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Abstract 
	
Background: The ubiquitous spread of smartphone technology throughout global 

societies offers an unprecedented opportunity to ethically obtain long-term, highly 

accurate measurements of individual physical activity. For example, the 

smartphone intrinsic 3-D accelerometer can be queried during normal phone 

operation to save time series of acceleration magnitudes (in each of the 

component directions) for near-real time or post processing.	

Objective: We describe simple, straightforward algorithms (based on windowed 

Fourier analysis) for accelerometer data quality control and behavioral 

classification.	

Methods: To maximize the clinical utility of our classifications, we focused on 

differentiating the following conditions: forgotten phone, subject resting, low 

physical activity, high physical activity. We further differentiated high physical 

activity into epochs of walking and climbing stairs, and further quantified walking 

to infer step count and gait speed.	

Results:	We validated these algorithms in 75 individuals, in both laboratory 

(treadmill) and naturalistic settings. Our algorithm performance was quite 

satisfactory, with accuracies of 92-99% for all behavioral categories, and 87-90% 

for gait metrics in naturalistic settings.	
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Conclusions: We conclude that smartphones are valid and accurate platforms for 

measuring day-to-day physical activity in ambulatory, community dwelling 

individuals. 
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Introduction 
	
Decades of advances in the design and manufacture of integrated circuits, 

combined with decreases in the cost of these components, are fueling an ongoing 

revolution in the capacity to make continuous real or near-real time measurements 

and analyses of dynamic processes.  These kinds of approaches are particularly 

well-suited for studying the complex mixture of periodic, nonperiodic, and 

stochastic events that comprise animal or human behavior. Better understanding 

of behavioral structure is highly relevant in many diverse fields such as migratory 

ecology [1], law enforcement and surveillance [2], robotics [3], economics [4], and 

behavioral neuroscience [5]. 

 

Human physical activity is a clinically and economically important behavior that is 

particularly well suited for continuous measurement. Consequences of physical 

inactivity can include significant and costly chronic health problems such as 
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obesity, type II diabetes, vascular disease, hypertension, colon cancer, and 

depression [6]. Increased physical activity can help prevent these illnesses, 

improve bone, joint, and muscle function, and even decrease the risk of premature 

death. However, most tools validated to assess individual physical activity provide 

a partial portrayal of overall status. For example, validated surveys (e.g. PROMIS, 

BRFSS, IPAQ; [7-9]), while highly useful as clinical tools to stratify physical activity 

in community-dwelling populations, are not useful for providing day-to-day 

guidance on overall activity. Similarly, clinical physical performance batteries [e.g. 

10] provide a useful, quick clinical screen for persons at risk for functional loss, but 

are relatively insensitive to smaller improvements or losses of physical function. 

New measures of physical function that reflect daily performance must ultimately 

be developed in order to meet the needs of community-dwelling individuals 

seeking to increase and maintain physical activity for wellness or rehabilitation. 

 

Inferring physical activity from continuous measurements (such as those from an 

accelerometer) is not a trivial task, and an extensive literature has risen to describe 

this problem [for review, 11]. Many of these machine-learning based classification 

algorithms have been proven to demonstrate significant accuracy in discriminating 

between different modes of physical activity [12]. However, many of these 

approaches require significant computational efforts that are not feasible for near-

real time interventions (particularly in rural or underdeveloped areas with unreliable 

access to telecommunication infrastructure). Furthermore, clinically-relevant 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2017. ; https://doi.org/10.1101/160317doi: bioRxiv preprint 

https://doi.org/10.1101/160317
http://creativecommons.org/licenses/by-nc-nd/4.0/


metrics – particularly with regard to an aging population – such as gait speed, 

number of footsteps, and total activity duration, could be immediately accessible 

on a local device such as a cell phone. Far fewer algorithms have been developed 

for this situation [13]. Finally, selection of the appropriate sensor(s) for measuring 

physical activity in community-dwelling populations is also not an insignificant 

consideration. Most measurements of physical activity ultimately rely on the 

subject wearing some kind of accelerometer. There are many commercial 

providers of accelerometer technology with costs ranging from tens to thousands 

of dollars (US) per subject. However, with the exception of devices worn as 

watches or integrated into clothing, many of these devices require active effort on 

the part of the subject’s day-to-day life in order to facilitate data collection. Of note, 

advances in microelectromechanical systems have markedly shrunk the cost and 

size of accelerometer technology. Inexpensive indwelling accelerometers are now 

components of many commonly used devices, including automobiles (braking and 

airbag control), games (Wii remote), sports training (footpods), and personal 

electronics (computers, cell phones).    

