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Abstract. Next generation sequencing technologies have made RNA sequenc-
ing widely accessible and applicable in many areas of research. In recent years, 
3rd generation sequencing technologies have matured and are slowly replacing 
NGS for DNA sequencing. This paper presents a novel tool for RNA mapping 
guided by gene annotations. The tool is an adapted version of a previously de-
veloped DNA mapper – GraphMap, tailored for third generation sequencing da-
ta, such as those produced by Pacific Biosciences or Oxford Nanopore Tech-
nologies devices. It uses gene annotations to generate a transcriptome, uses a 
DNA mapping algorithm to map reads to the transcriptome, and finally trans-
forms the mappings back to genome coordinates. Modified version of 
GraphMap is compared on several synthetic datasets to the state-of-the-art 
RNAseq mappers enabled to work with third generation sequencing data. The 
results show that our tool outperforms other tools in general mapping quality. 

Keywords: RNA, transcriptome, gene annotations, RNA mapping, RNA 
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1 Introduction 

The advent of Next Generation Sequencing (NGS) methods has popularized se-
quencing in various fields of research such as medicine, pharmacy, food technology 
and agriculture. Compared to the already established Sanger sequencing, NGS was 
much cheaper and much faster, while boasting similar accuracy but with significantly 
shorter read length. This short read length presented (and still presents) a serious ob-
stacle for DNA data analysis, especially for larger genomes with larger and more 
numerous repetitive regions. The need for longer reads that could solve some of the 
DNA data analysis problems resulted in the development of several new sequencing 
technologies, jointly called “third generation sequencing technologies”. 

The first of the new technologies producing longer reads was developed by Pacific 
Biosciences (PacBio) and named Single Molecule Real Time (SMRT) sequencing. 
Pacbio technology produces reads with length up to a hundred thousand base pairs, 
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but which also have much higher error rate (~10-15%) compared to latest NGS tech-
nologies (~1%) [1,2]. 

Oxford Nanopore Technologies (ONT) presented their portable sequencer in 2014. 
The MinION fits in average person’s hand and is connected to a personal computer 
through an USB port. Read lengths it produces are similar if not higher to those of 
PacBio SMRT technology with the longest read reported over 200kbp long. Reported 
error rates for latest R9.4 chemistry are also comparable with PacBio technology: 
~10% for 2D reads and 15-20% for lower quality 1D reads 
(http://lab.loman.net/2016/07/30/nanopore-r9-data-release). It has been shown that 
even on older chemistry R7.3, bacterial genomes can be successfully assembled using 
solely ONT MinION reads [3,4]. 

Aside from DNA sequencing, NGS also enabled RNA sequencing using sequenc-
ing-by-synthesis approach. While 3rd generation sequencing technologies are rapidly 
taking over their share of DNA sequencing market, due to the fact that read length is 
less important for RNA data analysis, RNA sequencing is still predominately done 
using NGS. However, it seems likely that at least some aspects of RNA analysis 
would benefit from increased read length. Some studies have shown that, even within 
NGS, longer reads improve mappability and transcript identification [5,6]. Long reads 
also enable improved “split-read” analyses so that various types of structural changes 
can be more easily recognized [7]. However, together with longer read length, both 
established third generation sequencing technologies bring a significant increase in 
error rate.  

Currently used methods require RNA to be converted to cDNA prior to sequenc-
ing. This process has been show to introduce many biases and artefacts that interfere 
with proper characterization and quantitation of transcripts. Company Helicos (bank-
rupt since 2012) tried to address this using proprietary single molecule Direct RNA 
Sequencing (DRSTM) technology [8]. At the end of 2016, ONT also presented their 
own direct RNA sequencing technology [9] which could represent a great boost for 
third generation RNA sequencing.  

RNA read alignment in which RNA sequencing reads are mapped either onto a ge-
nome or a transcriptome is a crucial step of most RNA analysis pipelines. If per-
formed with high precision, this step can cover up faulty quality control and make 
subsequent gene and isoform abundance estimation steps much easier and much more 
accurate. 

