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Abstract 

While graph theoretical modeling has dramatically advanced our understanding 

of complex brain systems, the feasibility of aggregating brain graphic data in 

large imaging consortia remains unclear. Here, using a battery of cognitive, 

emotional and resting fMRI paradigms, we investigated the reproducibility of 

functional connectomic measures across multiple sites and sessions. Our results 

revealed overall fair to excellent reliability for a majority of measures during 

both rest and tasks, in particular for those quantifying connectivity strength, 

network segregation and network integration. Higher reliabilities were detected 

for cognitive tasks (vs rest) and for weighted networks (vs binary networks). 

While network diagnostics for several primary functional systems were 

consistently reliable independently of paradigm, those for cognitive-emotional 

systems were reliable predominantly when challenged by task. Different data 

aggregation approaches yielded significantly different reliability. In addition, we 

showed that after accounting for observed reliability, satisfactory statistical 

power can be achieved in the multisite context with a total sample size of 

approximately 250 when the effect size is at least moderate. Our findings provide 

direct evidence for the generalizability of brain graphs for both resting and task 

paradigms in large consortia and encourage the use of multisite, multisession 

scans to enhance power for human functional connectomic studies. 
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Introduction 

Since its debut in the last decade (Sporns O et al. 2005), the study of the human 

functional connectome has become an increasingly appealing research frontier in 

modern neuroscience. The brain connectome is typically modelled using graph 

theoretical methods, which decompose the functional architecture of the brain 

into a large set of nodes and interconnecting edges (Bullmore ET and DS Bassett 

2011). This approach has greatly advanced our understanding of the functional 

organization of the brain, bringing valuable insights into the topological 

characteristics of brain systems (Power JD et al. 2011) and variations therein 

related to neural development (Fair DA et al. 2009), aging (Meunier D et al. 2009), 

and clinical brain disorders (Buckner RL et al. 2009; Lynall ME et al. 2010; Cao H 

et al. 2016).  

 

We are now in the era of “big data”, where large research consortia have been 

established around the world and hundreds or thousands of imaging scans could 

potentially be pooled to pursue questions that can only be addressed with large 

sample sizes (Biswal BB et al. 2010). Such applications include ascertaining 

genetic determinants of brain network structure (Richiardi J et al. 2015) or 

elucidating patterns in brain network architecture predictive of low-incidence 

disease among individuals at risk (Cao H et al. 2016). However, while moderate 

to high test-retest reliability of brain graph properties have been demonstrated 

in both resting state (Braun U et al. 2012; Cao H et al. 2014; Termenon M et al. 

2016) and cognitive tasks (Cao H et al. 2014) using data acquired on a single 

scanner, it remains unclear whether the increased sample size associated with 

pooling data collected across different scanners is offset by attenuated reliability 

of network analysis measures in relation to statistical power. The utility of big 

data fusion in human functional connectomics will be constrained by the answer 

to this question. 

 

Here, using the data from the North American Prodrome Longitudinal Study 

(NAPLS) consortium (Addington J et al. 2012), we examined the feasibility of 

aggregating multisite, multisession functional magnetic resonance imaging (fMRI) 

data in the study of brain graphs. In this work, eight subjects were scanned twice 

(on consecutive days) at each of the eight study sites across the United States and 

Canada using a battery of five fMRI paradigms including four cognitive tasks and 
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a resting state scan. This unique sample allows us to explicitly answer the 

question of whether it is feasible (i.e., achieving acceptable levels of reliability) to 

aggregate fMRI data acquired from multiple sites and sessions and to determine 

which approach to aggregating such data maximizes reliability. Generalizability 

theory was used to quantify reliability of graph theoretical metrics, first for the 

full eight-site, two-session study, and then for the circumstance in which a given 

subject is scanned once on one scanner drawn randomly from the set of all 

available scanners (i.e., paralleling the design of the typical “big data” study in 

which scans from a single session are pooled across multiple sites). We compared 

reliability of graph theoretical metrics across the five fMRI paradigms and across 

four different graph construction schemes and isolated the most reliable nodes in 

the brain for each paradigm. We also estimated the required sample size to 

achieve satisfactory statistical power in a multisite study and investigated the 

effects of two data pooling methods (“merging raw data” and “merging results”) 

on the reliability of the resulting brain graphs. The results of this study provide 

evidence for the feasibility, sample size determination and optimal method of 

pooling large sets of graph theoretical measures for functional connectomics 

research in large consortia. 

 

Methods 

Subjects 

A sample of eight healthy traveling subjects (age 26.9 ± 4.3 years, 4 males) was 

included as part of the North American Prodrome Longitudinal Study (NAPLS-2) 

consortium (Addington J et al. 2012). The consortium comprises eight study sites 

across the United States and Canada: Emory University, Harvard University, 

University of Calgary, University of California Los Angeles (UCLA), University of 

California San Diego (UCSD), University of North Carolina Chapel Hill (UNC), Yale 

University, and Zucker Hillside Hospital (ZHH). Each site recruited one subject 

and the participants traveled to each of the eight sites in a counterbalanced order. 

At each site, subjects were scanned twice on two consecutive days with the same 

fMRI paradigms, resulting in a total of 128 scans (8 subjects x 8 sites x 2 days) for 

each paradigm. All scans were completed within a period of two months, during 

which time no changes were made to the MRI scanners at each site. 
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All participants received the Structured Clinical Interview for Diagnostic and 

Statistical Manual of Mental Disorders (DSM-IV-TR (First MB et al. 2002)) and 

Structured Interview for Prodromal Syndromes (McGlashan TH et al. 2001), and 

were excluded if they met the criteria for psychiatric disorders or prodromal 

syndromes. Other exclusion criteria included a prior history of neurological or 

psychiatric disorders, substance dependency in the last six months, IQ < 70 

(assessed by the Wechsler Abbreviated Scale of Intelligence (Wechsler D 1999)) 

and the presence of a first-degree relative with mental illness. All subjects 

provided informed consent for the study protocols approved by the institutional 

review boards at each site. 

 

Experimental paradigms 

The NAPLS-2 consortium included a battery of five paradigms targeting 

functional domains of interest in cognitive neuroscience: a verbal working 

memory paradigm (hereafter WM paradigm), a paired-associates encoding 

paradigm for episodic memory (hereafter EM encoding paradigm), a 

paired-associates retrieval paradigm for episodic memory (hereafter EM 

retrieval paradigm), a facial emotional processing paradigm (hereafter EP 

paradigm) and a resting-state paradigm (hereafter RS paradigm). These 

paradigms have been described in detail in previous studies (Forsyth JK et al. 

2014; Gee DG et al. 2015; Noble S et al. 2016) but are summarized briefly below.  

 

The WM paradigm is a block-designed Sternberg-style task where subjects 

viewed a set of uppercase consonants (each set displayed for 2 s, followed by a 

fixation cross for 3 s). After each set, a lowercase probe appeared and the 

participants were instructed to indicate if the probe matched any of the 

consonants from the previous set by pressing designated buttons. Four 

conditions were presented in the task targeting four working memory loads with 

3, 5, 7 and 9 consonants in the target sets. Each load comprised a total of 12 trials 

with 50% matched trials. The resting-state fixation blocks were interspersed 

throughout the task to provide a baseline. The entire task lasted for 9 min (184 

whole-brain volumes). 

 

The EM encoding task used an event-related paradigm where subjects were 

presented a series of semantically unrelated word pairs for objects from 12 
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different categories (e.g., animals, transportations, food, etc.) and colored picture 

pairs depicting each word. During each trial, participants were asked to imagine 

the two objects interacting together and then pressed a button once a salient 

relationship had been built between the two words. Each trial was displayed for 

4 s and followed by a jittered inter-stimulus interval between 0.5-6 s. In the 

active baseline condition, subjects were presented by a series of one-digit 

number pairs and colored squared pairs. Participants were asked to sum up the 

two numbers and press a button once the summation had been calculated. The 

paradigm consisted of 32 encoding trials and 24 baseline trials and lasted for 8.3 

min (250 whole-brain volumes).  

 

The EM retrieval paradigm followed directly after the EM encoding task. In this 

task, a pair of words was presented on the screen on each trial and subjects were 

asked to indicate whether the given word pair had been presented during the 

encoding paradigm by ranking their confidence level. The retrieval paradigm 

consisted of 64 trials where 50% had been presented during encoding task. In 

the active baseline condition, participants were instructed to press the button 

corresponding to a confidence level presented on the screen. The retrieval run 

lasted for 7.3 min (219 whole-brain volumes). 

 

The EP task consisted of two consecutive identical runs on each day. Each run 

comprised five conditions where subjects viewed a set of emotional faces or 

geometric shapes. In the emotion matching condition, participants were 

instructed to choose which of the two faces shown on the screen presented the 

same emotion as a target face. In the emotion labeling condition, subjects were 

asked to choose which of the two labels (e.g., angry, scared, surprised, happy) 

depicted a target face. In the gender matching condition, subjects needed to 

select which of the two faces on the screen was the same gender as a target face. 

In the gender labeling condition, participants selected which gender label (i.e., 

male or female) corresponded to a target face. In the shape matching condition, 

participants were asked to match two corresponding geometric shapes. Each 

block lasted for 50 s with 10 trials. The entire task was performed in two 

separate runs with 5.5 min (132 whole-brain volumes) each. 

