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Abstract  

NMDA-receptor antibodies (NMDAR-Ab) cause an autoimmune encephalitis with a diverse range of 
electroencephalographic (EEG) abnormalities. NMDAR-Ab are believed to disrupt receptor function, 
but how blocking this excitatory neurotransmitter can lead to paroxysmal EEG abnormalities – or even 
seizures – is poorly understood. Here, we show that NMDAR-Ab change intrinsic cortical connections 
and neuronal population dynamics to alter the spectral composition of spontaneous EEG activity, and 
predispose to paroxysmal EEG abnormalities. Based on local field potential recordings in a mouse 
model, we first validate a dynamic causal model of NMDAR-Ab effects on cortical microcircuitry. Using 
this model, we then identify the key synaptic parameters that best explain EEG paroxysms in paediatric 
patients with NMDAR-Ab encephalitis. Finally, we use the mouse model to show that NMDAR-Ab-
related changes render microcircuitry critically susceptible to overt EEG paroxysms, when these key 
parameters are changed. These findings offer mechanistic insights into circuit-level dysfunction induced 
by NMDAR-Ab. 
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Introduction  

Molecular disruptions of synaptic function have recently emerged as important causes of neurological 
disorders 1. For example, antibodies to N-methyl-D-aspartate receptors (NMDAR-Ab) have been 
identified as an important, treatable cause of autoimmune encephalitis 2, with a particularly high 
incidence in children who make up approximately 40% of patients. Patients with NMDAR-Ab 
encephalitis show a diverse range of associated symptoms; including behavioural changes, movement 
disorders and seizures 3,4. Important aspects of the clinical presentation are electroencephalography 
(EEG) abnormalities, which have been reported in up to 90% of patients undergoing EEG monitoring; 
between 20-60% of patients also have overt epileptiform discharges or electrographic seizures 5,6. While 
there are EEG features that are thought to be relatively specific for NMDAR-Ab encephalitis (e.g. 
extreme delta brush) 6, the more common EEG abnormalities are diverse and non-specific, with global 
abnormalities broadly associated with more severe disease 7,8. 

At the whole organism level, NMDAR-Ab cause an increased seizure susceptibility: Passive transfer of 
patient immunoglobulin (IgG) containing NMDAR-Ab into a mouse model causes increased 
susceptibility to chemically induced seizures 9. NMDAR-Ab directly affect glutamate transmission 
through reversible loss of NMDARs, resulting in a reduction of miniature excitatory post synaptic 
currents (mEPSCs) in brain slices 10,11. NMDAR hypofunction is also a hallmark of psychiatric 
conditions, such as schizophrenia and acute psychosis 12,13 – whose clinical features resemble the 
neuropsychiatric and behavioural symptoms also seen in NMDAR-Ab encephalitis. 

Linking NMDA receptor hypofunction at the cellular level, and a predisposition to seizures at the 
systemic scale is challenging. In the simplified view of epileptic seizures as a consequence of excitation-
inhibition imbalance 14, one would expect NMDAR hypofunction to be associated with a reduction of 
excitation, thus a decrease in seizure susceptibility. Yet at the level of neuronal ensembles, synaptic 
molecular changes may have a multitude of different emergent effects depending on their effects on 
both excitatory and inhibitory components of the neuronal circuit. In relation to NMDAR, observations 
in a range of experimental models motivate several mechanistic hypotheses explaining the effects of 
NMDAR hypofunction: These include (i) altered excitatory dynamics with a reduction in late excitatory 
post-synaptic potential components 11; (ii) secondary neurotoxicity, reducing the number of functional 
excitatory connections 15; (iii) a reduction of cortical inhibitory interneuron activity 16. Furthermore, 
paradoxical changes in excitatory and inhibitory transmission – resulting from maladaptive homeostatic 
changes – have been proposed as underlying NMDAR-Ab associated abnormalities at different 
temporal scales 10.  

Relating observations of pathological brain dynamics to these specific hypotheses is challenging. In a 
highly non-linear dynamic system, such as the brain, the link between synaptic abnormalities and whole 
brain responses is seldom intuitive or predictable. Neuronal systems are hierarchically structured and 
each observational scale constrained by larger scale processes, as well as interacting with emergent 
properties arising from smaller scales 17. Some of these multi-scale dynamics can be successfully 
captured in computational models of neural population dynamics, which have been integrated into 
validated analytic frameworks, such as dynamic causal modelling (DCM) 18–20.  

DCM rests on ‘mesoscale’ neural mass models that capture the average behaviours of neural 
populations at roughly the scale of a cortical column – the model used here is representative of generic 
features of layered cortical architectures and is often referred to as the canonical microcircuit or CMC 
21. The parameters of these models (which describe features such as synaptic connection strengths, 
and population response dynamics) can be fitted to macroscale neurophysiological recordings such as 
EEG, or LFP recordings and competing models can be ranked according to their model evidence. 