RNA alignment tools can be divided into two groups. De novo aligners map RNA 
reads to the reference genome without any prior information on gene annotations. On 
the other hand, guided splice aligners use known gene annotations to guide the map-
ping process and to calculate gene or isoform abundance. Since guided splice align-
ers, such as RUM [10], already use annotations in the mapping process, they cannot 
be used to identify new splice junctions. Some de novo splice aligners first perform 
initial read mapping trying to discover exon junctions, and in the second step perform 
guided mapping trying to improve the results. Examples of such aligners are GSNAP 
and GMap [11,12], MapSplice [13], TopHat2 [14] and HISAT2 [15]. BBMap [16] 
can be used as a DNA aligner as well as an RNA aligner. It uses short sequences 
called kmers to align reads directly to a genome (spanning introns) or a transcriptome. 
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It claims support for both ONT and PacBio reads. BBMap does not use any heuristics 
to find splice sites. Aside from BBMap, STAR [17] and GMap [18] (part of the same 
package as GSNAP) also claim support for PacBio data (but not for ONT data). De-
tailed instructions for using STAR and GMap with PacBio IsoSeq data are even avail-
able on PacBio GitHub pages (https://github.com/PacificBiosciences/cDNA_primer/). 

Only a few RNA aligners claim support for third generation sequencing data, and 
only one of them specifically for ONT data. However, there are several available 
DNA aligners with support for long erroneous reads, such as BWA-MEM [19], Min-
imap [20] or GraphMap [21]. The idea that naturally occurs is, instead of using an 
RNA splice aligner to map RNA reads to a genome, to use a DNA aligner to map 
RNA reads to a transcriptome. This is the idea that we are trying to explore in this 
paper. In here we present an updated version of GraphMap that uses given annota-
tions to generate a transcriptome, and then maps RNA reads to the generated tran-
scriptome using a DNA mapping algorithm. Afterwards, the mapping results are 
translated back into the genome coordinates. 

2 Methods 

GraphMap is one of the first DNA mapping tools designed for long and erroneous 
reads, namely for PacBio and ONT data. We have recently updated it to support guid-
ed RNA spliced alignment. GraphMap takes a reference, gene annotations in GTF 
format and RNA reads to calculate the alignements. Due to the need for gene annota-
tions, at this time GraphMap cannot be used for de novo spliced alignment. 

2.1 Guided splice alignment with GraphMap 

Figure 1 shows the process of RNA mapping with GraphMap. In the first step, giv-
en annotations and reference are used to generate a transcriptome. In the second step, 
GraphMap is used to map RNA reads to the transcriptome. Since initial alignments 
are calculated for the transcriptome, there is no need to consider spliced alignments 
and alternative gene splicing. In the third and final step, initial alignments on the tran-
scriptome are transformed (again using given annotations and reference) back to the 
genome coordinates, and resulting genome alignments are output to the user. In this 
way¸, we can leverage the mapping quality of a proven DNA aligner designed for 
long and erroneous reads without the need for additional computation to determine 
exon-intron junctions.  

While DNA alignment tools have already been used for RNA mapping to tran-
scriptome, to the best of our knowledge this is the first time the whole process has 
been wrapped within a single program conveniently presenting the alignments to the 
user in genome space. 
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2.2 Test datasets and data preparation 

To be able to accurately assess the precision and quality of an aligner, read align-
ments must be compared to read origins. Since read origins are not reliably known for 
real data, we have decided to base our tests on synthetic (simulated) datasets. At the 
time of designing the experiments available RNA datasets obtained by third genera-
tion sequencing technologies were predominately from PacBio sequencers. Because 
of this, together with the fact that an appropriate simulator for ONT reads was not 
available, we decided to base our tests on PacBio technology. 

Figure 1 Guided RNA splice alignment with GraphMap 
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To simulate RNA reads, we used a PacBio DNA simulator PBSIM [22]. Since 
PBSIM is a DNA simulator, to simulate RNA reads it was applied to a transcriptome 
generated from gene annotations. The number of transcripts from which the reads 
were generated was chosen based on real gene expression information. Annotations 
used to generate transcriptomes were downloaded from https://genome.ucsc.edu/. 
Gene expression information used to determine the number of transcripts for simula-
tion were downloaded from http://bowtie-bio.sourceforge.net/recount/. 
Test datasets were created from the following organisms: 

- Saccharomyces Cerevisiae S288 (baker’s yeast) 

- Drosophila Melanogaster r6 (wine fly) 

- Homo Sapiens GRCh38.p7 (human) 

Reference genomes for all organisms were downloaded from 
http://www.ncbi.nlm.nih.gov. For human genome, only chromosome 19 was used, to 
keep the dataset smaller and to keep the testing time within appointed time limit. 
 

Downloaded references, gene annotations and gene expression files were used to 
generate three synthetic test datasets. Basic information on them is shown in Table 1. 
Datasets are of different size to keep the general coverage roughly equal and because 
used reference genomes vary in size.  
 