 

RS is a 5-min eyes-open paradigm (154 whole-brain volumes) where subjects 
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were asked to lay still in the scanner, relax, gaze at a fixation cross, and not 

engage in any particular mental activity. After the scan, investigators confirmed 

with the participants that they had not fallen asleep in the scanner. 

 

To ensure successful manipulation of active tasks, we checked task response 

rates for each scan. The scans with a response rate < 50% were excluded for data 

analysis. This resulted in a total of 2 scans for the EM encoding paradigm. In 

addition, for each of the WM, EM encoding, EM retrieval and EP tasks, 1 scan was 

unusable due to technical artifacts, and 1 scan for the EM encoding paradigm had 

shortened time series. These data were also excluded from analysis. 

 

Data acquisition 

Imaging data were acquired from eight 3T MR scanners with three different 

machine models. Specifically, Siemens Trio scanners were used at Emory, 

Harvard, UCLA, UNC and Yale, GE HDx scanners were used at UCSD and ZHH, and 

a GE Discovery scanner was used at Calgary. The Siemens sites employed a 

12-channel head coil and the GE sites employed an 8-channel head coil. fMRI 

scans were performed by using gradient-recalled-echo echo-planar imaging 

(GRE-EPI) sequences with identical parameters at all eight sites: 1) WM 

paradigm: TR/TE 2500/30 ms, 77 degree flip angle, 30 4-mm slices, 1mm gap, 

220 mm FOV; 2) EM encoding and retrieval paradigms: TR/TE 2000/30 ms, 77 

degree flip angle, 30 4-mm slices, 1mm gap, 220 mm FOV; 3) EP paradigm: 

TR/TE 2500/30 ms, 77 degree flip angle, 30 4-mm slices, 1mm gap, 220 mm FOV; 

4) RS paradigm: TR/TE 2000/30 ms, 77 degree flip angle, 30 4-mm slices, 1-mm 

gap, 220-mm FOV. In addition, we also acquired high-resolution T1-weighted 

images for each participant with the following sequence: 1) Siemens scanners: 

magnetization-prepared rapid acquisition gradient-echo (MPRAGE) sequence 

with 256 mm x 240 mm x 176 mm FOV, TR/TE 2300/2.91 ms, 9 degree flip angle; 

2) GE scanners: spoiled gradient recalled-echo (SPGR) sequence with 260 mm 

FOV, TR/TE 7.0/minimum full ms, 8 degree flip angle. 

 

Data preprocessing 

Data preprocessing followed the standard procedures implemented in the 

Statistical Parametric Mapping software (SPM8, 
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http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The same preprocessing 

pipelines were used for each paradigm. In brief, all fMRI images were slice-time 

corrected to the first slices of each run, realigned for head motion, registered to 

the individual T1-weighted structural images, and spatially normalized to the 

Montreal Neurological Institute (MNI) template with a resampled voxel size of 

2×2×2 mm3. Finally, the normalized images were spatially smoothed with an 8 

mm full-width at half-maximum (FWHM) Gaussian kernel. 

 

All preprocessed images were then examined for head motion. Specifically, we 

quantified frame-wise displacements (FD) for each subject in each run based on 

the previous definition (Power JD et al. 2012). The scans with an average FD M 

0.5 mm were shown to have a pronounced within-subject effect on connectivity 

(Power JD et al. 2012) and thus were discarded. This resulted in the exclusion of 

1 scan for the EM encoding task, 1 scan for the EM retrieval task and 2 scans for 

the EP task. As a consequence, the final number of scans included for further 

network analysis were 127 for the WM paradigm, 123 for the EM encoding 

paradigm, 126 for the EM retrieval paradigm, and 125 for the EP paradigm. 

 

Construction of brain graphs 

Overview of brain graph analysis 

Our brain graph analysis followed closely with the standard approaches reported 

in the literature (Bullmore E and O Sporns 2009; Bullmore ET and DS Bassett 

2011; Cao H et al. 2014; Cao H et al. 2016; Gu Q et al. 2017) and aimed to cover 

several different graph construction schemes. Particularly, nodes and edges are 

two fundamental elements in the construction of brain networks. The definitions 

of nodes and edges differ in the literature in terms of different brain atlases and 

different connection weights. While brain graphs derived from distinct 

processing schemes are qualitatively similar (Wang J et al. 2009; Zalesky A et al. 

2010; Lord A et al. 2016) and thus might all be valid in the study of human 

connectomes, the comparative reliability of different schemes in the context of 

multisite, multisession studies is unclear. Here, we focused our analysis on two 

widely used brain atlases (the AAL atlas (Tzourio-Mazoyer N et al. 2002) and the 

Power atlas (Power JD et al. 2011)) and two types of graphs (binary graph and 

weighted graph). Consequently, four different graph models were constructed 

for each scan in our data: AAL binary graph, AAL weighted graph, Power binary 
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graph and Power weighted graph. Fig. 1 provides a diagram describing the graph 

construction procedures. 

 

Node definition 

We used two different node definitions (anatomy-based and function-based) to 

construct brain graphs, in order to investigate how different atlases would 

influence the results. An anatomically-based definition was given by the AAL 

atlas consisting of 90 nodes based on cortical gyri and subcortical nuclei 

(Tzourio-Mazoyer N et al. 2002), and a functionally-based definition was given 

by the Power atlas with 264 nodes based on meta-analyses of task and rest data 

(Power JD et al. 2011). Notably, the Power atlas does not include nodes in the 

bilateral hippocampus, bilateral amygdala and bilateral ventral striatum. Since 

these regions are of particular interest in cognitive and clinical neuroscience, we 

additionally included these nodes based on previously published coordinates 

from meta-analyses (Spreng RN et al. 2009; Liu X et al. 2011; Sabatinelli D et al. 

2011), thereby increasing the total number of nodes to 270 (one node per region 

and hemisphere). This expanded Power atlas has also been used in the previous 

research (Cao H et al. 2014; Braun U et al. 2015). 

 

Following the previously published procedures (Cao H et al. 2014), the mean 

time series for each node in both atlases were extracted from the preprocessed 

images. The extracted time series were then corrected for the mean effects of 

task conditions (for task data), white matter and cerebrospinal fluid signals, and 

the 24 head motion parameters (i.e. the 6 rigid-body parameters generated from 

the realignment step, their first derivatives, and the squares of these 12 

parameters, (Satterthwaite TD et al. 2013; Power JD et al. 2014)). The residual 

time series were then temporally filtered (task data: 0.008 Hz high pass, rest data: 

0.008-0.1 Hz band pass) to account for scanner noises. 

 

Edge definition and network thresholding 

The corrected and filtered time series were subsequently used to build a 90 x 90 

(AAL atlas) or 270 x 270 (Power atlas) pairwise correlation matrix for each scan 

using Pearson correlations. The derived correlation matrices were further 

thresholded into 41 densities ranging from 0.10 to 0.50 with an increment 

interval of 0.01. At each density, only the connections with correlation 
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coefficients higher than the given threshold were kept as true internode 

connections in the matrices. The density range was based on common practice in 

the literature and on empirical data where small-world networks are present 

within the range (Achard S and E Bullmore 2007; Cao H et al. 2014; Cao H et al. 

2016). Afterwards, edges in binary networks were defined by assigning a value 

of 1 to the connections that survived a given threshold, and edges in weighted 

networks were given as the original correlation coefficients of the survived 

connections. For both binary and weighted networks, a value of 0 was assigned 

to the connections that did not survive a given threshold. As a result, four 

adjacency matrices were generated for each scan: 90 x 90 binary matrix, 90 x 90 

weighted matrix, 270 x 270 binary matrix and 270 x 270 weighted matrix. Graph 

theory based brain network measures were subsequently calculated from these 

derived matrices. 

 

Graph theoretical measures for functional connectomes 

We computed a series of graph-based connectomic measures that are commonly 

reported in the literature evaluating the network connectivity strength, network 

segregation and integration, small-world and modular structures, assortative 

and hierarchical organizations and nodal centrality. These measures can be 

generally divided into two categories: global measures and local measures. The 

global measures quantify the characteristics of brain system as an entity, which 

include: 

1) Mean connectivity: mean of all elements in the correlation matrix; 

2) Small-worldness: an index assessing the combination of network segregation 

(clustering) and network integration (path length); 

3) Transitivity: normalized global metric of network clustering; 

4) Characteristic path length: average shortest path length between all pairs of 

nodes in the network; 

5) Global efficiency: average inverse of shortest path length between all pairs of 

nodes in the network; 

6) Modularity: degree to which the network can be divided into 

non-overlapping communities; 

7) Number of modules: number of communities the network can be divided 

into; 

8) Assortativity: tendency for nodes to be connected with other nodes of the 
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same or similar degree; 

9) Hierarchy: power law relationship between degree and clustering 

coefficients for all nodes in the network. 

