of models trained on synthetic participants vs. real data. (Line indicates 273 

performance on real data, which on average should provide the best possible performance; bar 274 

indicates performance of classifier trained on private synthetic participants, bottom of chart 275 

indicates random performance). 276 

 277 

We also sought to determine the extent to which the classifiers trained on real vs. synthetic data 278 

were relying on the same features to make their predictions (Supplemental Figure 6). We found 279 

that there was significant correlation between the importance scores (random forest) and 280 

coefficients (SVM and logistic regression) for the models trained on real vs. synthetic data 281 

(Supplemental Table 1). In addition, it is important to note that the models achieved their 282 

performance while relying on more than ten features at relatively even levels (Supplemental 283 

Figure 6), demonstrating the ability to capture multivariate correlations. Finally, we tested the 284 
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correlation across cross validation folds within the real data to set an upper bound of expected 285 

correlation (Supplemental Figure 7). 286 

  287 

Privacy Analysis 288 

We evaluate privacy based on the (ε, δ) formulation of differential privacy [15]. This formal 289 

definition of differential privacy has two parameters. The parameter ε measures the maximum 290 

dataset shift that could be observed by adding or removing a single participant (termed “privacy 291 

loss”). The second parameter, δ, is the upper bound of the probability that the privacy loss 292 

exceeds ε. Put in other words, ε represents the maximum privacy loss where there is no privacy 293 

breach, and δ represents the probability of a privacy breach. We frame the problem in this way 294 

because it is impossible to anticipate all future methods of attack. For further details refer to the 295 

Online Methods section. 296 

 297 

Therefore, it is important to choose values for ε and δ that are satisfactory to the specific use case 298 

and correspond to the consequences of a privacy breach. The values of (ε, δ) increase as the 299 

algorithm (the discriminator from the AC-GAN) accesses the private data. In our experiment, our 300 

private AC-GAN algorithm is able to generate useful synthetic data with ε = 3.5 and δ < 10-5 301 

(Fig. 5). The upper bound of the epoch selection task, (see Online Methods) used (0.05, 0) per 302 

each model included for a total of (0.5, 0) differential privacy. This established a modest, single 303 

digit epsilon privacy budget of (4, 10-5) that is on par or lower than other methods using deep 304 

learning with differential privacy. 305 

 306 
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 307 

Fig 5. The value of delta as a function of epoch for different epsilon values. An ε value of 3.5 308 

allows for 1000 epochs of training and δ < 10-5. 309 

 310 

Predicting Heart Failure in the MIMIC Critical Care Database 311 

We applied the method to the MIMIC Critical Care Database [18] to demonstrate its generality. 312 

We tested whether our approach could be applied in a second dataset by predicting heart failure 313 

from the first five measurements for nine vital sign measurements in 7,222 patients. The vital 314 

sign measurements included: mean arterial blood pressure, arterial systolic and diastolic blood 315 

pressures, beats per minute, respiration rate, peripheral capillary oxygen saturation (SpO2), mean 316 

non-invasive blood pressure, and mean systolic and diastolic blood pressures. Performance on 317 

privately generated synthetic patients was on par with performance models trained on real 318 

patients (Fig. 6A-D). As in the SPRINT data, the coefficients for logistic regression and the 319 

support vector machine as well as the feature importances were significantly correlated between 320 

real and synthetic data (Supplemental Table 2). 321 
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 322 

Fig 6.  A-D.) Performance on transfer learning task by source of training data for each machine 323 

learning method. E.) Pairwise Pearson correlation between columns for the Original, real data 324 

F.) Pairwise Pearson correlation between columns for the Private synthetic data. 325 

 326 

Discussion: 327 

Deep generative adversarial networks and differential privacy offer a technical solution to the 328 

challenge of sharing biomedical data to facilitate exploratory analyses. Our approach, which uses 329 

deep neural networks for data simulation, can generate synthetic data to be distributed and used 330 

for secondary analysis. We perform training with a differential privacy framework that limits 331 
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study participants’ privacy risk. We apply this approach to data from the SPRINT clinical trial 332 

due to its recent use for a data reanalysis challenge 333 

  334 

We introduce an approach that samples from multiple epochs to improve performance while 335 

maintaining privacy. However, this is an early stage work and several challenges remain. Deep 336 

learning models have many training parameters and require substantial sample sizes, which can 337 

hamper this method’s use for small clinical trials or targeted studies. In this work, we 338 

demonstrated the ability to use differentially private AC-GANs on relatively low-dimensional 339 

time series data sets. We applied our method to time series as we believe this provided a better 340 

test than simple point in time data because there would be time-based correlation structures. We 341 

expect this approach to be most well suited to sharing specific variables from clinical trials to 342 

enable wide sharing of data with similar properties to the actual data. We do not intend the 343 

method to be applied to generate high dimensional genetic data from whole genome sequences or 344 

other such features. Application to that problem would require the selection of a subset of 345 

variants of interest or substantial additional methodological work. 346 

 347 

Another fruitful area of use may be large electronic health records systems, where the ability to 348 

share synthetic data may aid methods development and the initial discovery of predictive models. 349 