Here, we report the results of a dynamic causal modelling analysis of (a) changes in spontaneous 
(resting state) activity in a subacute mouse model of NMDAR-Ab encephalitis, and (b) abnormal EEG 
paroxysms observed in a series of paediatric patients with established NMDAR-Ab encephalitis. In a 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160309doi: bioRxiv preprint 

https://doi.org/10.1101/160309
http://creativecommons.org/licenses/by/4.0/


two-stage analysis, we first model the NMDAR-Ab effect in the mouse model; using DCM to identify a 
minimal set of synaptic parameters required to produce the NMDAR-Ab effect on observed LFP 
recordings. Using estimates of fluctuations in the parameters identified – based on patient EEG data – 
we then asked whether the presence of NMDAR-Ab alters network responses to estimated parameter 
fluctuations. This modelling integrates evidence from patients and experimental animals and provides 
direct evidence linking microscale observations on NMDAR-Ab-associated dysfunction with dynamic 
brain phenotypes. This approach enabled us to ask whether NMDAR-Ab-associated cortical 
dysfunction can be explained by changes in inhibitory or excitatory cortical coupling, or the synaptic 
dynamics of cortical transmission. Furthermore, we were able to test in silico whether (a) paroxysmal 
abnormalities seen in human patients can be explained by intrinsic, normal fluctuations in cortical 
coupling – on the background of pathological cortical microcircuitry – or (b) whether they are 
representative of pathological fluctuations per se. This distinction may have implications in terms of the 
appropriate treatment of paroxysmal EEG abnormalities – either through resetting the system, or 
controlling abnormal fluctuations.  
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Results 

NMDAR-Ab alter the dynamic response to acute chemoconvulsants in mice 

Cortical dysfunction associated with NMDAR-Ab was tested in C57BL/6 mice using a two-by-two 
design. This design tested for the effects of NMDAR-Ab (delivered via intracerebroventricular injection), 
the acute chemoconvulsant pentylenetetrazole (PTZ, delivered via a later intraperitoneal injection), and 
their interaction. LFPs were recorded wirelessly in freely behaving animals and 45 minutes of recordings 
pre- and post PTZ injection of 8 NMDAR-Ab positive and 5 control animals were included for the 
analysis reported here.  

 

 

  
Figure 1. NMDAR-Ab alter the spectral composition of resting state activity following PTZ. Average Fourier spectra of 
LFP recordings of endogenous activity in mice are shown. (A) In control animals, PTZ injections cause a small decrease in 
low frequency power. (B) In NMDAR-Ab positive IgG treated animals, PTZ causes a profound increase in low frequency 
power, which is also visible as high power slow waves in segments; largely without overt epileptiform activity (example shown). 
Average Fourier spectra across animals are shown for 45 minute recordings pre- and post-PTZ injections, shading indicates 
the 95% confidence interval. Example 5s LFP segments are also shown for individual animals pre- and post-PTZ injections.   

 

Antibodies alone caused a moderate suppression of the LFP signal across low frequency bands (delta 
and theta range) in the NMDAR-Ab positive mice. However, additional exposure to PTZ revealed a 
marked difference between NMDAR-Ab positive and control mice, with a large increase of low 
frequency (delta-band, 1-4Hz) power in the antibody positive treated mice only (Fig 1). Analysis of 
variance (ANOVA) revealed a significant main effect of NMDAR-Ab on log-delta-band power [F(1,4601) 
= 9.67; p = 0.002]; and a significant interaction between NMDAR-Ab and PTZ exposure [F(1,4061) = 
85.05; p < 0.001]. A PTZ-induced increase in paroxysmal fast activity consistent with epileptic seizures 
was observed in the NMDAR-Ab positive IgG treated mice compared to control animals, which has 
previously been reported elsewhere 9. An example of the induced, non-epileptiform slow activity is seen 
in the bottom panel of Fig 1B. These slow wave cortical dynamic abnormalities were further analysed 
in the modelling below.  
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Figure 2. Synergistic changes in synaptic coupling explain the effects of PTZ and NMDAR-Ab. (A,B) DCMs were fitted to 
sliding window power spectral density summaries of LFP recordings separately for control, and NMDAR-Ab positive animals. Top 
panels show the observed power spectra over time, with model fits shown in the lower panels. (C) A second-level general linear 
model with was used to estimate parameter changes associated with NMDAR-Ab exposure, PTZ, and their interaction. The 
regressors for the three main effects are shown. (D) These experimental effects are associated with parameter changes across 
all populations of the canonical microcircuit (CMC) neural mass model. The left panel illustrates the population specific synaptic 
time constants that parameterise the temporal dynamics of post-synaptic responses within that population. The right panel 
indicates the connections between populations, which are excitatory, inhibitory connections between populations, or self-inhibitory 
connections. The centre panel shows how each of the parameters is modulated by each of the experimental effects. The strongest 
effects are caused by PTZ, with the biggest associated changes in sp and ss time constants and excitatory connection strength 
4. These changes are further potentiated by NMDAR-Ab exposure. Error bars indicate Bayesian 95% confidence intervals. 
 
sp: superficial pyramidal cells, ss: spiny stellate cells, ii: inhibitory interneurons, dp: deep pyramidal cells 

 

NMDAR-Ab potentiate PTZ-induced effects in cortical microcircuitry in mice 

To explain the observed differences in spontaneous activity, a hierarchical dynamic causal model was 
used to infer parameter changes associated with the experimental variables over time (i.e. NMDAR-Ab 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160309doi: bioRxiv preprint 

https://doi.org/10.1101/160309
http://creativecommons.org/licenses/by/4.0/


exposure, PTZ infusion, Antibody-PTZ interaction). In brief, a sliding window (length = 30s, step size = 
15s) was used to estimate the mean power-spectra over successive time points. Each time window 
was then modelled as the steady state output of a canonical microcircuit (CMC) model 21 with fixed 
synaptic parameters. By repeating this analysis over windows, we could then identify fluctuations in 
synaptic parameters that corresponded to the experimental interventions. Across windows, the 
evolution of spectral patterns was captured well for all experimental conditions (Fig 2A-B). To infer 
experimental effects associated changes in the DCM parameters, the sequence of parameter estimates 
was then modelled using a parametric empirical Bayesian (PEB) approach 22. Here, slow fluctuations 
of cortical coupling were modelled as between-window changes in the synaptic parameters estimated 
within-window (see Papadopoulou et al. 23 for a worked example). We included three main experimental 
effects of interest: (a) NMDAR-Ab, (b) PTZ, and (c) an NMDAR-Ab x PTZ interaction term (Fig 2C). 