 

Accordingly, the local measures quantify the properties of each network node, 

including: 

1) Node strength: mean connectivity of a given node; 

2) Node diversity: variance of connectivity of a given node; 

3) Node degree: number of links connected to a given node; 

4) Clustering coefficient: proportion of node’s neighbors that are also neighbors 

of each other; 

5) Node path length: average path length between a given node and all other 

nodes in the network; 

6) Local efficiency: inverse of shortest path length for a given node; 

7) Betweenness centrality: fraction of shortest paths in the network that pass 

through a given node; 

8) Within-module degree: local degree of a given node in its own module 

relative to other nodes; 

9) Participation coefficient: ability of a given node in connecting different 

modules relative to connecting its own module. 

 

All measures were computed using the Brain Connectivity Toolbox (BCT, 

https://sites.google.com/site/bctnet/). For a more detailed description of these 

graph theoretical measures, please refer to the previous publications (Bullmore 

E and O Sporns 2009; Rubinov M and O Sporns 2010; Bullmore ET and DS 

Bassett 2011). Of note, the computations for small-worldness and modular 

partitions were based on 100 network randomizations, and Louvain greedy 

algorithm was used for the optimization of modularity quality function Q (with 

resolution parameter γ = 1)(Newman ME 2006; Blondel VD et al. 2008). After 

computation, all derived connectomic measures were averaged across all 

densities to ensure that results were not biased by a single threshold. 

 

Assessment of reliability using generalizability theory 

Generalizability theory 
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Details of generalizability theory have been described in the supplementary 

materials. In brief, generalizability theory is an extension of classical test theory 

with intra-class correlation coefficients (ICC) as index of reliability (Shrout PE 

and JL Fleiss 1979; Barch DM and DH Mathalon 2011; Cao H et al. 2014). It 

pinpoints the source of different systematic and random variances by 

decomposing the total variance into different facets of measurement (Shavelson 

RJ and NM Webb 1991; Barch DM and DH Mathalon 2011). Here, the total 

variance of the outcome measures (σ2(Xpsd)) were decomposed into 1) the 

participant-related variance σ2(p), 2) the scan site-related variance σ2(s), 3) the 

session-related variance σ2(d), 4) their two-way interactions σ2(ps), σ2(pd), 

σ2(sd), and 5) their three-way interaction and random error σ2(psd,e)(Shavelson 

RJ and NM Webb 1991; Noble S et al. 2016). 

 

σ2(Xpsd) = σ2(p) + σ2(s) + σ2(d) + σ2(ps) + σ2(pd) + σ2(sd) + σ2(psd,e) 

 

The reliability coefficients are then calculated in terms of the participant-related 

variances and variances of interest, which are analogous to the ICC values 

derived from classical test theory (Shavelson RJ and NM Webb 1991). Similar to 

ICC estimates, the reliability coefficients in generalizability theory include 

G-coefficient (Eρ
2) and D-coefficient (�), which evaluate relative consistency and 

absolute agreement of the target measures, respectively (Shavelson RJ and NM 

Webb 1991). 
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where n(i) represents the number of levels in factor i. According to established 

criteria (Shrout PE and JL Fleiss 1979; Cao H et al. 2014; Forsyth JK et al. 2014), 

both G- and D-coefficients can be interpreted as: poor reliability (< 0.4); fair 

reliability (0.4 - 0.59); good reliability (0.6 – 0.74); and excellent reliability (> 

0.74). 
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Generalizability theory can be applied to two types of studies, namely, the 

generalizability study (G-study) and the decision study (D-study). In the G-study, 

the reliability coefficients are estimated based on the facets and their levels in 

the studied sample (here n(s) = 8, n(d) =2)(Shavelson RJ and NM Webb 1991; 

Forsyth JK et al. 2014), while in the D-study, the researchers define the universe 

they would like to generalize into, which may contain some or all of the facets 

and levels in the overall universe of observations (Shavelson RJ and NM Webb 

1991; Noble S et al. 2016). Since in a neuroimaging “big data” context, a “nested” 

design is commonly used where each participant is scanned once only at one site 

and different subjects could be scanned on any number of different scanners, the 

expected site- and session-related variances would be higher than those in a 

balanced design as used in this study (Lakes KD and WT Hoyt 2009). We 

therefore recomputed the reliability coefficients to generalize our results to n(s) 

= 1 and n(d) = 1, which correspond to the expected reliability in a “nested” 

design with distinct subjects between sites and sessions. 

 

Statistics 

We performed both G- and D-studies on each of the examined graph properties. 

For each study, the measurement variances were decomposed using a three-way 

analysis of variance (ANOVA) model, where graph properties were entered as 

dependent variables and subject, site and session were entered as random-effect 

factors. The estimated variances for each factor were then subjected to the 

reliability coefficients formula, and G- and D-coefficients for each of the graph 

properties were calculated. This procedure was repeated for each processing 

scheme and each paradigm. 

 

We then used the resulting coefficients to explore several scientifically 

interesting questions. In particular, we asked 1) whether there were significant 

reliability differences between global and local properties; 2) whether different 

processing schemes (i.e. AAL binary, AAL weighted, Power binary, Power 

weighted) resulted in significant differences in reliability measures; and 3) 

whether different fMRI paradigms (i.e. WM, EM encoding, EM retrieval, EP, RS) 

generated similar reliability. Here, a repeated-measures ANOVA was employed 

to answer these questions, where reliability measures for each property were 

given as dependent variable, processing scheme and fMRI paradigm were set as 
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within-subject factors, and property type (global and local) was set as a 

between-subject factor. The main effects for each of the factors were then 

estimated. 

 

Node-wise reliability in D study 

Given the fact that the D study yielded significantly lower mean reliability than 

the G study (see Results), particularly for measures of nodal centrality (i.e. 

degree, betweenness, within-module degree, participation coefficient), we 

further probed the reliability of centrality measures for each node in the D study, 

in order to ascertain the most reliable nodes in the brain in different paradigms. 

Here, we only utilized weighted networks to maximize reliability and minimize 

confounds, since binary networks were shown to be significantly less reliable 

than weighted networks (see results). The reliability computation followed the 

same procedure as described above. 

 

Comparison of statistical power between multisite and 

single-site studies 

The ultimate goal of performing a multisite study is to boost statistical power. 

However, since multisite studies introduce variance related to different scanners, 

which is not the case with single-site studies, the resulting decrease in reliability 

would likely lead to loss of power. For this reason, we further estimated the 

minimal sample size that is required for a multisite study to achieve comparable 

power to that of a single-site study. Here, we first probed reliability differences 

of connectomic measures between a multi-site study and a single-site study 

where all subjects were scanned on the same scanner. Using D study formula, the 

G coefficients of all examined measures were recalculated for each of the eight 

sites. For each site (16 scans with 8 subjects and 2 sessions), three variance 

components were considered: subject, session and subject M session. The 

reliability coefficients were computed in terms of these three components and 

then averaged across all eight sites. By this procedure we acquired the empirical 

estimates evaluating the reliability for a single-site study.  

 

In a situation of perfect reliability (r = 1), the effect size of measurement equals 

its “true” effect size. However, the effect size attenuates when the reliability of 
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measurement decreases. Therefore, low reliability would bias the “true” effect 

size of the measurement and in turn lead to power loss (Cohen J 1988). Here, we 

calculated the empirical effect sizes for all graph measures based on their 

reliability coefficients in multisite and single-site study context. We considered a 

set of “true” effect sizes ranging from 0.3 to 0.9 (interval of 0.2) to mimic 

different levels of effect size in a case-control study (small: 0.3; medium: 0.5; 

large: 0.7; very large: 0.9; (Cohen J 1988)). The effect sizes for each measure 

were computed according to Cohen’s formula (Cohen J 1988): 

 

����	 �  �����	   ������	 

 

where ES’(m) is the “true” effect size of the given measurement, rel(m) is the 

reliability of the measurement, and ES(m) is the derived effect size under that 

reliability estimate. The percent changes of effect size between multisite and 

single-site studies were subsequently acquired for each measurement (see Table 

S15). 

 

The power estimations were performed using the R statistical power analysis 

toolbox pwr (https://cran.r-project.org/web/packages/pwr/index.html). Here, 

for each of the “true” effect sizes, we calculated statistical power across a range 

of sample sizes for both multisite and single-site studies. This generated a set of 

functions depicting the relationship between statistical power and sample size 

for both studies and thus provided the information on the optimal sample sizes 

for each measure in a multisite study context.  

 

Comparison of different data aggregation approaches 

We further addressed another practical question: at which level should we 

aggregate data from separate runs of a paradigm? For example, one could merge 

the outcomes by computing the connectomic measures for each scan run 

separately and then averaging the derived measures from multiple runs. 

Alternatively, one could merge the original data by concatenating time series 

from multiple runs and then computing the connectomic measures from the 

concatenated time series. We refer the former as the “merging results” approach 

and the latter as the “merging raw data” approach. Previous research has shown 
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that concatenation of time series using single-session data dramatically 

decreases reliability (Cao H et al. 2014), suggesting that “merging raw data” may 

not be an optimal choice for data aggregation. However, by using single-session 

data, splitting and concatenation of time series would also lead to the decrease of 

number of time points, bringing difficulty in the interpretation of the observed 

reliability changes. Therefore, it would be important to investigate whether the 

same reliability results apply to data concatenation by using scans from multiple 

sites and/or sessions. Since concatenation of multiple scans would dramatically 

increase the number of time points and thus benefit reliability, any reliability 

reductions in the context of merged data would be most likely due to the 

concatenation method itself. 