Similarly, financial institutions or other organizations that use outside contractors or consultants 350 

to develop risk models might choose to share generated data instead of actual client data. In very 351 

large datasets, there is evidence that differential privacy may even prevent overfitting to reduce 352 

the error of subsequent predictions. 353 

  354 
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Though our approach provides a general framing, the precise neural network architecture may 355 

need to be tuned for specific use cases. Data with multiple types presents a challenge. EHRs 356 

contain binary, categorical, ordinal and continuous data. Neural networks require these types to 357 

be encoded and normalized, a process that can reduce signal and increase the dimensionality of 358 

data. New neural networks have been designed to deal more effectively with discrete data 359 

[19,20]. Researchers will need to incorporate these techniques and develop new methods for 360 

mixed types if their use case requires it.  361 

  362 

Due to the fluid nature of security and best practices, it is important to choose a method which is 363 

mathematically provable and ensures that any outputs are robust to post-processing. Differential 364 

privacy satisfies both needs and is thus being relied upon in the upcoming 2020 United States 365 

Census [21]. It is imperative to remember that to receive the guarantees of differential privacy a 366 

proper implementation is required. We believe testing frameworks to ensure accurate 367 

implementations are a promising direction for future work, particularly in domains with highly 368 

sensitive data. like healthcare. 369 

  370 

The practice of generating data under differential privacy with deep neural networks offers a 371 

technical solution for those who wish to share data to the challenge of patient privacy. This 372 

technical work complements ongoing efforts to change the data sharing culture of clinical 373 

research. 374 

 375 
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Supplementary Online Methods: 401 
We developed an approach to train auxiliary classifier generative adversarial networks (AC-402 

GANs) in a differentially private manner to enable privacy preserving data sharing. Generative 403 

adversarial networks offer the ability to simulate realistic-looking data that closely matches the 404 

distribution of the source data.  405 

AC-GANs add the ability to generate labeled samples. By training AC-GANs under the 406 

differential privacy framework we generated realistic samples that can be used for initial analysis 407 

while guaranteeing a specified level of participant privacy.  408 

 409 

The source code for all analyses is available under a permissive open source license in our 410 

repository (https://github.com/greenelab/SPRINT_gan). In addition, continuous analysis [22] 411 

was used to re-run all analyses, to generate docker images matching the environment of the 412 

original analysis, and to track intermediate results and logs. These artifacts are freely available 413 

(https://hub.docker.com/r/brettbj/sprint-gan/ and archival version: 414 

https://doi.org/10.6084/m9.figshare.5165731.v1). 415 

 416 

Background 417 

A pair of recent preprints have reported generation of synthetic individual participant data via 418 

neural networks [10,11]. For example, Esteban et al., generated synthetic patient data and 419 

showed that a neural network could not distinguish between the synthetic data and real data. 420 

However, it is not enough to simply build synthetic participants. Numerous linkage and 421 

membership inference attacks on both biomedical datasets [23–30] and from machine learning 422 

models [31–33] have demonstrated the ability to re-identify participants or reveal participation in 423 

a study. 424 
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 425 

To provide a formal privacy guarantee, we built GANs to generate realistic synthetic individual 426 

participant data with mathematical properties like those of the original participants’ data, adding 427 

the extra protection of differential privacy [15]. Differential privacy protects against common 428 

privacy attacks including membership inference, homogeneity and background knowledge 429 

attacks. Informally, differential privacy requires that no single study participant has a significant 430 

influence on the information released by the algorithm (see Materials and Methods for a formal 431 

definition). Despite being a stringent notion, differential privacy allows us to generate new 432 

plausible individuals while revealing almost nothing about any single study participant. Within 433 

the biomedical domain, Simmons and Berger developed a method using differential privacy to 434 

enable privacy preserving genome-wide association studies [34]. Recently, methods have also 435 

been developed to train deep neural networks under differential privacy with formal assurances 436 

about privacy risks [16,35]. In the context of a GAN, the discriminator is the only component 437 