 

Here, we describe our first efforts to validate algorithms that extract clinically-

relevant features of activity (gait speed, number of footfalls, and activity duration) 

in a near-real time, continuous, noninvasive manner in community-dwelling, 

ambulatory, older adults. To maximize subject ease-of-use, we measured physical 

activity using the sensor capabilities of inexpensive “smartphones.” We describe 
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our algorithms for data conditioning, as well as determination of (1) whether the 

phone was on the subject’s person, (2) subject overall activity/inactivity, (3) gait 

speed, and (4) step count. We show that these algorithms closely match gold 

standard measures of these outcomes. We conclude that our previously-described 

approach for measuring functional status in community-dwelling adults [14] 

provides valid outcome measures of activity and gait. 

	

Methods 
	
Validation samples. Subject datasets to develop and validate the below-described 

algorithms were obtained from three separate sources.  For step count and gait 

speed determination algorithms, we used data from a prior clinical study examining 

gait under the highly controlled conditions of treadmill walking [15]. This study 

provided acceleration/step count/gait speed characteristics from 17 young (19-35 

y/o), 19 middle-aged (36-65 y/o), and 19 older (>65 y/o) individuals. Subjects 

alternated 5 minute periods of gait at defined treadmill speeds (between 0.4 and 7 

mi/hr, depending upon subject tolerance and fitness) with 1 minute rest periods.  

 

Data for development and validation of algorithms examining activity, step count, 

and gait speed in naturalistic environments was collected by two separate young 

subjects (ADO, SMS). To validate gait speed in a naturalistic environment, they 

walked on an outdoor track of known length (0.25 mi) while using a metronome to 

keep constant pace. Data collected between gait speeds of 2-5 mph were used for 

further analysis to mimic adult regular walking speeds. Additionally, these subjects 
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performed numerous activities while wearing the cell phone, including sightseeing, 

shopping, going to the movies, napping, sleeping, and taking auto trips. The 

subjects kept extensive, one-minute resolution behavioral diaries documenting 

their activities during this time. This data was used to develop and validate our 

behavioral classification algorithms. All in all, these subjects collected more than 

3485 minutes of behavioral data, including 466 minutes of “phone forgotten,” 1150 

min of low physical activity (including 684 min of resting or sleeping), 1564 min of 

driving, and 771 min of high physical activity (including 619 minutes walking and 

152 min climbing stairs). Half of this data was used for model development, and 

the other half used for model validation.  

 

Finally, we applied the above-validated algorithms to cell-phone measured activity 

patterns obtained over a full day from a group of 18 normal adults. Inclusion 

characteristics included age > 55, independent living in the community, and the 

absence of significant or uncontrolled medical or psychiatric problems. All 

participants had no evidence of cognitive impairment (MOCA>24, Montreal 

Cognitive Assessment Test, [16]). Many subjects were enrollees in UNMC 

Engage, an exercise- and community activity program offered by the UNMC Home 

Instead Center for Successful Aging. We obtained 354 hours of activity data from 

this group, with an average contribution of 19.18 hours, a maximum contribution 

of 20.74 hours, and a minimum contribution of 15.27 hours. 
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All studies were performed in complete accordance and approval of the UNMC 

Institutional Review Board (IRB). 

 

Protocol. All activity data was collected 

using a Nokia N79 cellular phone (White 

Plains, NY). The N79 has a built-in 

accelerometer with a dynamic range of ±2 

g in the three axes (e.g., x, y, z). The 

accelerometer was sampled at 

approximately 7-8 Hz using the PyS60 

sensor framework running on the 

Symbian S60 FP2Ver3 operating system. 