 

Here, we aimed to give a direct comparison of reliability measures derived from 

“merging results” and “merging raw data” approaches, in order to inform a 

superior data aggregation approach in a multisite, multisession study. The EP 

task used in this study offered an opportunity to explicitly investigate this 

question since it comprised two consecutive identical runs on each scan day (5.5 

min each, see text above). Here, by “merging raw data” the preprocessed time 

series of both runs were concatenated and brain graph measures were computed 

from the concatenated time series (i.e. 11 min). In contrast, by “merging results” 

the graph measures were computed for each run separately and then averaged 

to acquire the mean measures for both runs. We subsequently calculated the 

reliability coefficients for the resulting measures from both approaches. A 

repeated-measures ANOVA model was employed to compare the reliability 

differences between these two approaches and single session, with the 

processing approach as within-subject factor and reliability measures as 

dependent variable. 

 

 

Results 

Brain graph reliability for each paradigm 

Overall, in the context of the 8-site, 2-session study, we observed fair to excellent 

reliability for almost all computed measures in all paradigms, regardless of 

processing scheme (Fig. 2A-2E, Fig. S1A-S1E). The only exceptions for this were 
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measures of assortativity and hierarchy during resting state, two second-order 

metrics that showed relatively poor reliability using the AAL atlas (Eρ
2 < 0.36, � < 

0.31) and fair reliability using the Power atlas (0.47< Eρ
2 < 0.48, 0.43 < � < 0.46). 

Among the remainder, the most reliable measures were mean connectivity (0.90 

< Eρ
2 < 0.91, � = 0.88 for all schemes), transitivity (0.79 < Eρ

2 < 0.92, 0.75 < � < 

0.89 for all schemes), global efficiency (0.80 < Eρ
2 < 0.92, 0.75 < � < 0.89 for all 

schemes) and node strength (0.87 < Eρ
2 < 0.88, 0.84 < � < 0.85 for all schemes). 

In addition, small-worldness, local efficiency, path length, clustering coefficient 

and modularity also showed excellent reliability when using the Power atlas and 

weighted networks (0.84 < Eρ
2 < 0.88, 0.81 < � < 0.85) (Table S3). 

 

The reliability of brain graphs constructed from scans involving cognitive tasks 

showed a general advantage compared with those from the resting state (Fig. 

2B-2E, Fig. S1B-S1E). In particular, all computed measures with all processing 

schemes demonstrated good to excellent reliability in terms of G coefficients for 

the working memory and episodic memory encoding paradigms (0.64 < Eρ
2 < 

0.95, 0.57 < � < 0.93). Similar results also applied to the episodic memory 

retrieval and emotional processing paradigms (0.64 < Eρ
2 < 0.95, 0.58 < � < 0.94), 

with hierarchy as the only exception with fair to excellent reliability (0.50 < Eρ
2 < 

0.82, 0.47 < � < 0.78). Notably, when using Power weighted networks, almost all 

measures from all tasks showed excellent reliability (0.74 < Eρ
2 > 0.95, 0.70 < � < 

0.94). The only exceptions here were hierarchy and modular numbers, with fair 

to good reliability during working memory and emotional processing (0.50 < Eρ
2 

< 0.73, 0.48 < � < 0.72) and good reliability during episodic memory encoding 

(Eρ
2 = 0.72, � = 0.70), respectively (Tables S5, S7, S9, S11). 

 

In the D-study with Nsites=1 and Nsessions=1, we found dramatically reduced 

reliability compared with G-study, particularly when analyzed with binary 

networks (0.06 < Eρ
2 < 0.69, 0.06 < � < 0.66 for all paradigms, Fig. 3A-3E, Fig. 

S2A-S2E). Nevertheless, a few measures still showed fair to good reliability 

across all paradigms and across both atlases, though only for weighted networks. 

These included measures assessing network connectivity strength (e.g., mean 

connectivity, node strength, 0.48 < Eρ
2 < 0.70, 0.46 < � < 0.67 for all paradigms) 

and network segregation and integration (e.g., path length, efficiency, transitivity, 

0.40 < Eρ
2 < 0.70, 0.39 < � < 0.67 for all paradigms) (Tables S4, S6, S8, S10, S12). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160440doi: bioRxiv preprint 

https://doi.org/10.1101/160440


Other measures, such as small-worldness and number of modules, also reached 

fair to good reliability in the working memory, episodic memory retrieval and 

emotional processing tasks (0.41 < Eρ
2 < 0.59, 0.39 < � < 0.58). Together, these 

findings suggest that measures of network connectivity and network segregation 

and integration are the most reliable measures in human functional 

connectomics, even when pooling data in which different subjects are scanned 

once on different scanners. 

 

Reliability comparisons between paradigms, processing 

schemes and property types 

For both G- and D-studies, the results revealed that fMRI paradigms (F > 11.00, P 

< 0.001) and processing schemes (F > 8.14, P < 0.001) significantly influenced 

reliability coefficients (Figs. 2F, 3F). Specifically, graph measures computed from 

all cognitive tasks showed higher reliability than those from resting state (F > 

5.05, P < 0.04). Within cognitive tasks, working memory and episodic memory 

retrieval paradigms showed higher reliability than episodic memory encoding 

and emotional processing paradigms (F > 9.49, P < 0.007). In terms of processing 

schemes, both AAL weighted and Power weighted networks had higher reliability 

than AAL binary and Power binary networks (F > 8.22, P < 0.01), suggesting that 

the use of weighted networks would increase reliability in multi-center 

functional connectomics studies. In contrast, property types (global and local) 

did not show significant effects on reliability coefficients (F < 1.44, P > 0.25), 

suggesting that global and local properties are equally reliable. 

 

Variance components of functional graph measures 

We report the results of variance isolation derived from the Power weighted 

networks here, since this scheme in general yielded the highest reliability (Figs. 

2-3). Overall, for all properties in all paradigms, the three largest variance 

components were participant, participant M site and participant M site M session 

(Figs. S3-S7). These three components together accounted for more than 80% of 

the total variance for almost all properties. In contrast, session-related variance 

was the smallest, less than 1% of the total variance for most properties. In 

addition, site-related variance was much smaller (2 to 15 times) than 

participant-related variance for all properties. These results indicate that 
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between-subject variance is much larger than within-subject variance in 

functional connectomics studies using multisite, multisession data, a property 

that makes graph theoretical analysis useful for big data applications. 

 

For resting state, the proportion of variance attributed to participant ranged 

between 9% and 49%, with the highest proportion in relation to global efficiency 

and lowest in relation to hierarchy. For the cognitive tasks, the participant 

variance ranged between 21% and 64%. Here, the property with the highest 

participant-related variance was mean connectivity, which accounted for about 

60% of the total variance for each task. Other properties with high 

participant-related variance included measures of network segregation and 

integration (path length, transitivity, clustering coefficient, efficiency) and node 

strength, which in general accounted for around 50% of the total variance for 

each task. In contrast, participant-related variance represented a low proportion 

(less than 40% of the total) for measures of small-worldness, modularity, 

hierarchy and nodal centrality (degree, betweenness, within-module degree, 

participation coefficient). These results suggest that graph properties evaluating 

network segregation and integration are more trait-related measures, while 

those evaluating small-world organization, modular structure and centrality are 

more state-related measures. 

 

Node-wise reliability in D study 

We found that cognitive tasks had considerably more reliable nodes than resting 

state for all centrality measures with both AAL and Power atlases (Fig. 4). 

Interestingly, the reliable nodes highly overlapped between the four cognitive 

paradigms. With both AAL and Power atlases, the reliable nodes (0.40 < Eρ
2 < 

0.76) mainly mapped to the fronto-parietal system (e.g., superior, middle and 

inferior frontal gyri, superior and inferior parietal lobules), default-mode system 

(e.g., medial frontal cortex, angular gyrus, precuneous, superior and middle 

temporal gyri, temporal pole), visual system (e.g., superior and middle occipital 

gyri, fusiform gyrus, calcarine sulcus, cuneous), limbic system (e.g. cingulate 

cortex, orbitofrontal cortex, parahippocampal gyrus, amygdala, hippocampus, 

insula), sensori-motor system (e.g., precentral gyrus, postcentral gyrus, 

supplementary motor area, paracentral lobule) and subcortex (e.g., caudate, 

pallidum, thalamus)(Fig. 4, Tables S13,S14). 
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In contrast to the results for task paradigms, the resting state in general showed 

fewer reliable nodes, in particular when using the AAL atlas. Here, hardly any 

nodes had a G coefficient Eρ
2 > 0.4 for all centrality measures (Fig. 4, Table S13), 

indicating poor feasibility of aggregating “nested” data for the investigation of 

nodal centrality in resting state with the AAL atlas. In terms of the Power atlas, 

the reliable nodes (0.40 < Eρ
2 < 0.63) were mainly distributed in the 

default-mode system (e.g., medial frontal cortex, angular gyrus, precuneous, 

superior and middle temporal gyri), visual system (e.g., middle and inferior 

occipital gyri, lingual gyrus), and sensori-motor system (e.g., precentral gyrus, 

postcentral gyrus, supplementary motor area, paracentral lobule) (Table S14). 

