Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Cell-free and in vivo characterization of Lux, Las, and Rpa quorum activation systems in E. coli

View ORCID ProfileAndrew D. Halleran, Richard M. Murray
doi: https://doi.org/10.1101/159988
Andrew D. Halleran
1Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Andrew D. Halleran
Richard M. Murray
1Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
2Control and Dynamical Systems, California Institute of Technology, Pasadena, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Synthetic biologists have turned towards quorum systems as a path for building sophisticated microbial consortia that exhibit group decision making. Currently, however, even the most complex consortium circuits rely on only one or two quorum sensing systems, greatly restricting the available design space. High-throughput characterization of available quorum sensing systems is useful for finding compatible sets of systems that are suitable for a defined circuit architecture. Recently, cell–free systems have gained popularity as a test-bed for rapid prototyping of genetic circuitry.

We take advantage of the transcription-translation cell-free system to characterize three commonly used Lux-type quorum activators, Lux, Las, and Rpa. We then compare the cell-free characterization to results obtained in vivo. We find significant genetic crosstalk in both the Las and Rpa systems and substantial signal crosstalk in Lux activation. We show that cell-free characterization predicts crosstalk observed in vivo.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted July 07, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Cell-free and in vivo characterization of Lux, Las, and Rpa quorum activation systems in E. coli
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Cell-free and in vivo characterization of Lux, Las, and Rpa quorum activation systems in E. coli
Andrew D. Halleran, Richard M. Murray
bioRxiv 159988; doi: https://doi.org/10.1101/159988
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Cell-free and in vivo characterization of Lux, Las, and Rpa quorum activation systems in E. coli
Andrew D. Halleran, Richard M. Murray
bioRxiv 159988; doi: https://doi.org/10.1101/159988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Synthetic Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4237)
  • Biochemistry (9151)
  • Bioengineering (6788)
  • Bioinformatics (24034)
  • Biophysics (12142)
  • Cancer Biology (9550)
  • Cell Biology (13798)
  • Clinical Trials (138)
  • Developmental Biology (7643)
  • Ecology (11719)
  • Epidemiology (2066)
  • Evolutionary Biology (15521)
  • Genetics (10654)
  • Genomics (14336)
  • Immunology (9495)
  • Microbiology (22870)
  • Molecular Biology (9113)
  • Neuroscience (49070)
  • Paleontology (355)
  • Pathology (1485)
  • Pharmacology and Toxicology (2572)
  • Physiology (3851)
  • Plant Biology (8340)
  • Scientific Communication and Education (1472)
  • Synthetic Biology (2299)
  • Systems Biology (6198)
  • Zoology (1302)