 

 
Fig 3. NMDAR-Ab push the neuronal ensemble into high delta-band power regions of reduced parameter space. 
Parameter variations between time windows are projected onto the first principal component of (A) time constant changes 
consisting predominantly of superficial pyramidal cell, and spiny stellate cell changes, and (B) of connectivity strength changes 
consisting predominantly of spiny stellate to superficial pyramidal cell coupling changes. (C) Across this parameter space, 
simulations can predict spectral densities, of which log mean delta power is shown here (with selected centile isoclines shown). 
Individual time windows across the four conditions are then projected into the same reduced parameter space, showing an 
accumulation of NMDAR-Ab positive, post PTZ time window estimates in high delta ranges. (D) The distribution of time 
windows in parameter space is further illustrated with smoothed heat maps of parameter combination occurrence frequencies 
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over the same section of parameter space for control animals (left) and NMDAR-Ab positive animals (right). Estimates in 
NMDAR-Ab positive animals cross the 75th centile more frequently than in controls.  

 

The neuronal parameters that affect the spectral composition of spontaneous neuronal activity 
correspond roughly to the mechanistic hypotheses outlined above: (i) time constants of the neuronal 
populations τ describe the dynamics of neuronal population responses; (ii) excitatory coupling 
parameters ge describe the strength of excitatory between-population connections; (iii) inhibitory 
coupling parameters gi represent the strength of inhibitory between-population connections, whilst 
modulatory coupling parameters gm represent the strength of inhibitory self-connections 21.  

Spectral changes associated with NMDAR-Ab, PTZ exposure and the interaction were each associated 
with several parameter changes. The biggest effects were associated with PTZ exposure, with a 
decrease in the superficial pyramidal cell population time constant (i.e. a faster return to baseline after 
perturbation), an increase in the spiny stellate population time constant (i.e. a slower return to baseline 
after perturbation), and an increase in the excitatory connectivity from spiny stellate to superficial 
pyramidal cells. Notably those changes were further potentiated by NMDAR-Ab and the NMDAR-Ab x 
PTZ interaction (Fig 2D).   

 

Table 1. EEG features of NMDAR-Ab Encephalitis patients. Patients were selected from routine 
clinical service based on paroxysms identified on clinical EEG recordings 

ID Sex Age 
(years) 

EEG background EEG paroxysms 

N001 M 2 Normal Isolated slow waves 

N002 F 15 Normal Intermittent rhythmic slow, regional 
left frontal 

N003 F 9 Diffusely 
continuous slow  

Intermittent rhythmic slow, 
generalised, maximum bifrontal 

N004 F 1 Normal Runs of spike and wave complexes, 
generalised; Isolated sharp waves 

N005 F 3 Diffusely 
continuous slow  

Intermittent slow, generalised, 
maximum bifrontal 

N007 F 10 Diffusely 
continuous slow 

Intermittent slow, generalised 

N008 F 14 Diffusely 
continuous slow 

Near continuous spike and wave 
complexes in sleep, generalised, 
maximum right frontal (ESES) 

N009 F 11 Diffuse continuous 
slow 

Intermittent slow, generalised, 
maximum bifrontal 

 

Shifts in synaptic dynamics underlie emergence of low frequency power in mice 

We further investigated the effect of changes in synaptic parameters on the main spectral data feature 
of interest (i.e. delta-band power). For this, we first performed a principal component analysis over the 
slow (between time-window) fluctuations of time constants (Fig 3A) and connection strengths (Fig 3B), 
retaining the first principal component of each. This analysis showed that most of the variance over time 
can be explained by fluctuations in a small subset of parameters; specifically, the time constants of 
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superficial pyramidal and spiny stellate cells, and the excitatory coupling between them (as is apparent 
in the analysis in Fig 2).   

 

 
Figure 4. EEG paroxysms in NMDAR-Ab encephalitis patients are best explained as time constant fluctuations. (A) 
For each individual patient, 2s time windows containing spontaneous activity, short EEG paroxysms and where available 
longer rhythmic EEG activity were extracted. (B) These were source localised and ‘virtual electrode’ time traces extracted at 
the estimated cortical source. Normalised power spectral density averages across all time windows were then fitted using 
separate DCMs for each condition. (C) The normalised spectral output of fitted DCMs show near perfect overlap with the 
observed spectral densities. (D) For each individual, between-condition effects were estimated in a reduced hierarchical model 
of fluctuations in different subsets of parameters. Across these parametric empirical Bayesian summaries of individual 
participants, models explaining the spectral changes with fluctuations in time constants have an exceedance probability of > 
95%. 