Notably, these systems were part of the reliable systems found in cognitive tasks, 

suggesting that the reliability distribution of nodal centrality consists of a set of 

systems that is independent of active tasks and another set of systems that is 

reliable only when tasks are presented. 

 

Comparison of statistical power in multisite versus single-site 

studies 

The reliabilities of all connectomic measures were substantially higher in the 

single-site study compared with the multisite study context. As in the multisite 

study, measures of connectivity strength, network segregation and integration 

had highest reliability of all measures in the single-site study. In addition, 

measures of hierarchy, modular structure, node diversity and centrality were 

considerably more reliable in the single-site study than in the multisite study 

(Table S15). 

 

The power analysis revealed that with a small effect size (d = 0.3), a considerably 

large total sample size (600 to 1000) was required for all examined properties to 

gain an adequate level of power (i.e., ≥ 0.8) (Figs. 5, S8). However, with an 

increase of effect size, the sample size required to achieve adequate power was 

dramatically decreased. For the most reliable measures including network 

connectivity, network segregation and integration, only 200 to 250 subjects in 

total were needed to detect a medium effect (d = 0.5), only 100 to 150 to detect a 

large effect (d = 0.7), and only < 100 to detect a very large effect (d = 0.9) (Fig. 5). 
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In contrast, for relatively less reliable measures such as hierarchy and nodal 

centrality, a total sample size of > 150 was required even with a very large effect 

size (d = 0.9). 

 

Comparison of data pooling methods 

By merging results from both runs, reliability of all studied graph measures 

increased compared with those derived from a single scan (Figs. S9-S10). In 

contrast, the “merging raw data” approach reduced reliability for almost all 

measures. A direct comparison between the two methods demonstrated a 

significant difference in graph reliability, where “merging results” approach 

yielded a significantly higher reliability than a single run (t > 4.31, P < 0.001) and 

“merging raw data” approach (t > 3.93, P < 0.001) in both G- and D-studies. 

Moreover, graph measures derived from single run showed significantly higher 

reliability than those derived from “merging raw data” approach in both G- and 

D-studies (t > 2.28, P < 0.04). These results support the superiority of using a 

“merging results” approach in data aggregation in the study of human functional 

connectomes. 

 

 

Discussion 

This study investigated a fundamental question in human functional 

connectomics research: how feasible is it to aggregate multisite fMRI data in 

large consortia? Our results demonstrated that 1) the connectomic measures 

derived from different sites and sessions showed generally fair to good reliability, 

particularly for measures of connectivity strength, network segregation and 

network integration; 2) the reliability of connectomic measures varied between 

different fMRI paradigms, with cognitive tasks significantly more reliable than 

resting state; 3) choice of processing schemes significantly influenced reliability, 

with weighted networks more reliable than binary networks; 4) the most reliable 

nodes in the brain differed between rest and tasks; 5) a total sample size of 250 

participants or more was sufficient for case-control studies in multisite 

functional connectomics research if the effect size of group differences is at least 

moderate (≥ 0.5); and 6) different data aggregation approaches significantly 

affected outcomes, with “merging results” approach superior than “merging raw 
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data” approach. These results provide direct evidence for the feasibility of 

pooling large sets of functional data in human connectomics and provide useful 

guidelines for sample size, data analysis approaches, and aggregation methods 

that equate with adequate levels of reliability and statistical power. 

 

Overall reliability of functional graph measures 

The graph modelling of human connectomes quantifies a series of topological 

measures evaluating the organization of the brain system. This typically includes 

measures for network connectivity, network integration and segregation, 

small-world and modular structures, assortative and hierarchical organizations, 

and node centrality (see (Bullmore E and O Sporns 2009; Rubinov M and O 

Sporns 2010) and Methods). Here, using our multisite, multisession data, we 

found that the vast majority of these measures were reasonably reliable during 

both resting state and cognitive tasks. This finding is in line with previous studies 

using test-retest data, where fair to excellent test-retest reliability have been 

shown for functional graph metrics in various fMRI paradigms, including resting 

state (Braun U et al. 2012; Cao H et al. 2014; Welton T et al. 2015; Termenon M et 

al. 2016), working memory (Cao H et al. 2014), emotional processing (Cao H et al. 

2014) and attentional control (Telesford QK et al. 2010). These prior publications 

and our present data suggest that the graph theory based connectomic measures 

are associated with overall high between-subject variance and relatively lower 

within-subject variance. Indeed, our analyses revealed that subject-related 

variance was one of the largest components for almost all examined properties in 

all paradigms. In contrast, within-subject variance such as scan site- and 

session-related variance, were found to be much smaller than subject-related 

variance, suggesting the feasibility of using graph based measures in the study of 

human functional connectomes in large consortia. Notably, two other relatively 

large components were the subject M site and subject M site M session 

interactions. This pattern is also consistent with previous findings in brain 

activity measures during working memory (Forsyth JK et al. 2014) and emotional 

processing (Gee DG et al. 2015). These results suggest that many fMRI measures 

are sensitive to factors such as subject alertness, diurnal variations, situational 

distractions, and variations in head placement, among others (Meyer C et al. 

2016). Because these factors were not controlled in our traveling subjects study, 

and indeed are difficult to homogenize across sites and time, the reliability 
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coefficients presented here likely represent a lower bound estimate of reliability 

(i.e., theoretically higher reliabilities would be obtained with greater 

standardization of time of day, head positioning, subject alertness, etc.). 

 

Interestingly, some of the examined graph properties were associated with 

particularly high proportions of subject-related variance during the cognitive 

tasks, including measures of connectivity strength (e.g., mean connectivity, node 

strength), network segregation (e.g., clustering coefficient, transitivity) and 

network integration (e.g., path length, global/local efficiency). For these 

measures, approximately 50%-60% of total variances were attributed to subjects, 

indicating that subject-related variance was larger than any other components. 

As a result, higher reliabilities have been detected for these metrics compared 

with others. When generalized to the context in which different subjects are 

scanned once on different scanners, fair to good reliabilities were still evident for 

these properties. Since a similar pattern has also been reported in the previous 

test-retest studies (Telesford QK et al. 2010; Cao H et al. 2014; Termenon M et al. 

2016), these results suggest that graph properties for connectivity strength and 

network segregation and integration are particularly robust across scan sites and 

scan sessions and are thus possibly reflective of stable, participant-specific 

features of brain organization. In contrast, measures assessing the small-world 

and modular structures (e.g., small-worldness, modularity, number of modules) 

and nodal centrality (e.g., degree, betweenness, within-module degree, 

participartion coefficient) had in general equal proportions of subject-related 

and error-related components, suggesting that these measures are to a greater  

degree sensitive to within-subject factors and thus potentially more state-related. 

Prior work has shown that measures of network segregation and integration are 

highly heritable (Smit DJ et al. 2008; Fornito A et al. 2011), while measures of 

small-world and modular structures are dynamic during different behavioral and 

cognitive states such as finger tapping (Bassett DS et al. 2006), motor learning 

(Bassett DS et al. 2011; Bassett DS et al. 2015) and memory (Braun U et al. 2015). 

These findings converge with our results in suggesting that trait- and 

state-related characteristics of brain functional systems may be captured by 

different graph based connectomic measures. 

 

Effects of fMRI paradigms on reliability 
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We observed a significant effect of fMRI paradigm on graph reliability. Specifically, 

cognitive tasks were observed to produce more reliable network diagnostics than 

resting state in our study. This is in agreement with a previous finding that graph 

properties derived from a working memory task exhibited higher test-retest 

reliability than those from resting state (Deuker L et al. 2009). Notably, while the 

vast majority of reliability studies to date have focused on resting state, little 

research has been done on the direct comparison of graph reliability between 

rest and tasks (Welton T et al. 2015). The only two studies available in the 

literature, however, have drawn different conclusions (Deuker L et al. 2009; Cao 

H et al. 2014). While it is still an open question whether resting state or cognitive 

tasks would yield higher reliability, our present data have provided new evidence 

that connectomic measures computed from tasks are more reliable than those 

from rest. This pattern may relate to at least two factors. First, compared to the 

“mind-unconstrained” resting state, subjects’ behaviors and cognitions are well 

controlled by the given task paradigms, which require considerably more 

attentional effort. Second, since resting state involves the engagement of 

internally focused thoughts such as introspection, future envisioning and 

autobiographical memory retrieval (Buckner RL et al. 2008), it is by nature more 

vulnerable to state-related within-subject factors such as mood, tiredness, 

diurnal variations, and scan environment. In addition, another possible 

interpretation for the higher reliability of cognitive tasks would be the generally 

longer time series in tasks compared with rest. To keep the integrity of task time 

series, we did not arbitrarily discard any task-related time points to match the 

length of resting state, which may to some degree confound our results. However, 

given the evidence that the detected reliability differences between rest and 

tasks were qualitatively the same in length-matched and length-unmatched time 

series in previous studies (Deuker L et al. 2009; Cao H et al. 2014), it is highly 

unlikely that our results are mainly driven by this discrepancy. 