Table 1 Test dataset statistics 

Data 
set 

Organism Tech-
nology 

Size No. 
genes 

No. reads 

1 S. Cerevisiae PacBio 400 MB 6000 185000 

2 D. Melanogaster PacBio 1.4 GB 7000 412000 

3 Human, chr19 PacBio 200 MB 1520 84000 

 
PBSIM model for CLR reads was used for simulations, and parameters were set for 
PacBio ROI (Reads of Insert). Mean match rate was set to 86%, mean read length was 
set to 3000 base pairs and error type ratio was set to 47:38:15 (Inser-
tions:Deletions:Mismatches). 

2.3 Comparison with known tools 

GraphMap RNA mapping was compared to 3 splice aligners that boast support for 
third generation sequencing data: STAR, GMap and BBMap. Since GMap and STAR 
are able to use information on gene annotations to improve maping results, it was 
provided for them. 
 

GraphMap: GraphMap was downloaded from GitHub repository 
https://github.com/isovic/graphmap. Version 0.5.0 was used. GraphMap was run with 
default parameters. Annotations were passed to GraphMap together with other param-
eters (option --gtf). 
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STAR: STAR version 2.5.2b was downloaded from GitHub repository: 
https://github.com/alexdobin/STAR. It was run with parameters suggested at Bioinfx 
study: Optimizing STAR aligner for Iso Seq data from PacBio GitHub pages 
(https://github.com/PacificBiosciences/cDNA_primer/wiki/Bioinfx-study:-
Optimizing-STAR-aligner-for-Iso-Seq-data). Annotations were passed on to STAR 
during index creation (option --sjdbGTFfile). Index created using both reference and 
annotations was used for mapping. 

GMap: GMap version 2016-11-07 source code was downloaded from 
http://research-pub.gene.com/gmap/. GMap was used with default parameters. Anno-
tations were used to create a map (index) file using program iit_store, which was then 
added to the appropriate folder in GMap database and used during the mapping (-m 
parameter). 

BBMap: BBMap version 35.92 was downloaded from 
https://sourceforge.net/projects/bbmap/. Script mapPacBio.sh was used, for mapping 
long reads. Prior to mapping reads were converted to FASTA format (originally in 
FASTQ format) using samscripts tool (https://github.com/isovic/samscripts). The 
mapPacBio.sh script was then run with the option fastareadlen set to a value 
appropriate for each dataset. Since BBMap is currently not able to use information on 
gene annotations, it was tested without it, as a de novo splice aware mapper. 

 
Alignment results were evaluated by comparing them to MAF files containing in-

formation on read origins generated by PBSIM as a part of simulation. Evaluation 
was performed using a Process_pbsim_data.py script which is part of RNAseqEval 
package downloaded from: https://github.com/kkrizanovic/RNAseqEval. The script 
takes as input aligner output in SAM format, gene annotations in GTF or BED format 
and a folder containing files generated by PBSIM.  

For each aligned read, the script finds its origin on the reference genome and com-
pares it to the alignment calculated by the aligner. A small error in position of five 
bases is tolerated. The script outputs summary information on how many reads were 
accurately mapped to their chromosome, strand and position of origin. 

Besides statistics provided by Process_pbsim_data.py script, an average match rate 
for each alignment file was also calculated using errorrates.py script from 
https://github.com/isovic/samscripts. 

3 Results 

Table 2 shows the evaluation results. Column Mapped shows the number of reads 
each aligner reported as mapped (not necessarily to the right position). Column 
Match rate shows the percentage of bases that are the same as the corresponding 
bases on the reference. This can be simplified as the percentage of correctly mapped 
bases. Column Both ends shows the percentage of reads for which the alignment 
correctly matches the beginning and the end of the read origin. Column Hit all shows 
the percentage of reads for which the alignment overlaps each exon from the read 
origin. Column Hit one shows the percentage of reads for which the alignment over-
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laps at least one exon from the read origin. All values (except Match rate) are ex-
pressed as a percentage of the initial number of reads in a dataset. 