 

We use these two components to project synaptic parameter estimates at each point in time (i.e. 
window) onto the two dimensions explaining most of the variance (i.e. one time constant component 
and one connection strength component). To characterise different locations in this parameter space – 
in terms of the neuronal dynamics generated by the parameters – we used the mean delta band power. 
This functional characterisation of parameter space is shown (in log-scale) with a colour code  and as 
isoclines indicating mean delta-band power centiles: see Fig 3C. Whilst there is variation in delta-band 
power associated with both the time constant (x-axis) and the connection strength (y-axis) parameters, 
the time constants have the greatest effect on delta power: The difference between controls and 
NMDAR-Ab positive animals in the delta-band power post-PTZ is largely conferred by shifting the time 
constant component, causing it to cross the 75th delta-band power centile much more frequently than 
in controls (Fig 3D). This differential effect of PTZ can be seen clearly by comparing the orange and 
purple dots in Fig 3C. 
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EEG paroxysms in patients are caused by fluctuations in synaptic dynamics  

To identify which synaptic parameters cause paroxysmal EEG abnormalities commonly observed in 
NMDAR-Ab encephalitis, we used the above CMC model to perform a DCM analysis of 8 paediatric 
cases; for which EEG recordings were available and contained visually apparent EEG paroxysms. 
Briefly, routine visual EEG analysis was performed to identify paroxysmal abnormalities by two EEG-
trained clinicians (RER, GC, see Tab 1). For each patient, 2s time windows containing spontaneous 
activity, short isolated paroxysms, or rhythmic / ongoing epileptiform activity were extracted and used 
for further analysis (Fig 4A)  

 

 

Fig 5.  
 
NMDAR-Ab sensitise the 
microcircuit to intrinsic 
fluctuations in time constants.  
 
Here, we apply a summary 
component of the time constant 
fluctuations estimated from human 
patients to a cortical microcircuit 
model derived from the control mice 
(left), and the NMDAR-Ab positive 
mice (right).  
(A-B) The same fluctuations cause 
spectral outputs containing much 
higher relative delta power in the 
model estimated from NMDAR-Ab 
positive mice. (C) This figure shows 
log of mean delta power for a range 
of smoothly increasing time 
constant fluctuations. In the low 
parameter range (-2.5 to -1.5), there 
is a large jump in delta power, 
suggesting that there are two 
distinct dynamic states separated 
by small differences in parameter 
values. (D) Example 
reconstructions of time series for 
parameter values at two very close 
parameter values (p1 and p2) are 
shown for control and NMDAR-Ab 
positive models. The sudden 
increase in delta power is visible as 
paroxysmal change in the time 
series in the NMDAR-Ab positive 
context, whilst the control time 
series appear continuous. This 
sudden change in dynamics with a 
small change in parameter space is 
known as a phase transition. 

 

Cortical source estimation for the paroxysmal EEG activity was performed and ‘virtual electrode’ 
responses extracted from the most active sources 24. For each patient, DCMs were independently fitted 
to power spectral density averages of each available condition (e.g. background, short paroxysms, 
ongoing rhythmic activity, Fig 4B). Individually fitted DCMs (with near perfect model fits) (Fig 4C) were 
subsequently combined in (within-patient) between-condition hierarchical (PEB) models that explained 
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the condition specific differences with changes in synaptic time constants (τ), between-population 
inhibitory connections (gi), between-population excitatory connections (ge), or within population 
modulatory connections (gm). Across participants, models explaining spectral differences as arising 
from differences in time constants offer the best explanation of the virtual electrode data (with an 
exceedance probability of >95%, Fig 4D).  

NMDAR-Ab alter the response to intrinsic fluctuations in synaptic dynamics 

The DCM of human data provides us with an estimate of condition-specific changes in synaptic 
parameters. We extracted the first principal component of these changes across all conditions and 
subjects, and applied them to the control and the NMDAR-Ab positive mouse CMC model.  

The differences between the parameter estimates from the control and NMDAR-Ab positive model 
result in different spectral outputs; even when applying the same time constant changes. Overall, the 
NMDAR-Ab positive context results in higher delta-band power and less high frequency power (Fig 5A-
B). Crucially, delta power was higher in the NMDAR-Ab positive model across a wide range of time 
constant fluctuations (Fig 5C). Furthermore, small changes in the synaptic parameters identified with 
the patient data are caused large changes in delta power in, and only in, the NMDAR-Ab positive model. 
This is manifest as low frequency paroxysmal activity, when the synaptic parameters change slightly in 
the NMDAR-Ab positive model, but not the control (Fig 5D). Technically, this abrupt change in dynamics 
with a small change in parameters is known as a phase transition; suggesting that antibody-positive 
effects on synaptic coupling move the network towards a critical regime in which small fluctuations in 
synaptic time constants produce qualitatively different dynamics (i.e., paroxysmal EEG abnormalities). 
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Discussion  

The study presented here reveals common synaptic mechanisms underlying a range of 
electrophysiological disturbances associated with NMDAR-Ab in a mouse model and paediatric 
patients: NMDAR-Ab cause a shift in cortical synaptic parameters that is associated with increased low 
frequency oscillations and predisposes to the low slow wave paroxysms seen in the clinical EEG 
recordings.  

NMDAR-Ab are associated with high-amplitude low-frequency discharges  

NMDAR-Ab cause changes in the spectral composition of resting state LFP of the mouse strain tested. 
These differences are further revealed on additional exposure to PTZ, with a large PTZ-induced 
increase in mean delta power in the presence of NMDAR-Ab. The increased delta on the LFP in this 
mouse model is largely due to intermittent rhythmic slowing; without overt epileptic spikes. Previous 
analysis of seizure events show that NMDAR-Ab also lower the seizure threshold in these mice 9, but 
seizure events fall largely outside the frequency spectrum analysed here. These spectral changes are 
in keeping with the kind of abnormalities seen in NMDAR-Ab encephalitis, clinically – with background 
slowing with or without additional slow wave paroxysms.  