 

Another interesting finding between paradigms is the significant reliability 

differences between cognitive tasks. Here, the working memory and episodic 

memory retrieval tasks are significantly more reliable than episodic memory 

encoding and emotional processing tasks. This finding is not too surprising given 

that working memory paradigms have repeatedly been shown to be more 

reliable than emotional processing (Plichta MM et al. 2012; Cao H et al. 2014; 
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Forsyth JK et al. 2014; Gee DG et al. 2015), possibly due to strong habituation 

effects in the emotional tasks (Breiter HC et al. 1996; Johnstone T et al. 2005; 

Plichta MM et al. 2012) and additional attentional efforts in the more demanding 

memory tasks (Cao H et al. 2014). The higher reliability of episodic memory 

retrieval compared with encoding has also been previously reported in terms of 

fMRI activation measures (Clement F and S Belleville 2009). This reliability 

difference may relate to the choice of performance strategies and intrinsic 

learning effects associated with the encoding paradigm, which renders the 

encoding phase less reliable than the retrieval phase. 

 

Effects of processing schemes on reliability 

Our study also found a significant effect of processing scheme on the reliability of 

connectomic measures. Specifically, weighted networks were more reliable than 

binary networks using both AAL and Power atlases, particularly in the D study 

context. Unlike binary networks that have simplified network structures by 

setting the strength of all edges with the same value of one, weighted networks 

preserve the original information on network connectivity strength. As a result, 

weighted networks can characterize the real network topology more precisely 

and thus promote reliability. This finding encourages the use of weighted 

networks instead of binary networks in functional connectomic studies with big 

data. In addition, although previous research has identified a significant 

difference in graph reliability between AAL and Power atlases (Cao H et al. 2014), 

we failed to replicate this finding. Notably, although a trend towards higher 

reliability with the Power atlas was seen in binary networks (Figs 2F, 3F) which 

is consistent with the prior finding, this difference was not observed in the 

weighted networks. Together, our results suggest that both anatomic and 

functional atlases are feasible in functional connectomic research when weighted 

networks are employed. 

 

Reliable nodes in rest and tasks 

Across both resting state and cognitive tasks, the reliable nodes were 

predominantly distributed in the default-mode, visual and sensori-motor 

systems. This result is highly parallel to the results of a recent study using the 

Human Connectome Project (HCP) test-retest data (Termenon M et al. 2016), 
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where exactly the same distribution was reported for the resting state. 

Interestingly, all these three systems serve as the primary functional systems in 

the human brain. Default-mode network is involved in brain’s resting state and 

becomes active when individuals are focused on internal thoughts (Buckner RL 

et al. 2008). The visual system is directly associated with the visual functioning of 

the experimental paradigms, and the sensori-motor system may relate to the 

motor response during active tasks and the sensation of environment changes 

during resting state. The function of these systems makes them plausible to be 

more robust than other systems independent of fMRI paradigms. 

 

Besides the above systems, the cognitive tasks also showed high reliability for 

nodes in the fronto-parietal, limbic and subcortical systems. Notably, these 

systems are pivotal to human cognitive functions such as memory (Prabhakaran 

V et al. 2000; McNab F and T Klingberg 2008) and emotion recognition (Phillips 

ML et al. 2003) and are strongly associated with the memory-emotion task 

battery used in this study (Forsyth JK et al. 2014; Gee DG et al. 2015). Together, 

these findings suggest that the cognitive tasks would increase the reliability of 

the multimodal cognitive-emotional systems, while the primary functional 

systems are consistently robust through different brain states/imaging 

paradigms. 

 

Statistical power for multisite and single-site studies 

By calculating reliability for each single site, we found that the reliability 

distribution followed the same pattern as that in the multisite study, where 

measures of connectivity strength, network segregation and integration showed 

highest reliability. This finding is in good agreement with previous studies using 

single-site data (Telesford QK et al. 2010; Cao H et al. 2014; Termenon M et al. 

2016). Notably, there was the least amount of drop-off in terms of comparative 

reliability of these measures when comparing the single site study to the 

multisite study context. In contrast, measures with relatively low reliabilities 

became considerably less reliable when using the multisite design, suggesting 

that these lower reliability measures are more vulnerable to loss of power in a 

multisite study. 

 

The follow-up power analysis demonstrated that, although a considerably larger 
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sample size is required to compensate for power loss in a multisite study when 

the effect size is small, with medium to large effects, sample sizes required for 

adequate to excellent power are in the range typical of consortium studies (i.e., 

total N of 200 to 500). In particular, for measures with relatively high multisite 

reliability (i.e., connectivity strength, network segregation and integration), the 

sample size needed for 80% power can be as small as 250 for a medium effect, 

150 for a large effect, and approximately 50 for a very large effect. Interestingly, a 

recently study using simulated data also found that approximately 120 subjects 

per group are sufficient to yield satisfying power for network connectivity 

measures in multisite studies (Dansereau C et al. 2017). Since a total sample size 

larger than 250 subjects is increasingly common in large consortia, we conclude 

that most functional connectomic studies using big data are likely to be 

reasonably well-powered. 

 

Effects of data pooling methods on reliability 

By comparing two data pooling approaches, we found that “merging results” is 

associated with significantly better reliability of brain graph measures compared 

with the “merging raw data” approach. This result is consistent with previous 

work using single-session data that also revealed a significant decrease of graph 

reliability by the chopping and concatenation of fMRI time series (Cao H et al. 

2014). Notably, our current finding was derived from the concatenation of data 

from two identical runs, which increased the total number of time points by a 

factor of two. Considering this, the reliability change reported here is most likely 

induced by the “concatenation” approach itself rather than the loss of data points. 

While speculative, the poor performance of “concatenation” approach may relate 

to the modification of the fundamental characteristics of original fMRI series 

such as signal frequency, which renders the concatenated signals particularly 

sensitive to physiological noise and other artifacts (Gavrilescu M et al. 2008). In 

contrast, the average of graph properties computed from separate runs 

significantly increased reliability. This result is intuitive since the mean 

calculation of multi-run data statistically reduces run-specific noise and thus 

boosts reliability. 

 

Limitations 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160440doi: bioRxiv preprint 

https://doi.org/10.1101/160440


We acknowledge several methodological limitations for our study. First, although 

we have constructed brain networks with several different processing schemes in 

this work, the reliability estimates computed in this study are still dependent 

upon the methodological choices that were not varied in the processing stream, 

such as the preprocessing pipeline (Braun U et al. 2012), filter frequency (Deuker 

L et al. 2009; Braun U et al. 2012) and selected thresholds (Schwarz AJ and J 

McGonigle 2011; Termenon M et al. 2016). Second, while we have provided data 

on a set of commonly used fMRI experiments evaluating the cognitive, emotional 

and resting functions of the brain, our results are nevertheless influenced by the 

employed paradigms, and it is possible that results could vary with other task 

paradigms. Third, our reliability study is based on a balanced design where each 

subject is evaluated at all of the different sites across two sessions. This is 

different from a more commonly used “nested” design in which different subjects 

are evaluated on different scanners. We sought to generalize our results to mimic 

this situation using the D-study extension, where we are essentially modeling 

how well one scan randomly sampled from among the set of 16 scans available 

for each subject reflects their “true” score for each graph property. Fourth, except 

for several basic factors such as demographics, head motion and task response 

rate, we did not deliberately perform a strict quality control on our data. This is 

to mimic the situation in large consortia in which data from different sites and 

sessions may not be well balanced and thus can be influenced by a set of 

physiological, psychological and neuroimaging factors. Since these confounds 

would generally increase variances unrelated to subject and thus decrease the 

outcome reliability (Gorgolewski KJ et al. 2013), our results are likely to 

underestimate the reliability that would obtain in a perfectly matched dataset. 

Fifth, given that sample size has a significant effect on reliability estimates 

(Termenon M et al. 2016), the functional connectomic measures would 

potentially be even more reliable in larger datasets such as the HCP (Van Essen 

DC et al. 2013) and the 1000 Connectome Project (Biswal BB et al. 2010) 

compared to our sample of 8 traveling subjects. Last but not least, while our 

results are derived from a group of healthy participants, further investigations 

are still warranted to test these reliability findings in clinical populations. 

 

Conclusions 

In conclusion, this multisite, multisession reliability study has revealed overall 
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fair to good cross-site reliability for a majority of graph based functional 

connectomic measures during both resting state and cognitive tasks, with 

particularly high reliability for measures of connectivity strength, network 

segregation and network integration. The detected reliabilities are influenced by 

fMRI paradigms and network construction schemes, with higher reliabilities 

detected for graphs generated from task-based fMRI and weighted networks. 