Raw acceleration data was written to the phone flash drive. Subjects kept the 

phone in either hip pocket and simultaneously wore an electronic pedometer (New-

Lifestyles NL-2000; Lees Summit MO) on their belt to estimate total footsteps.  

 

Approach to activity data classification. We focused on activity metrics with clinical 

relevance, high face validity, and proven linkage to important patient outcomes that 

could easily be implemented for translational research. Figure 1 depicts our overall 

strategy.  First, we perform quality control (QC) to condition accelerometer data for 

classification. Following data QC, we classify accelerometer data into epochs of 

“forgotten” versus “carried” phone. We classify epochs of “carried” phone into 
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periods of low physical activity (“lPA”) and high physical activity (“hPA”). Epochs 

of lPA are further classified into periods of driving (“driving”) and periods of other 

low activity behaviors, such as resting, watching entertainment, etc. (“other”). 

Epochs of hPA are further classified into periods of walking (“walking”) and 

climbing stairs (“stairs”). Finally, we subclassify walking to determine step count 

and gait speed, two metrics strongly associated with many important health care 

outcomes [17-19].  

 

Accelerometer data quality control. The Nokia N79 intrinsic accelerometer is not 

highly precise. For example, when two phones lie motionless on a table, they yield 

slightly differing acceleration values despite being under the same force (gravity). 

Moreover, the cell phones output slightly different gravitational acceleration values 

depending on device relative orientation. Finally, stationary cell phones randomly 

demonstrate occasional small increases or decreases in baseline acceleration 

magnitude. These device characteristics affect threshold-based identification 

techniques used in the physical activity, step count, and gait speed algorithms.  

 

To condition the accelerometer data, we use bandpass filter, window division and 

acceleration magnitude resetting. First, the acceleration magnitude goes through 

a butterworth bandpass filter with frequency band of 0.2-0.7 Hz. Acceleration 

magnitude is then divided into 68 s windows, such that each window contains 512 

acceleration points for Fast Fourier Transform computation.  We calculate average 
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acceleration magnitude for each window. The window size is wide enough (in the 

time dimension) so that mean acceleration should approximate gravitational 

acceleration regardless of subject activity. Then, for each acceleration magnitude 

point contained in the window, a uniform value is added/subtracted to adjust the 

window mean acceleration magnitude to 1g. After this procedure, all windows have 

a mean acceleration magnitude equal to gravitational acceleration without any 

visible discontinuities (Figure 2). 

 

Classification of 

“forgotten” versus 

“carried” phone. We 

calculate the 

acceleration 

magnitude root mean 

square (RMS) over 68 

s continuous, non-

overlapping windows. 

If the window RMS value exceeds an empirically derived threshold (0.0094 g), then 

the entire window is classified as “carried.” For windows classified in this manner 

as “forgotten”, we perform a second “pass” analysis and test each acceleration 

magnitude within the window to determine if it exceeds a second, empirically-

determined threshold (1.015 g). Windows initially classified as “forgotten” that have 
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one or more acceleration magnitudes exceeding 1.015 g are reclassified as 

“carried.”  

 

Physical activity classification. Data from “carried” phones having acceleration 

magnitude RMS £0.09375 g (empirically determined) are classified as having low 

physical activity. Conversely, data from “carried” phone having acceleration 

magnitude RMS > 

0.09375 g are classified 

as having high physical 

activity. Figure 3a 

depicts a 

representative example 

of this process. For 

behavioral windows 

determined to have low 

physical activity, we 

further identify periods 

where the individual is 

at rest, sitting quietly 

(“other”) as having 

0.0094 g £ RMS <0.01 
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g. Similarly, we use threshold of 0.01 g £ RMS < 0.09375 g to identify periods of 

driving.  