An increase in the power of slow frequency components in an EEG or LFP recording is thought to be 
associated with increased synchronisation of local cortical firing, which itself is regulated by a range of 
interacting cortical and subcortical systems (e.g. thalamocortical loops 25,26, brain stem monoamine 
arousal systems 27 and intrinsic cortical effects such as astrocytic regulation of synaptic function 28). 
Firing synchrony can occur physiologically (e.g. during sleep), can be associated with non-specific 
cortical dysfunction (e.g. in the context of an encephalopathy), or be a component of epileptic 
discharges (apparent in slow-wave component in spike-wave discharges) 29.  

Synchrony by definition is an emergent feature of population dynamics, rather than a property of any 
single neuron, but an increase in cortical synchrony may arise from a whole range of different neuronal 
coupling changes. Many of these can be captured in models that specifically model cortical 
microcircuitry at the mesoscale; i.e. as neuronal ensembles 21,30,31. The DCM approach adopted here 
uses this mesoscale modelling to identify the changes underlying the emergence of hypersynchronous 
slow wave activity, in the context of NMDAR-Ab.    

NMDAR-Ab cause laminar specific changes in cortical dynamics 

Dynamic causal modelling rests on neural mass modelling of coupled neuronal oscillators that are 
described using specific synaptic parameters (e.g. connection strengths, time constants, activation 
parameters) and that broadly resemble the laminar structure of the cortex. The neural mass model of a 
single electromagnetic source contains two pairs of coupled neuronal oscillators that support slower 
(deep oscillator: deep pyramidal cells, inhibitory interneurons) and faster (superficial oscillator: 
superficial pyramidal cells, spiny stellate cells) activity 32. These population dynamics modelling cortical 
system (in this case, a single cortical column), with individual parameters that exert highly non-linear 
effects on the system is output. The parameterisation of these models is rooted in biophysical properties 
of individual neurons, but describe average characteristics of populations of functionally related 
neurons; i.e., composite properties emerging from the features of individual cells 21,30,31.   

At this mesoscale, PTZ and NMDAR-Ab produce synergistic effects that result in excessive synchrony 
not seen in other experimental conditions. Our results suggest that increases in low frequency power 
can be explained by a combination of: (1) an increase in superficial cortical excitatory coupling, largely 
associated with PTZ exposure, and (2) opposing changes in the dynamics of the superficial oscillator 
pair (spiny stellate and superficial pyramidal cells, Fig 3). 

The changes in synaptic dynamics align time constants in a gradient along the CMC coupling chain, 
with the slowest time constants in the deep pyramidal cells, and fastest time constants in the superficial 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160309doi: bioRxiv preprint 

https://doi.org/10.1101/160309
http://creativecommons.org/licenses/by/4.0/


pyramidal cells – and gradual steps between. This reduces the stepwise difference in time constants 
along the CMC chain compared to the standard CMC configuration. This parameterisation allows a 
dominant frequency to resonate across – and recruit – the whole column, thus producing the high 
amplitude slow frequency patterns observed. Thus interestingly, slow wave activity appears to be under 
the control of the faster, superficial oscillator pair in the CMC model, with both NMDAR-Ab and PTZ 
having profound and relatively specific effects on their dynamics. This is in keeping observations from 
invasive recordings of slow wave activity in human patients with epilepsy, which implicate superficial 
cortical coupling in the regulation of slow wave sleep activity 33.  

 

Different molecular changes show converging effects at the neuronal population level 

The synaptic parameters of the CMC model employed in DCM are population summaries of a variety 
of cellular effects, encompassing emergent properties and multiple nonlinearities 34. Time constants at 
the population level are essentially descriptions of the dynamics of post-synaptic integration affected by 
multiple factors, such as background firing frequency, membrane conductance, intra- and extracellular 
ion composition, and the dynamics of receptor types present in the membrane to name but a few 35. 
Connection strengths at the population level summarise the effect one population has over another, 
and may include effects mediated via subpopulations within (e.g. self-connections are assumed to be 
mediated via local inhibitory interneuronal populations). Because a number of different effects may 
converge on the same population parameters – and individual molecular effects may only be expressed 
in certain conditions – the link between molecular change and population parameters is nontrivial.  

Exposure to NMDAR-Ab has been reported to cause a number of changes in the postsynaptic 
glutamate response, including a reduction in overall postsynaptic potential, a reduction in late 
postsynaptic currents, and a faster return to baseline 10,11. In intact neuronal circuits, NMDAR exert 
differential control over excitatory and inhibitory populations, leaving the populations differentially 
affected by NMDAR-blockade 16,36.  

PTZ is believed to act as an antagonist to γ-Aminobutyric acid type A (GABA-A) receptors by directly 
blocking ionophores 37. GABA-A receptors are fast inhibitory receptors with a wide-spread, region and 
cell-type specific set of post-synaptic effects 38. These include inhibitory post-synaptic potentials, but 
also inhibition of dendritic excitatory post synaptic potentials via extrasynaptic GABA-A receptors, which 
is particularly pronounced at the cortical pyramidal cells 39. In some neuronal cell types and at certain 
developmental stages GABA-A can cause excitatory post synaptic potentials 40, and GABA 
transmission can exert direct or indirect control over excitatory NMDAR-dependent synaptic 
transmission 41,42. 