that accesses the real, private, data. By training the discriminator under differential privacy, we 438 

can produce a differentially private GAN framework. 439 

  440 

Auxiliary Classifier Generative Adversarial Network 441 

We implemented the AC-GAN as described in Odena et al. [17] using Keras [36] to simulate 442 

systolic and diastolic blood pressures as well as the number of hypertension medications 443 

prescribed. Results shown use a latent vector of dimension 100, a learning rate of 0.0002, and a 444 

batch size of 1 trained for 500 epochs. To conform with the privacy claims laid out in Abadi et 445 

al. [16], gradients must be clipped per example, in our implementation this requires the batch 446 

size to be 1. To handle edge cases and mimic the sensitivity of the real data measurements, we 447 
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take the floor of zero or the simulated value and convert all values to integers. Full 448 

implementation details can be seen in the GitHub repository 449 

(https://github.com/greenelab/SPRINT_gan/blob/master/ac_gan.py). 450 

 451 

We chose convolutional layers because of the structure imposed by sequential measurements 452 

made during the clinical trial. The features were ordered according to timing, so local structure 453 

was tied to temporality. We used deep convolutional neural networks for both the generator and 454 

discriminator (Supp. Fig. 1B, 1C). 455 

  456 

Differential Privacy 457 

Differential privacy is a stability property for algorithms, specifically for randomized algorithms 458 

[37]. Informally, it requires that the change of any single data point in the data set has little 459 

influence on the output distribution by the algorithm. To formally define differential privacy, let 460 

us consider X as the set of all possible data records in our domain. A dataset is a collection of n 461 

data records from X. A pair of datasets D and D’ are neighboring if they differ by at most one 462 

data record. In the following, we will write R to denote the output range of the algorithm, which 463 

in our case correspond to the set of generative models. 464 

  465 

Definition 1 [Differential Privacy [38]]: Let ε, δ > 0. An algorithm A: Xn → R satisfies (ε, δ)-466 

differential privacy if for any pair of neighboring datasets D, D’, and any event S ⊆ R, the 467 

following holds 468 

Pr[A(D) ∈ S ] ≤ Pr[A(D’) ∈ S ] exp(ε) + δ, 469 

where the probability is taken over the randomness of the algorithm. 470 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/159756doi: bioRxiv preprint 

https://doi.org/10.1101/159756
http://creativecommons.org/licenses/by/4.0/


  471 

A crucial property of differential privacy is its resilience to post-processing --- any data 472 

independent post-processing procedure on the output by a private algorithm remains private.  473 

 474 

More formally: 475 

 Lemma [Resilience to Post-Processing]: Let algorithm A: Xn → R be an (ε, δ)-differentially 476 

private algorithm. Let A’ : R → R’ be a “post-processing” procedure. Then their composition of 477 

running A over the dataset D, and then running A’ over the output A(D) also satisfies (ε, δ)-478 

differential privacy. 479 

 480 

Robustness to post-processing is critical to our application because it means that all downstream 481 

uses of the data are also (ε, δ)-differentially private. Therefore, by making the discriminator, the 482 

only part of the system that accesses the real data, differentially private, the rest of the system is 483 

also differentially private.   484 

  485 

Training AC-GANs in a Differentially Private Manner 486 

We trained under differential privacy by limiting the effect any single SPRINT study participant 487 

has on the training process and by adding random noise based on the maximum effect of a single 488 

study participant. From the technical perspective, we limited the effect of participants by 489 

clipping the norm of the discriminator’s training gradient and added proportionate Gaussian 490 

noise. This combination ensures that training cannot be tied to an individual and that it could 491 

have been guided by a different subject within or outside the real training data. The maximum 492 

effect of an outlier is limited and bounded. Comparing the neural network loss functions of the 493 
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private and non-private training process demonstrates the effects of these constraints. Under 494 

normal training the losses of the generator and discriminator converged to an equilibrium before 495 

eventually increasing steadily (Supp. Fig. 1D). Under differentially private training the losses 496 

converged to and remained in a noisy equilibrium (Supp. Fig. 1F). At the beginning of training 497 

the neural networks changed rapidly. As training continued and the model achieved a better fit 498 

these steps, the gradient, decreased. Eventually the gradient becomes too small in comparison to 499 

the noise for training to continue any further. 500 

 501 

As the models achieve better fit, the gradient shrinks, causing the gradient to noise ratio to 502 

decrease. This can occasionally lead to the private generator and discriminator falling out of sync 503 