 

For behavioral windows determined to have high physical activity, we further 

identify periods where the individual is walking as having thresholds of 0.09375 g 

£ RMS <0.15625 g. Similarly, we use threshold RMS values ³ 0.15625 g to identify 

periods of climbing stairs. To increase the algorithm precision, hPA epochs were 

further divided into “sub epochs.” This process allowed us to better determine if 

specific periods within the initial 68 s window demonstrated low versus high 

physical activity. Each sub epochs is 4.3 s long. Sub epochs undergo analogous 

threshold testing to differentiate periods of low and high physical activity. Each 4.3 

s window includes 32 data points.    

 

Thresholds were empirically derived from treadmill walking trials, where step 

counts could be validated against gold standard video for each subject. We chose 

threshold values that maximized our mean accuracy across all treadmill gait trials.  

 

Step count determination.  We adapted fast Fourier transforms (FFTs), threshold 

detection, and sub window techniques to accurately infer subject step count per 

[20,21]. As above, acceleration magnitude is calculated over 68 second 

continuous, non-overlapping windows. This window length further assures that 

periodic signals from walking will be significantly larger than those arising from 
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noise. Subject step frequency was then determined by calculating the FFT across 

all windows classified as “walking.” Step frequencies greater than expected for 

walking were reclassified as “other”. After step frequency was determined, the 68 

second window is divided into eight subwindows, and each subwindow is 

thresholded to determine if it includes hPA. From the subwindow that includes 

hPA, we obtain the proportion of hPA in the original 68 second window. The 

proportion of walking subwindows was used to determine final window step count, 

further increasing step count accuracy. The subwindow method is depicted in 

Figure 3b.  

 

Gait speed determination. We estimated individual gait speed for each subject by 

multiplying gait frequency (derived from the above step count analysis) by the 

average stride length provided by age- and gender- specific nomograms. For older 

adult cohort, average stride length was 1.796 feet for women and 2.075 feet for 

men; for the young and middle-aged cohorts, average stride length was 2.133 feet 

for men and women [22,23]. 

 

Gold standards for validations. For data arising from treadmill gait studies, our gold 

standard for step count was obtained by manual counting of footfalls from video 

recordings. Gold standard for gait speed was the speed entered on the treadmill. 

For data lacking video collaboration, we found that pedometer step counts were 

often unsatisfactory as a gold standard. Pedometer step counts accurately 
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reflected real step counts for our naturalistic activity study involving the two young 

subjects.  However, in the older community living group pedometer step counts 

and the subject activity log did not agree. We attribute this discrepancy to subjects 

wearing the pedometer incorrectly. For these situations, we manually reviewed the 

raw accelerometer data, and were able to identify signal morphologies that 

identified individual steps within this raw data, and thus obtain an estimated step 

count. This visually-based method was validated against treadmill data (with gold 

standard video-based step counts) and found to have 98% accuracy.  

Results 
	
Creation of automated, reliable behavioral diaries. We first applied our behavioral 

classifications to subject one-minute behavioral diaries collected during day-to-day 

tasks. Comparison of subject journaling versus automated behavioral classification 

is shown in Figure 4a. Generally, the algorithm detected changes in subject 

behavior coincidentally with the subject journal. All discrepancies were within one 

minute onset, and could arise from small time differences between subject time 

and smartphone time.   

 

“Forgotten” and “carried” phone are differentiated with high accuracy. Our 

algorithm classified epochs of “forgotten” versus “carried” phone with very high 

accuracy (99.6%, 234 min classified). The algorithm misclassified one minute of 

“forgotten” data as occurring in the low physical activity state (confusion matrix 

provided in Figure 4b). This high specificity suggests that subjects forgetting to 
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carry the phone will not significantly influence our ability to differentiate between 

low and high physical activity states.  

 

Low and high physical activity states are differentiated with high accuracy. In a 

total of 685 minutes of low physical activity data, 630 minutes (92%) was classified 

correctly. 43.5 minutes (6.4%) were misclassified as “forgotten” phone. Inevitably, 

if a subject were completely still, it would be very challenging to differentiate 

“forgotten” phone from low physical activity. However, low activity states are 

usually not characterized by a complete absence of movement. We also had a low 

false positive rate of calling lPA activities as hPA. Specifically, we misclassified 7 
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min (1%) of lPA activity as walking, and 1.75 min (0.3%) of lPA activity as climbing 

stairs.  