With this range of different cellular effects, it is unlikely one can capture the breadth of NMDAR-Ab and 
PTZ related effects in a small subset of population model parameters. However, the effects on delta-
band power can be reproduced well with a few principal components; comprising largely just two main 
effects: (1) decreasing the time constants of superficial pyramidal cells relative to excitatory spiny 
stellate cells, and (2) increasing the excitatory coupling between spiny stellate and superficial pyramidal 
cells.  

There are a number of possible and convergent changes at the molecular level associated with 
NMDAR-Ab and PTZ exposure that could explain these population level effects. The time constant 
changes in superficial pyramidal cells may result from being switched towards (faster) AMPA mediated 
excitatory inputs (due to the NMDAR-Ab mediated internalisation of NMDAR) and a change in 
membrane conductivity (due to PTZ-mediated blocking of extrasynaptic GABA-A receptors). The 
change in excitatory connection, on the other hand, is consistent with a disinhibition of excitatory EPSPs 
under GABA-A blockade with PTZ (i.e. a block of so-called shunting inhibition) 39. 
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NMDAR-Ab sensitise the cortical column to spontaneous paroxysmal EEG  

In the patients with NMDAR-Ab encephalitis, there is no experimental control over NMDAR-Ab 
exposure, and our sample of patients is heterogeneous, representative of clinical practice (e.g. age, 
gender, timing of EEG, timing of initial diagnosis, etc). Moreover, these patients show a diverse range 
of paroxysmal, short-term changes in EEG dynamic patterns that are visually apparent, allowing us to 
probe spontaneous fluctuations of DCM parameters that may underlie discrete pathological brain 
states. 

Patient-specific modelling, as facilitated by DCM, allows inference on patient-specific parameters in a 
generic model of the cortical column. Thus applying DCM analysis to this diverse sample, one can 
access two types of results: (1) Qualitative: i.e., identify the parameters whose changes underlie the 
dynamic abnormalities seen in EEG; (2) Quantitative: i.e., establish the numerical range of parameter 
fluctuations that can be applied to other specified DCMs.  

Surprisingly, and despite the variety of EEG abnormalities described, consistently across patients, 
models with changes in time constants – i.e. synaptic transmission dynamics – best explained the 
observed transitions between background activity and paroxysms. Furthermore, we could summarise 
changes in these parameters along a single (principal component) axis. We used this component to 
enforce similar fluctuations in the fully specified DCMs derived from the mouse model analysis; asking 
whether the baseline context (i.e. the parameterisation derived from NMDAR-Ab positive or control 
animals) alters the impact of parameter changes of the magnitude observed in human patients.  

Indeed the dynamic responses of the two types of models are very different: In the context of NMDAR-
Ab, overall greater delta-band power is observed, and there are regimes of parameter space that 
contain boundaries between very different dynamic states 43. This structural instability underwrites 
phase transitions of the sort seen in seizure activity. In the control parameterisation, the same changes 
have a much less pronounced effect, and do not induce overt slow wave paroxysms. In short, it appears 
that paroxysmal EEG activity in patients may be best explained by normal fluctuations in synaptic time 
constants that occur in an abnormal regime of synaptic parameter space. 

Overall, these findings provide integrative evidence from human patients and a mouse model of 
NMDAR-Ab encephalitis suggesting that (1) NMDAR-Ab cause electrophysiological abnormalities via a 
small number of synaptic changes, which may lend themselves to targeted therapeutic interventions; 
e.g., by exploiting laminar and/or cell-type specific effects of transcranial current stimulation. 44 And (2) 
paroxysmal abnormalities can be explained by persistent baseline changes that render cortical 
microcircuitry particularly sensitive to (potentially normal) fluctuations in synaptic coupling. Future 
research may reveal whether similar approaches have diagnostic value when performed on patient 
EEGs alone.  

 

Limitations  

The modelling approach presented here allows unique insights into possible mechanisms underlying 
empirically observed phenomena. Although DCM has been applied to a wide variety of 
neurophysiological studies – and its validity has been assessed repeatedly 19,20,45 – there are certain 
limitations to the approach adopted here.  

First, the modelling can only be applied to existing data – this places restrictions on study design (e.g. 
pre-NMDAR-Ab exposure EEGs are not usually available from patients) and limit the approach to a 
subset of testable hypotheses. Second, like all inference, DCM is based on specific assumptions 
regarding the underlying neuronal architecture – all activity presented here is presumed to emerge from 
microcircuitry consistent with the CMC model, and only given this assumptions can we estimate the 
parameters and evidence for or against specific model configurations.  
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Most importantly, we have reduced a complex brain-wide pathology of interacting systems to changes 
in a cortical microcircuit. Thus, we are ignoring interactions between different cortical regions, as well 
as the influence of subcortical structures, such as thalamus and brain stem, which (especially in the 
context of encephalopathy and slow wave abnormalities) will exert a powerful influence over cortical 
states. Although these effects can be accommodated in the model as random effects, they are not 
modelled explicitly.  

 

Acknowledgments: We are grateful to the patients and their families for agreeing to contribute to this 
study. 
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Methods 

Collection and classical analysis of mouse LFP 

The mouse model and associated procedures have been previously described 9. Briefly, plasma with 
NMDAR-Ab (Immunoglobulin G, IgG) was obtained with informed consent from three female NMDAR-
Ab positive patients with neuropsychiatric features, movement disorder and reduced level of 
consciousness. Control IgG was purified from serum from two healthy individuals. C57BL/6 female mice 
aged 8-10 weeks were housed and examined according to ARRIVE guidelines and all analyses were 
performed with the observer blinded to injected antibody.  