(Supp. Fig. 3) or more commonly the private model generating less realistic samples due to 504 

noise. To best select epochs, or training steps, where synthetic samples closely real samples, we 505 

tested each epoch’s data by training an additional classifier that must distinguish whether a 506 

generated participant was a part of the normal or intensive treatment groups. 507 

 508 

During the training of AC-GAN, the only part that requires direct access to the private (real) data 509 

was the training of the discriminator. To achieve differential privacy, we only needed to 510 

“privatize” the training of the discriminators. The differential privacy guarantee of the entire AC-511 

GAN directly followed because the output generative models are simply post-processing from 512 

the discriminator. We trained the discriminator using a differentially private version of the Adam 513 

method [39]. The standard Adam method iteratively updated the model parameters based on the 514 

gradients of the underlying loss function.  To preserve privacy, we added noise to the gradient 515 

computed at each step as follows: first, we to ensured that the ℓ2-norm of the gradient is bounded 516 
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by clipping the gradient; then we perturbed each coordinate of the gradient by adding noise 517 

drawn from the Gaussian distribution with mean 0 and standard deviation proportional to the 518 

gradient clip size. The more noise we added (relative to the clipped norm of the gradient) the 519 

better the privacy guarantee we provide. 520 

  521 

Due to the noisy training process, the losses of the discriminator and generator do not always 522 

converge (Supp. Fig. 1) and the training algorithm may have to be rerun. To properly account the 523 

total privacy loss from all the runs, we started with a target privacy budget (given by privacy 524 

parameters ε and δ) and repeatedly ran the private training algorithm until the AC-GAN 525 

converges or the privacy budget is exhausted. We used the moments accountant described in 526 

Abadi et al. [16] to keep track of the privacy parameters (ε, δ) over time. 527 

  528 

We clipped the ℓ2-norm of the gradient at 0.0001 and added noise from a normal distribution 529 

with a σ2 of 1 (Ɲ(µ, 1 * (0.00012))). In our experiment, the AC-GAN trained in the second run of 530 

the algorithm converged, and the entire training process incurred a privacy loss within the budget 531 

(ε = 4, δ = 10-5). 532 

  533 

Differentially Private Model Selection 534 

We trained under differential privacy by limiting the effect any single SPRINT study participant 535 

has on the training process and by adding random noise based on the maximum effect of a single 536 

study participant. To do this, we first clipped the norm of the discriminator’s training gradient. 537 

This clipping provides an upper bound on the maximum effect of a single study participant. We 538 

then added Gaussian noise according to this upper bound and the specified acceptable privacy 539 
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loss. This combination ensures that training cannot be tied to an individual and that it could have 540 

been guided by a different subject within or outside the real training data. The maximum effect 541 

of an outlier is limited and bounded. Comparing the neural network loss functions of the private 542 

and non-private training process demonstrates the effects of these constraints. Under normal 543 

training the losses of the generator and discriminator converged to an equilibrium before 544 

eventually increasing steadily (Supp. Fig. 1D). Under differentially private training the losses 545 

converged to and remained in a noisy equilibrium (Supp. Fig. 1F). At the beginning of training 546 

the neural networks changed rapidly. As training continued and the model achieved a better fit 547 

these steps, the gradient, decreased. Eventually the gradient becomes too small in comparison to 548 

the noise for training to continue any further. 549 

 550 

As the models achieve better fit, the gradient shrinks, causing the gradient to noise ratio to 551 

decrease. This can occasionally lead to the private generator and discriminator falling out of sync 552 

(Supp. Fig. 2) or more commonly the private model generating less realistic samples due to 553 

noise. To best select epochs, or training steps, where synthetic samples closely real samples, we 554 

tested each epoch’s data by training an additional classifier that must distinguish whether a 555 

generated participant was a part of the normal or intensive treatment groups. 556 

 557 

We found that sampling from multiple different epochs throughout training provided a more 558 

diverse training set. This provided summary statistics closer to the real data and higher accuracy 559 

in the transfer learning task. During the GAN training, we saved all the generative models across 560 

all epochs. We then generated a batch of synthetic data from each generative model and used a 561 

machine learning algorithm (logistic regression or random forest) to train a prediction model 562 
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based on each synthetic batch of data. We then tested each prediction model on the training set 563 

from the real dataset and calculate the resulting accuracy. To select epochs that generate training 564 

data for the most accurate models under differential privacy, we used the standard “Report Noisy 565 

Min” subroutine: first add independent Laplace noise to the accuracy of each model (drawn from 566 

Lab(1/(n*ε)) to achieve (ε, 0) differential privacy where n is the size of the private dataset we 567 

perform the prediction on and output the model with the best noisy accuracy.  568 