Moreover, this study identified a differential distribution of most reliable brain 

nodes in resting and task-based data, and provided empirical evidence that 

satisfactory statistical power can be acquired with a total of 250 subjects in a 

multisite study when the effect size is medium. Finally, we demonstrated the 

superiority of a “merging results” approach compared with a “merging raw data” 

approach in terms of data aggregation. Our findings offer direct evidence for the 

feasibility of pooling large set of fMRI data for both rest and tasks in large 

consortia and encourage the use of multisite, multisession scans to promote the 

power for human functional connectomics. 
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Fig. 1 Diagram of the data processing pipeline used in the study. The time series 

were extracted from five fMRI paradigms using two different brain atlases, and 

binary and weighted brain networks were subsequently constructed from the 

extracted time series. Generalizability theory with both G-and D-study 

parameterization were employed to investigate the reliability of the graph based 

connectomic measures computed from these networks. See Methods for details. 
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Fig. 2 The reliability outcomes (G coefficients) for examined graph properties, 

paradigms and processing schemes in the G study context, wherein Nsites=8 and 

Nsessions=2 (panel A: resting state; panel B: working memory; panel C: episodic 

memory encoding; panel D: episodic memory retrieval; panel E: emotional 

processing). Panel F shows the statistical comparison between different 

paradigms and schemes by averaging all graph properties. The orange dashed 

lines indicate the level of fair reliability (M 0.4) and the red dashed lines indicate 

the level of good reliability (M 0.6). 
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Fig. 3 The reliability outcomes (G coefficients) for examined graph properties, 

paradigms and processing schemes in the D study context, wherein Nsites=1 and 

Nsessions=1, simulating the design of the typical “big data” application involving 

pooling of data from different scanning sites (panel A: resting state; panel B: 

working memory; panel C: episodic memory encoding; panel D: episodic memory 

retrieval; panel E: emotional processing). Panel F shows the statistical 

comparison between different paradigms and schemes by averaging all graph 

properties. The orange dashed lines indicate the level of fair reliability (M 0.4). 
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Fig. 4 The most reliable nodes in terms of nodal centrality measures in the D 

study context, wherein Nsites=1 and Nsessions=1, simulating the design of the typical 

“big data” application involving pooling of data from different scanning sites 

(panel A: AAL weighted networks; panel B: Power weighted networks). Note that 

the default-mode (blue), visual (cyan) and sensori-motor (green) systems 

showed high reliability in both resting state and cognitive tasks, while the 

fronto-parietal (red), limbic (magenta) and subcortical (orange) systems were 

predominantly reliable in cognitive tasks (see Table S13, S14 for details). 

Abbreviations: RS = resting state; WM = working memory; EMenc = episodic 

memory encoding; EMretr = episodic memory retrieval; EP = emotional 

processing. 
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Fig. 5 Statistical power as a function of total sample size across multiple effect 

sizes for five selected connectomic measures. The red lines represent power for 

multisite studies while the blue lines represent power for single-site studies, 

based on Cohen’s d for two-tailed contrast of two independent groups at � = 

0.05. The effect sizes have been adjusted downward for observed reliabilities of 

each connectomic measure in the multisite and single-site contexts, respectively. 

Although higher levels of power are achieved with smaller sample sizes in the 

single-site compared with multisite context, multisite studies achieve 

acceptable levels of power (≥ 0.8) with moderate to large effect sizes (ES ≥ 0.5) 

beginning at sample sizes of approximately 200 subjects. See Fig. S8 for 

comparable analyses for the remaining connectomic measures. 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160440doi: bioRxiv preprint 

https://doi.org/10.1101/160440


References 

Achard S, Bullmore E. 2007. Efficiency and cost of economical brain functional networks. PLoS Comput 

Biol 3:e17. 

Addington J, Cadenhead KS, Cornblatt BA, Mathalon DH, McGlashan TH, Perkins DO, Seidman LJ, 

Tsuang MT, Walker EF, Woods SW, Addington JA, Cannon TD. 2012. North American Prodrome 

Longitudinal Study (NAPLS 2): overview and recruitment. Schizophr Res 142:77-82. 

Barch DM, Mathalon DH. 2011. Using brain imaging measures in studies of procognitive 

pharmacologic agents in schizophrenia: psychometric and quality assurance considerations. Biol 

Psychiatry 70:13-18. 

Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E. 2006. Adaptive reconfiguration of 

fractal small-world human brain functional networks. Proc Natl Acad Sci U S A 103:19518-19523. 

Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST. 2011. Dynamic reconfiguration of 

human brain networks during learning. Proc Natl Acad Sci U S A 108:7641-7646. 

Bassett DS, Yang M, Wymbs NF, Grafton ST. 2015. Learning-induced autonomy of sensorimotor 

systems. Nat Neurosci 18:744-751. 

Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, 

Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter 

R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, 

Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, 

Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, 

Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, 

Milham MP. 2010. Toward discovery science of human brain function. Proc Natl Acad Sci U S A 

107:4734-4739. 

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. 2008. Fast unfolding of communities in large 

networks. J Stat Mech-Theory E. 

Braun U, Plichta MM, Esslinger C, Sauer C, Haddad L, Grimm O, Mier D, Mohnke S, Heinz A, Erk S, 

Walter H, Seiferth N, Kirsch P, Meyer-Lindenberg A. 2012. Test-retest reliability of resting-state 

connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage 

59:1404-1412. 

Braun U, Schafer A, Walter H, Erk S, Romanczuk-Seiferth N, Haddad L, Schweiger JI, Grimm O, Heinz A, 

Tost H, Meyer-Lindenberg A, Bassett DS. 2015. Dynamic reconfiguration of frontal brain networks 

during executive cognition in humans. Proc Natl Acad Sci U S A 112:11678-11683. 

Breiter HC, Etcoff NL, Whalen PJ, Kennedy WA, Rauch SL, Buckner RL, Strauss MM, Hyman SE, Rosen 

BR. 1996. Response and habituation of the human amygdala during visual processing of facial 

expression. Neuron 17:875-887. 

Buckner RL, Andrews-Hanna JR, Schacter DL. 2008. The brain's default network: anatomy, function, 

and relevance to disease. Ann N Y Acad Sci 1124:1-38. 

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, 

Johnson KA. 2009. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of 

stability, and relation to Alzheimer's disease. J Neurosci 29:1860-1873. 

Bullmore E, Sporns O. 2009. Complex brain networks: graph theoretical analysis of structural and 

functional systems. Nat Rev Neurosci 10:186-198. 

Bullmore ET, Bassett DS. 2011. Brain graphs: graphical models of the human brain connectome. Annu 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160440doi: bioRxiv preprint 

https://doi.org/10.1101/160440


Rev Clin Psychol 7:113-140. 

Cao H, Bertolino A, Walter H, Schneider M, Schafer A, Taurisano P, Blasi G, Haddad L, Grimm O, Otto K, 

Dixson L, Erk S, Mohnke S, Heinz A, Romanczuk-Seiferth N, Muhleisen TW, Mattheisen M, Witt SH, 

Cichon S, Noethen M, Rietschel M, Tost H, Meyer-Lindenberg A. 2016. Altered Functional Subnetwork 

During Emotional Face Processing: A Potential Intermediate Phenotype for Schizophrenia. JAMA 

Psychiatry 73:598-605. 

Cao H, Plichta MM, Schafer A, Haddad L, Grimm O, Schneider M, Esslinger C, Kirsch P, 

Meyer-Lindenberg A, Tost H. 2014. Test-retest reliability of fMRI-based graph theoretical properties 

during working memory, emotion processing, and resting state. Neuroimage 84:888-900. 

Clement F, Belleville S. 2009. Test-retest reliability of fMRI verbal episodic memory paradigms in 

healthy older adults and in persons with mild cognitive impairment. Hum Brain Mapp 30:4033-4047. 

Cohen J. 1988. Statistical power analysis for the behavioral sciences (2nd edition). Hillsdale, NJ: 

Lawrence Erlbaum Associates. 

Dansereau C, Benhajali Y, Risterucci C, Pich EM, Orban P, Arnold D, Bellec P. 2017. Statistical power and 

prediction accuracy in multisite resting-state fMRI connectivity. Neuroimage 149:220-232. 

Deuker L, Bullmore ET, Smith M, Christensen S, Nathan PJ, Rockstroh B, Bassett DS. 2009. 

Reproducibility of graph metrics of human brain functional networks. Neuroimage 47:1460-1468. 

Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, Schlaggar BL, Petersen SE. 2009. 

Functional brain networks develop from a "local to distributed" organization. PLoS Comput Biol 

5:e1000381. 

First MB, Spitzer RL, M.; G, Williams JBW. 2002. Structured Clinical Interview for DSM-IV-TR Axis I 

Disorders, Research Version, Patient Edition (SCID-I/P). New York: Biometrics Research, New York State 

Psychiatric Institute. 

Fornito A, Zalesky A, Bassett DS, Meunier D, Ellison-Wright I, Yucel M, Wood SJ, Shaw K, O'Connor J, 

Nertney D, Mowry BJ, Pantelis C, Bullmore ET. 2011. Genetic influences on cost-efficient organization 

of human cortical functional networks. J Neurosci 31:3261-3270. 

Forsyth JK, McEwen SC, Gee DG, Bearden CE, Addington J, Goodyear B, Cadenhead KS, Mirzakhanian H, 

Cornblatt BA, Olvet DM, Mathalon DH, McGlashan TH, Perkins DO, Belger A, Seidman LJ, Thermenos 

HW, Tsuang MT, van Erp TG, Walker EF, Hamann S, Woods SW, Qiu M, Cannon TD. 2014. Reliability of 

functional magnetic resonance imaging activation during working memory in a multi-site study: 

analysis from the North American Prodrome Longitudinal Study. Neuroimage 97:41-52. 