Wireless telemetry transmitters (Subcutaneous transmitter A3028B-CC from Open Source Instruments 
Inc) were implanted in a subcutaneous pocket over the right flank. Two craniotomies were performed 
at 1mm lateral and 1mm caudal from bregma. Electrode screws were fixed into the drilled holes with 
dental cement. After a five-day monitored recovery period, eight microliters of purified IgG (patient, or 
control) was injected slowly into the left lateral ventricle through a single additional craniotomy made 
1mm left lateral and 0.45mm caudal from bregma.  

Mice were housed in a Faraday cage during wireless LFP data collection. To test seizure susceptibility, 
40mg/kg of PTZ was given intra-peritoneally and the mice were observed for 45 minutes following 
injection. The 45-minute time period immediately preceding PTZ injection was used as control segment.  

Raw LFP data was analysed in Matlab. Sliding-window (30s windows, 15s steps) Fourier estimates of 
power over frequency were used to statistically compare the different conditions. ANOVA over mean 
delta-band power (1-4Hz) was used to estimate the effects of the two main interventions (NMDAR-Ab, 
PTZ) and their interaction on LFP signal composition.  

 

DCM analysis of mouse LFPs 

Modelling of the mouse LFP recordings can be divided into the following steps (summarised in Fig 6). 
Dynamic causal modelling was performed using SPM12, an academic software package 
(www.fil.ion.ucl.ac.uk/spm). All analysis code and raw data are available online 
(https://github.com/roschkoenig/NMDAR_Encephalitis, requires Matlab 2014b or later and SPM12).  

1. Inversion of separate single-source DCM for each time window (performed on group-average 
data) 

2. Second level (PEB) model to explain parameter changes over time, based on experimental 
interventions 

3. Forward modelling to explore effects of parameter changes on specific output measures (e.g. 
delta power) 

Individual time windows were assumed to be relatively stationary within the 30s sliding time window in 
line with previous DCM analyses of EEG seizure activity 23,46. Each time window was modelled as 
originating from a single cortical source comprising four coupled neuronal populations (i.e. a single 
cortical column modelled as single CMC). DCM employs a standard variational Laplace scheme to fit 
the parameters of a specified neural mass model to empirical data 18, whilst also providing a (free 
energy) measure of the Bayesian model evidence. The combination of posterior parameter estimates 
and free energy subsequently allows for computationally efficient modelling of group effects across 
individual DCMs, further exploited with the PEB analysis 22.   

A second level model (PEB) was used to estimate parameter changes associated with the experimental 
modulations. Specifically, each time window was associated with a numerical value representing the 
absence or presence of NMDAR-Ab (0 or 1), the estimated PTZ concentration (range 0 to 1, modelled 
as first order kinetics after intraperitoneal injection), and an interaction term (range -1 to 1). PEB 
employs Bayesian model reduction based on the effects specified model parameters, effectively 
modelling between-window changes in parameter as a mixture of random effects and systematic 
modulation of each parameter by the main effects provided in the PEB model specification. Thus, 
inversion at the second (between-window) level provides posterior parameter estimates for first level 
model parameters (i.e. neuronal physiology) that are associated with second level parameters (i.e. 
experimental modulation) across the whole series of individual DCMs.  
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Fig 6. Modelling approach to mouse LFP recordings. Modelling was designed to extract relevant parameters (left hand 
panels), and then explore the effects of those on delta power (right hand panels). (A) For both pre- and post PTZ injections, 
45 minutes of LFP recordings were extracted for each mouse. A sliding window was used to extract a sequence of time 
windows for further analysis. (B) Power spectral densities were estimated for each time window, which are the basis for the 
DCM model fit. (C) Single-source DCMs comprising a single CMC model were fitted to each time window separately. (D) 
Using a parametric empirical Bayesian approach to fit a second level between-DCM general linear model we extracted 
parameter variations explained by specific experimental effects, and updated first level DCM parameters. (E) From the 
updated first level DCMs, we extracted all parameters and summarised them in two principal components over time constants 
and connection strengths, retaining the first component summaries of the fitted DCMs. (D) Starting from the baseline model 
specification, we applied the reduced (i.e. first principal component) summaries of the parameter changes to simulating cross 
spectral outputs of the neural populations, yielding a map of delta-power across the ensuing two dimensional parameter 
space. (G) We then applied quantitative parameter changes observed in patient EEGs (summarised as their first principal 
component) to the control, and NMDAR-Ab baseline model specifications to explore the effects of parametric fluctuations on 
spectral output. (H) To further illustrate the effects of parametric fluctuations, we applied and inverse Fourier transform to 
generate substitute time series – illustrating the nature of the changes in a time trace.   

 

The DCMs are fully specified models of spontaneous neuronal activity and can therefore be used to 
explore individual parametric effects on overall spectral output. Here, we utilise the parameter estimates 
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derived as the group mean in the PEB analysis as baseline. We then extract the first principal 
components of time constant, and connection strength variations across all individual time window 
DCMs (Fig 6E), providing a summary of covarying changes in parameters that explain most of the 
variance among samples. We then systematically vary the contribution of each of these two 
components in 300 discrete steps each around the baseline estimates. This yields 300*300 = 90,000 
parameterisations for a single source DCM, and for each of these the spectral output can be estimated. 
We can use this to visualise scalar output measures (e.g. log mean delta band power) across a section 
of a two-dimensional parameter space (Fig 6F). This combines the benefits of fitting generative (i.e. 
forward) models to empirical data (i.e. data features to model parameters), and exploring the effects of 
specific parameters on model output through forward modelling (i.e. model parameters to data features 
47,48).    