 
Table 2 Aligner evaluation results 

Dataset Aligner Mapped Match 

rate 

Both ends Hit all Hit one 

1 STAR 49.0% 93.7% 21.6% 46.7% 47.1% 

BBMap 91.4% 92.5% 48.2% 87.0% 88.1% 

GMap 89.1% 92.3% 40.7% 84.7% 85.7% 

GraphMap 97.4% 91.9% 51.3% 93.5% 94.1% 

 

2 STAR 38.2% 94.0% 4.1% 32.1% 35.2% 

BBMap 84.5% 89.9% 10.5% 54.4% 78.4% 

GMap 92.0% 92.0% 8.6% 73.0% 85.4% 

GraphMap 97.3% 91.8% 10.1% 82.0% 91.3% 

 

3 STAR 37.5% 94.3% 3.9% 33.1% 35.7% 

BBMap 64.3% 86.2% 10.0% 26.8% 61.2% 

GMap 88.3% 91.8% 8.0% 70.0% 83.8% 

GraphMap 97.9% 91.8% 9.5% 85.7% 94.5% 

 
Column Both ends represents the reads that were mapped very accurately. Column 

Hit one represents the reads that are mapped to a correct general area, but the map-
ping is not necessarily accurate or captures the spliced nature of reads. Column Hit all 
represents reads that are mapped to the correct general area and whose mapping cap-
tures their spliced nature, but is not necessarily very accurate. 

The results clearly show that the updated version of GraphMap outperforms other 
RNA mapping tools in general mapping quality, having the best values in Hit all and 
Hit one columns for all datasets. It manages to cover all exons of the read origin for 
over 80% of reads on all datasets, and for over 90% on some. Average match rate is 
slightly lower compared to STAR on all datasets, and to GMap on datasets 1 and 2, 
and to BBMap on dataset 1. However, GraphMap manages to correctly map signifi-
cantly more reads and lower match rate could be the result of successfully mapping 
lower quality reads, which other aligners were unable to map. 

GraphMap also has the best or the second-best value for Both ends column on all 
datasets, however, all mapping tools map relatively small percentage of reads within 
the allowed error of five bases from the beginning and the end of the origin. Because 
of this, we believe that this value is not suitable for comparison. It is possible that 10-
15% error rate is too high to achieve such highly accurate mapping. 

Dataset 1 is based on baker’s yeast. It has very few spliced genes and almost no al-
ternatively spliced genes, and is the easiest to map. All aligners except STAR obtain 
good results on it, and even manage to map 40-50% of the reads very accurately (col-
umn Both Ends). Dataset 2 is based on wine fly. It is more complex than dataset 1, 
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with many spliced genes and some alternatively spliced ones. All mappers perform 
less well on it, and high accuracy mapping drops to 10% of reads and below. 
GraphMap and GMap still have reasonably good results, while BBMap starts to fall 
behind managing to hit all exons for only a little over 50% of the reads. Dataset 3 is 
based on chromosome 19 of human genome. All the genes are spliced and about 60% 
of them have alternate splicing. On this dataset GraphMap and GMap still perform 
reasonably well, while BBMap only manages to hit a rough area of the read origin for 
most of the reads. It is interesting to note that GraphMap obtains even slightly better 
results than on dataset 2. 

Looking at the results presented in Table 2, STAR shows the lowest mapping qual-
ity of all tested mappers. It maps the least reads by a large margin, however, Match 
rate of the mapped reads is the highest. This could be due to STAR being able to map 
only the highest quality reads, which have the least errors or to STAR mapping only 
higher quality parts of reads, clipping lower quality starting and ending sequences. 
BBmap manages to get reasonable results, better than STAR, even without gene an-
notations. GMap shows the second best mapping results, having good results on all 
datasets. 

4 Conclusion and future work 

While third generation sequencing technologies are already well established for 
DNA sequencing, their application for RNA sequencing is still rather rare. However, 
with the advances in third generation sequencing technology, their more widespread 
use is only a matter of time. Currently, very few RNA aligners claim support for long 
and erroneous reads, and when put to test perform with varying success. The aim of 
this paper was to demonstrate another approach to mapping of third generation RNA 
sequencing data. The idea is to use an appropriate DNA aligner and gene annotations 
to map RNA reads to a transcriptome and then to transform the mapping results back 
to genome coordinates. While other DNA aligners could also be used for mapping 
RNA reads to a transcriptome, to the best of our knowledge GraphMap is the first that 
allows it to be done seamlessly, performing all necessary transformations internally, 
and the first to transform mapping back into genome coordinates, enabling their easy 
use for further analysis. 

The research presented in this paper demonstrates that the idea is very feasible. 
Updated GraphMap clearly outperforms other tested splice aware aligners on all da-
tasets. The results suggest that by implementing splice aware mapping logic into a 
DNA mapper which works well with third generation sequencing data could also 
work well for de novo RNA spliced mapping. 

The results show that none of the tested RNA mapping tools can obtain high map-
ping accuracy, which could be due to the high error of third generation sequencing 
data. To further improve mapping accuracy, new approaches might be needed, such as 
error correcting the reads prior to the mapping. 
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