 

Our thresholding algorithm performed well at differentiating low physical activity 

states into driving and other. We properly classified 1453 of 1563 min (92.9%) of 

driving, with 86 min (5.5%) misclassified as other and 24.5 min (1.6%) 

misclassified as hPA.  

 

Our thresholding algorithm also performed well at differentiating high physical 

activity states into walking and climbing stairs. We properly classified 34 of 36 min 

(94.4%) of walking, with 2 min (5.6%) misclassified as climbing stairs. Similarly, 

we properly classified 148.5 of 153 min (97.4%) of climbing stairs, with 4 min 

(2.6%) misclassified as walking. 

 

Accurate quantification of step counts in both laboratory and naturalistic settings. 

To first test the validity of our model for step counts, we examined its performance 

under the highly controlled situation of treadmill locomotion. In all of our figures 

comparing measured step counts versus predicted step counts, the diagonal line 

depicts the performance of a perfect model. Points falling above the line suggest 

that the model finds more steps than were observed; points falling below the line 

suggest that the model finds fewer steps than were observed. As demonstrated in 

Figure 5a, we had an overall accuracy of 93% for all age groups (94.5% for young, 
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93.6% for middle-aged, 

94.7% for aged). The model 

did not consistently over- or 

under- estimate steps 

counts.  

 

We then applied this model 

to step counts obtained in 

naturalistic environments, 

both at the outdoor track 

and during day-to-day 

activities (Figure 5b). We 

observed excellent 

agreement both for locomotion at the outdoor track (21576 steps predicted, 21867 

steps observed, 91.5% average accuracy) and during day-to-day activities 

(142079 steps predicted, 140461 steps observed, 88.9% average accuracy).  

	

Finally, we applied this model to the data provided by our older, community 

dwelling adults who kept the cell phone for 24 hours. We note continued excellent 

agreement of cell-phone derived footsteps compared to manually counted 

footsteps (77656 steps predicted, 80307 steps observed, 90.15% average 

accuracy).  
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Thresholding algorithm accurately measures gait speed in both laboratory and 

naturalistic settings. To test our gait speed predictions, we first examined model 

performance under the highly controlled situation of treadmill locomotion. As 

demonstrated in Figure 5c, our model was 86% accurate for 2 mi/hr < gait speed 

< 4 mi/hr across all age cohorts and gender. For each individual cohort, we noted 

accuracies of 85% (young), 87% (middle-aged), and 87% (aged).  

 

As shown in this figure, for low gait speeds, our algorithm tends to overestimate 

gait speeds; conversely, for higher gait speeds, the algorithm tends to 

underestimate gait speeds. The reason behind this decline of accuracy is 

suspected to be the change of stride length based on walking frequency [24]. From 

the figure, it is evident that lower speeds (<2.5 mph) overestimate gait speed due 

to the higher stride length value; and higher speeds (>3.0 mph) underestimate gait 

speed due to the lower stride length value. Further analysis suggests that adjusting 

stride by dominant walking frequency may improve model correlations at both low 

and high gait speeds. 

 

Finally, we applied this model to data obtained in naturalistic environments at the 

outdoor track, as provided by our two young subjects (Figure 5d). As shown in the 

figure, most of the data accurately predicted actual gait speed of two subjects with 

>90% accuracy. 
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Discussion 
	
The above work demonstrates that fast, simple, and well-validated algorithms can 

accurately and efficiently classify accelerometer data into clinically relevant 

metrics. These algorithms were validated under a variety of experimental 

situations, including laboratory environments (that provided extensive control over 

gait speed and observation conditions), and real-life situations. Our results show 

that these algorithms report subject activity status with significantly greater 

precision than that provided by intense subject journaling. Similarly, these 

algorithms accurately determine subject step count and gait speed for a wide range 

(both in age and functional status) of clinical subjects. Together, these results 

suggest that smartphone-derived accelerometer data can provide valuable metrics 

regarding an individual’s activity status and gait. 