Gavrilescu M, Stuart GW, Rossell S, Henshall K, McKay C, Sergejew AA, Copolov D, Egan GF. 2008. 

Functional connectivity estimation in fMRI data: influence of preprocessing and time course selection. 

Hum Brain Mapp 29:1040-1052. 

Gee DG, McEwen SC, Forsyth JK, Haut KM, Bearden CE, Addington J, Goodyear B, Cadenhead KS, 

Mirzakhanian H, Cornblatt BA, Olvet D, Mathalon DH, McGlashan TH, Perkins DO, Belger A, Seidman LJ, 

Thermenos H, Tsuang MT, van Erp TG, Walker EF, Hamann S, Woods SW, Constable T, Cannon TD. 2015. 

Reliability of an fMRI paradigm for emotional processing in a multisite longitudinal study. Hum Brain 

Mapp 36:2558-2579. 

Gorgolewski KJ, Storkey AJ, Bastin ME, Whittle I, Pernet C. 2013. Single subject fMRI test-retest 

reliability metrics and confounding factors. Neuroimage 69:231-243. 

Gu Q, Cao H, Xuan M, Luo W, Guan X, Xu J, Huang P, Zhang M, Xu X. 2017. Increased thalamic 

centrality and putamen-thalamic connectivity in patients with parkinsonian resting tremor. Brain 

Behav 7:e00601. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160440doi: bioRxiv preprint 

https://doi.org/10.1101/160440


Johnstone T, Somerville LH, Alexander AL, Oakes TR, Davidson RJ, Kalin NH, Whalen PJ. 2005. Stability 

of amygdala BOLD response to fearful faces over multiple scan sessions. Neuroimage 25:1112-1123. 

Lakes KD, Hoyt WT. 2009. Applications of generalizability theory to clinical child and adolescent 

psychology research. J Clin Child Adolesc Psychol 38:144-165. 

Liu X, Hairston J, Schrier M, Fan J. 2011. Common and distinct networks underlying reward valence 

and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 

35:1219-1236. 

Lord A, Ehrlich S, Borchardt V, Geisler D, Seidel M, Huber S, Murr J, Walter M. 2016. Brain parcellation 

choice affects disease-related topology differences increasingly from global to local network levels. 

Psychiatry Res 249:12-19. 

Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E. 2010. Functional 

connectivity and brain networks in schizophrenia. J Neurosci 30:9477-9487. 

McGlashan TH, Miller TJ, Woods SW, Hoffman RE, Davidson L. 2001. Instrument for the Assessment of 

Prodromal Symptoms and States. In: Miller T, Mednick SA, McGlashan TH, Libiger J, Johannessen JO, 

editors. Early Intervention in Psychotic Disorders  Dordrecht: Springer Netherlands p 135-149. 

McNab F, Klingberg T. 2008. Prefrontal cortex and basal ganglia control access to working memory. Nat 

Neurosci 11:103-107. 

Meunier D, Achard S, Morcom A, Bullmore E. 2009. Age-related changes in modular organization of 

human brain functional networks. Neuroimage 44:715-723. 

Meyer C, Muto V, Jaspar M, Kusse C, Lambot E, Chellappa SL, Degueldre C, Balteau E, Luxen A, 

Middleton B, Archer SN, Collette F, Dijk DJ, Phillips C, Maquet P, Vandewalle G. 2016. Seasonality in 

human cognitive brain responses. Proc Natl Acad Sci U S A 113:3066-3071. 

Newman ME. 2006. Modularity and community structure in networks. Proc Natl Acad Sci U S A 

103:8577-8582. 

Noble S, Scheinost D, Finn ES, Shen X, Papademetris X, McEwen SC, Bearden CE, Addington J, 

Goodyear B, Cadenhead KS, Mirzakhanian H, Cornblatt BA, Olvet DM, Mathalon DH, McGlashan TH, 

Perkins DO, Belger A, Seidman LJ, Thermenos H, Tsuang MT, van Erp TG, Walker EF, Hamann S, Woods 

SW, Cannon TD, Constable RT. 2016. Multisite reliability of MR-based functional connectivity. 

Neuroimage. 

Phillips ML, Drevets WC, Rauch SL, Lane R. 2003. Neurobiology of emotion perception I: The neural 

basis of normal emotion perception. Biol Psychiatry 54:504-514. 

Plichta MM, Schwarz AJ, Grimm O, Morgen K, Mier D, Haddad L, Gerdes AB, Sauer C, Tost H, Esslinger 

C, Colman P, Wilson F, Kirsch P, Meyer-Lindenberg A. 2012. Test-retest reliability of evoked BOLD 

signals from a cognitive-emotive fMRI test battery. Neuroimage 60:1746-1758. 

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. 2012. Spurious but systematic correlations 

in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142-2154. 

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel AC, Laumann TO, Miezin FM, 

Schlaggar BL, Petersen SE. 2011. Functional network organization of the human brain. Neuron 

72:665-678. 

Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. 2014. Methods to detect, 

characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320-341. 

Prabhakaran V, Narayanan K, Zhao Z, Gabrieli JD. 2000. Integration of diverse information in working 

memory within the frontal lobe. Nat Neurosci 3:85-90. 

Richiardi J, Altmann A, Milazzo AC, Chang C, Chakravarty MM, Banaschewski T, Barker GJ, Bokde AL, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160440doi: bioRxiv preprint 

https://doi.org/10.1101/160440


Bromberg U, Buchel C, Conrod P, Fauth-Buhler M, Flor H, Frouin V, Gallinat J, Garavan H, Gowland P, 

Heinz A, Lemaitre H, Mann KF, Martinot JL, Nees F, Paus T, Pausova Z, Rietschel M, Robbins TW, Smolka 

MN, Spanagel R, Strohle A, Schumann G, Hawrylycz M, Poline JB, Greicius MD, consortium I. 2015. 

BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks. 

Science 348:1241-1244. 

Rubinov M, Sporns O. 2010. Complex network measures of brain connectivity: uses and 

interpretations. Neuroimage 52:1059-1069. 

Sabatinelli D, Fortune EE, Li Q, Siddiqui A, Krafft C, Oliver WT, Beck S, Jeffries J. 2011. Emotional 

perception: meta-analyses of face and natural scene processing. Neuroimage 54:2524-2533. 

Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, 

Gur RC, Gur RE, Wolf DH. 2013. An improved framework for confound regression and filtering for 

control of motion artifact in the preprocessing of resting-state functional connectivity data. 

Neuroimage 64:240-256. 

Schwarz AJ, McGonigle J. 2011. Negative edges and soft thresholding in complex network analysis of 

resting state functional connectivity data. Neuroimage 55:1132-1146. 

Shavelson RJ, Webb NM. 1991. Generalizability theory: a primer. Sage, London. 

Shrout PE, Fleiss JL. 1979. Intraclass correlations: uses in assessing rater reliability. Psychol Bull 

86:420-428. 

Smit DJ, Stam CJ, Posthuma D, Boomsma DI, de Geus EJ. 2008. Heritability of "small-world" networks 

in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum Brain Mapp 

29:1368-1378. 

Sporns O, Tononi G, Kotter R. 2005. The human connectome: A structural description of the human 

brain. PLoS Comput Biol 1:e42. 

Spreng RN, Mar RA, Kim AS. 2009. The common neural basis of autobiographical memory, prospection, 

navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 

21:489-510. 

Telesford QK, Morgan AR, Hayasaka S, Simpson SL, Barret W, Kraft RA, Mozolic JL, Laurienti PJ. 2010. 

Reproducibility of graph metrics in FMRI networks. Front Neuroinform 4:117. 

Termenon M, Jaillard A, Delon-Martin C, Achard S. 2016. Reliability of graph analysis of resting state 

fMRI using test-retest dataset from the Human Connectome Project. Neuroimage 142:172-187. 

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. 

2002. Automated anatomical labeling of activations in SPM using a macroscopic anatomical 

parcellation of the MNI MRI single-subject brain. Neuroimage 15:273-289. 

Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, Consortium WU-MH. 2013. The 

WU-Minn Human Connectome Project: an overview. Neuroimage 80:62-79. 

Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y. 2009. Parcellation-dependent 

small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp 30:1511-1523. 

Wechsler D. 1999. Wechsler Abbreviated Scale of Intelligence. Psychological Corporation, New York, 

NY. 

Welton T, Kent DA, Auer DP, Dineen RA. 2015. Reproducibility of graph-theoretic brain network 

metrics: a systematic review. Brain Connect 5:193-202. 

Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, Bullmore ET. 2010. Whole-brain 

anatomical networks: does the choice of nodes matter? Neuroimage 50:970-983. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160440doi: bioRxiv preprint 

https://doi.org/10.1101/160440


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160440doi: bioRxiv preprint 

https://doi.org/10.1101/160440


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160440doi: bioRxiv preprint 

https://doi.org/10.1101/160440


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160440doi: bioRxiv preprint 

https://doi.org/10.1101/160440


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160440doi: bioRxiv preprint 

https://doi.org/10.1101/160440


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160440doi: bioRxiv preprint 

https://doi.org/10.1101/160440