  569 

In practice, we choose the top five models that performed best on the transfer learning task for 570 

the training data using both logistic regression classification and random forest classification (for 571 

a total of 10 models). We performed this task under (0.5, 0)-differential privacy. In each of the 572 

ten rounds of selection epsilon was set to 0.05. This achieves a good balance of accuracy while 573 

maintaining a reasonable privacy budget. 574 

 575 
  576 
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Supplementary Online Results: 577 
Supplemental Figure 1. AC-GAN architecture and training. A.) Structure of an AC-GAN. B.) 578 
The generator model takes a class label representing the treatment group (e.g. intensive or 579 
standard care group) and random noise as input and outputs a 3x12 vector for each participant 580 
(SBP, DBP and medication counts at each time point). C.) The discriminator model takes both 581 
real and simulated samples as input and learns to predict the source and a class label (i.e. normal 582 
or intensive treatment group). D.) Training loss for a non-private AC-GAN. E.) Training loss for 583 
a private AC-GAN. 584 

 585 
 586 
Supplemental Figure 2. Median Systolic Blood Pressure Trajectories from initial visit to 27 587 
months. A.) Simulated samples (private and non-private) generated from the final (500th) epoch 588 
of training. B.) Simulated samples generated from the epoch with the best performing logistic 589 
regression classifier. C.) Simulated samples from the epoch with the best performing random 590 
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forest classifier. D.) Simulated samples from the top five random forest classifier epochs and top 591 
five logistic regression classifier epochs. 592 

 593 
 594 
We applied two common machine learning classification algorithms and selected the top epochs 595 
in a differentially private manner (Supp. Fig. 2B and 2C). However, selecting only a single 596 
epoch does not account for the AC-GAN training process. Because the discriminator and 597 
generator compete from epoch to epoch, their results can cycle around the underlying 598 
distribution. The non-private models consistently improved throughout training (Supp. Fig. 4A, 599 
Supp. Fig. 5A), but this could be due to the generator eventually learning characteristics specific 600 
to individual participants. We observed that epoch selection based on the training data was 601 
important for the generation of realistic populations from models that incorporated differential 602 
privacy (Supp. Fig. 4B, Supp. Fig. 5B). To address this, we simulated 1,000 participants from 603 
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each of the top five epochs by both the logistic regression and random forest evaluation on the 604 
training data and combined them to form a multi-epoch training set. This process maintained 605 
differential privacy and resulted in a generated population that, throughout the trial, was 606 
consistent with the real population (Supp Fig. 2D). The epoch selection process was independent 607 
of the holdout testing data. 608 
 609 
Supplemental Figure 3. Random noise breaks equilibrium. 610 

 611 
 612 
  613 
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Supplemental Figure 4. Top Ranking Epochs for Transfer Learning Exercise. 614 

  615 
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Supplemental Figure 5. Scores vs. Epoch for Transfer Learning Task. 616 

  617 
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Supplemental Figure 6. A.) Random forest variable importance scores by training data.  B.) 618 
Logistic Regression variable coefficients by training data. C.) Support Vector Machine variable 619 
coefficients by training data. 620 

 621 
 622 
  623 
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Supplemental Figure 7. Feature correlation between cross-validation for the real data.  624 

 625 
 626 
Supplemental Table 1. Spearman Correlation between variable importance scores (Random 627 
Forests) and model coefficients (Support Vector Machine and Logistic Regression) for the 628 
SPRINT trial data. 629 

  Random Forest Support Vector 
Machine 

Logistic Regression 

  Correlation P-Value Correlation P-Value Correlation P-Value 

Real - Non-
Private 

0.7207 7.1518e-07 0.5279 9.35794e-04 0.6973 2.2950e-06 

Real - 
Private 

0.6123 7.21008e-
05 

0.6517 1.6644e-05 0.6893 3.3310e-06 

  630 
 631 
  632 
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Supplemental Table 2. Spearman Correlation between variable importance scores (Random 633 
Forests) and model coefficients (Support Vector Machine and Logistic Regression) for the 634 
MIMIC critical care data. 635 

  Random Forest Support Vector 
Machine 

Logistic Regression 

  Correlation P-Value Correlation P-Value Correlation P-Value 

Real - Non-
Private 

0.4059 0.00566 0.2952 0.04894 0.4268 0.00345 

  636 
 637 
 638 
 639 
 640 
 641 
 642 
 643 
 644 
 645 
 646 
  647 
 648 
 649 
 650 
 651 
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