In a last step, we apply the first principal component of the parameter variations in time constants 
derived from the patient sample NMDAR-Ab positive and control baseline parameterisations of the 
DCM, to explore the condition specific responses of the cortical column parameterisation to fluctuations 
in the time constant parameters. We then use and inverse Fourier analysis to illustrate the sort of 
paroxysmal responses that would be expected based on the spectral predictions under specific 
parameter combinations (Fig 6H) 

Patient selection and EEG recording 

Patients were selected from routine clinical service at a tertiary paediatric specialist hospital that is a 
regional referral centre for patients with presumed autoimmune encephalitis. Patients were selected 
based on (1) symptoms consistent with autoimmune encephalitis, (2) positive laboratory testing for 
NMDAR-Ab at some point during their clinical course, (3) availability of routine clinical EEG recording 
during the acute phase of their illness, (4) presence of visually apparent EEG abnormalities. 
Anonymised clinical information was provided by the patients’ care team with written, informed consent 
provided by the patients’ legal guardians. All patients met the Graus criteria for a clinical diagnosis of 
NMDAR-Ab encephalitis 49. 

All EEGs used in this analysis were standard clinical recordings (21 electrodes, International 10-20 
Electrode Layout, 30 min recording time, 256 Hz sampling frequency, 1-70 Hz digital Butterworth 
bandpass filter). EEGs were visually analysed by two clinicians with expertise in EEG interpretation 
(RER, GC), identifying paroxysmal abnormalities, as well as segments of artefact free awake 
background EEG that were used for further analysis.  

 

DCM analysis of patient EEG paroxysms 

EEG analysis was designed to identify mechanisms underlying the frequently observed paroxysmal 
abnormalities in patients with NMDAR-Ab encephalitis. The purpose of this modelling approach is to 
identify a small set of parameters that can explain the transition between background activity and EEG 
paroxysms for each individual patient. The analysis can broadly be summarised as follows (also shown 
in Fig 7). 

1. Visual identification of paroxysmal and background EEG activity source localisation and ‘virtual 
electrode’ source wave form extraction 

2. Fitting of single source DCM to each ‘virtual electrode’ summary of paroxysmal and 
background data 

3. Inversion of hierarchical (PEB) model explaining all within-subject EEG patterns Bayesian 
model comparison between sets of reduced models at the group level (random effects 
analysis) 

Patients were selected on clinical EEG with reported dynamic abnormalities (ranging from evidence of 
mild encephalopathy to overt epileptiform activity). EEGs were reviewed by two clinicians with EEG 
experience (RER, GC) and segments containing normal awake background, as well as paroxysmal 
abnormalities (isolated slow waves, intermittent rhythmic slow activity, and overt epileptiform activity) 
identified. Paroxysmal activity was averaged across visually identified 2s windows and source localised 
using an IID (independent and identically distributed) approach in SPM12 50. At the cortical location with 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160309doi: bioRxiv preprint 

https://doi.org/10.1101/160309
http://creativecommons.org/licenses/by/4.0/


maximal activity, a single virtual electrode trace was extracted for each of the paroxysmal and 
background activity windows and used for further DCM analysis 46. 

 

Table 2: Free parameters fitted by the DCM 

τ1 (superficial pyramidal cell time constant) g1 (sp to ss inhibition)  

τ2 (spiny stellate time constant) g2 (ii to ss inhibition) 

τ3 (inhibitory interneuron time constant) g3 (ii to ip inhibition) 

τ4 (deep pyramidal cell time constant) g4 (ss to sp excitation) 

 g5 (ss to ii excitation) 

 g6 (dp to ii excitation) 

 g7 (sp self modulation) 

 g8 (ss self modulation 

 g9 (ii self modulation 

 g10 (dp self modulation 

 

This ‘virtual LFP’ activity was modelled using a single CMC source. An average of all paroxysm time 
windows, and all background time windows was inverted separately, producing 2-3 fully specified DCMs 
per subject. These were subsequently combined into a single hierarchical (PEB) model for each patient, 
in which only a subset of specific parameters were allowed to vary. A model space was created at the 
level of these second level models were either time constants, inhibitory between-population 
connections, excitatory between-population connections, or inhibitory self modulatory connections were 
allowed to vary to explain the difference between paroxysms and background activity (see Tab 2). 
Random effects Bayesian model comparison across these second level models uses the approximation 
to model evidence from the variational Laplace model inversion (i.e. the free energy) to compare the 
evidence for any given model parameterisation, given the empirical data 19.  

 
Fig 7. DCM analysis approach for patient EEG recordings. (A) Visual analysis was performed to identify segments of 
artefact free background EEG, as well as visually apparent paroxysms of abnormal activity (which were further separated into 
isolated and rhythmic abnormal activity). (B) This activity was source localised using an IID approach. Subsequent modelling 
was performed using a virtual electrode estimate of LFP activity at the identified source (bottom of this panel). (C) Single 
source DCMs comprising a single CMC were fitted separately to power spectral density averages of background, and 
paroxysmal activities (D) PEB was employed to reduce within subject differences between individual DCMs to specific subsets 
of parameters. The model space was designed to distinguish between sets of models where time constant, inhibitory 
connections, excitatory connections, or modulatory connections explained variations among conditions. (D) A random effects 
Bayesian model comparison between these alternative PEB models helped identify which parameters best explain the 
fluctuations across the whole group of subjects.   
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