 

There is a rich history regarding algorithmic approaches to analyze activity status 

and gait speed. Cepstral [25-27], artificial neural network [28-30, among others], 

hidden Markov model [31-33, among others], support vector machine 34-36, 

among others] and Bayesian classifier [37-39, among others] approaches have all 

been validated, with accuracies ranging between 79-97%. There is also a growing 

literature demonstrating that intrinsic smart phone accelerometers provide valid 

activity measures in ambulatory human populations [15,40-43, among others]. 

Here we demonstrate that simple analysis algorithms that do not rely on extensive 

signal feature extraction or pre-taught learning networks can accurately (86-96%) 
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classify clinically relevant activity and gait metrics from smartphone-derived 

accelerometer data. Furthermore, we obtained these results with no effort to 

maintain consistent smartphone orientations. These results add further weight to 

the concept that smartphones may be repurposed as accurate devices to measure 

physical activity in a variety of adult, community dwelling populations.  

 

Classification errors are an inevitable outcome of any algorithmic approach, 

particularly when attempting to separate behaviors whose properties partially 

overlap. Thus, as we examine activity on a continuum ranging from ‘forgotten 

phone’ to ‘resting’ to ‘low physical activity’ to ‘high physical activity’, it is 

unsurprising that we find small errors in classification between two adjacent 

classes. Our classification errors range from 0.4% (differentiating ‘forgotten phone’ 

from ‘resting’) to 8% (differentiating ‘resting’ from ‘forgotten phone’ and ‘low 

physical activity’). As noted above, these accuracies are in the same range as 

those determined by a variety of algorithmic approaches. One factor potentially 

responsible for this performance (and consistency to the above-mentioned 

studies) is that we classify behaviors across narrow time windows, minimizing the 

effect of activity transitions on overall algorithm performance [44]. Since our 

classification approach differentiates frequencies within a relatively narrow range 

(frequencies too low or too high represent unphysiological conditions), our 

approach is robust to the frequency limitations inherent in windowing, while 

benefiting from the temporal precision possible by narrow window lengths. These 
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accuracies suggest that subjects forgetting to carry the phone do not degrade our 

ability to identify resting and low physical activity states. Similarly, our results 

suggest that our windowed Fourier classification approach can reliably differentiate 

low from high physical activity states.  

 

Modern pedometers measure step count through a spring-mounted pendulum arm 

that makes and breaks an electrical circuit (spring-levered), or a beam that deforms 

a piezoelectric element with each step (piezoelectric). These pedometers are well 

appreciated to have multiple limitations, including significant step undercounting 

with slower gait speeds, obese individuals, older adults, or persons with gait 

impairments [45-48]. Piezoelectric pedometers have higher sensitivity than spring-

levered pedometers, and also are not as dependent upon device orientation. 

However, both pedometers still undercount steps, particularly at lower gait speeds 

[49]. Our approach of examining acceleration properties across our 8.5 s 

subwindows yielded an overall accuracy of between 90-92%, including older 

individuals with known gait problems. Smartphones thus match or best 

performance of pedometers for measuring step counts. Of note, our algorithms 

had their least accurate performance determining gait speed. Gait speed is a 

clinically vital metric [50] with considerable health outcome consequences [51]; 

yet, most ambulatory studies do not attempt to measure participant gait speed 

(however, see [52-54]). Inaccuracies associated with our approach may arise from 

dynamic changes in stride length occurring over different gait speeds.  
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The ultimate goal of this work is to develop the underlying framework so 

smartphones contribute accelerometer data as part of a “big data” approach to 

obtain population-based metrics of human activity. While individual participants 

may find these metrics personally appealing (by better benchmarking of day to day 

activities [e.g. 55,56]; better health care outcomes [e.g. 57,58]; obtaining discounts 

on health care services, [e.g. 59,60]), we envision that the availability of long-term 

daily measures of physical activity will have significant impact on public healthcare 

practice and policy [60,61; among others]. Nuanced and rich data assessing 

physical activity in persons across different demographic, environmental, 

geographic, and social settings (with privacy concerns addressed, e.g. [63]) is 

absolutely required if policymakers are to have the critical information needed to 

create or tailor programs to increase population physical activity.  
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