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Abstract

The widespread adoption of electronic medical records (EMRs) in healthcare has
provided vast new amounts of data for statistical machine learning researchers
in their efforts to model and predict patient health status, potentially enabling
novel advances in treatment. In the case of sepsis, a debilitating, dysregulated
host response to infection, extracting subtle, uncataloged clinical phenotypes
from the EMR with statistical machine learning methods has the potential
to impact patient diagnosis and treatment early in the course of their hospi-
talization. However, there are significant barriers that must be overcome to
extract these insights from EMR data. First, EMR datasets consist of both
static and dynamic observations of discrete and continuous-valued variables,
many of which may be missing, precluding the application of standard multi-
variate analysis techniques. Second, clinical populations observed via EMRs
and relevant to the study and management of conditions like sepsis are often
heterogeneous; properly accounting for this heterogeneity is critical. Here, we
describe an unsupervised, probabilistic framework called a composite mixture
model that can simultaneously accommodate the wide variety of observations
frequently observed in EMR datasets, characterize heterogeneous clinical pop-
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ulations, and handle missing observations. We demonstrate the efficacy of our
approach on a large-scale sepsis cohort, developing novel techniques built on our
model-based clusters to track patient mortality risk over time and identify phys-
iological trends and distinct subgroups of the dataset associated with elevated
risk of mortality during hospitalization.

Keywords: electronic health records, mixture modeling, risk stratification,
sepsis, composite mixture model, cluster analysis

1. Introduction

Electronic medical records (EMRs) have become increasingly ubiquitous in
healthcare, and the utility of these complex datasets for clinical decision sup-
port is the subject of much current research ([7] and references therein). EMR
data comprise multivariate observations of variables with discrete or continu-
ous values. These variables can be static (observed only a single time during
a hospitalization; e.g. gender) or dynamic (e.g. vital signs). Deriving action-
able insights from EMR data requires appropriate models for these multi-typed
observations [29].

Besides complexity in the types of information contained in the EMR, het-
erogeneity inherent in the clinical population under study adds to the challenge
of modeling these data. This physiological heterogeneity is a hallmark of debil-
itating conditions like cancer [16] and, in particular, sepsis [25], an increasingly
prevalent clinical condition characterized by a dysregulated immune response
to infection leading to organ dysfunction and death. Accounting for this het-
erogeneity can have considerable therapeutic importance. In the case of breast
cancer, for example, stratification of patient tumors into molecular subtypes
significantly increased precision of treatment and improved survival (reviewed
in [34]). In the case of sepsis, delays in antibiotic administration lead to con-
siderably elevated mortality risk [23], suggesting that a technique highlighting
subtle physiological phenotypes associated with elevated mortality risk early in
an inpatient stay might aid triage and treatment of potentially septic patients.
Indeed, a central goal of this and other similar efforts is to identify physiologi-
cally distinct subgroups of a clinical population more at risk for adverse health
outcomes that can be targeted with interventions tailored to the subgroup’s
characteristics [22, 39, 30, 15, 19, 26, 40].

In this study, we describe a joint probabilistic framework called a composite
mixture model (CMM; [32, 37]), a technique heretofore never applied to EMR
data. The CMM accommodates the wide variety of data types common in
EMR datasets while accounting for heterogeneity in the clinical population. We
adapt our model to analyze a large EMR dataset composed of more than 53,000
emergency department (ED) hospitalization episodes from Kaiser Permanente
Northern California (KPNC) in which patients were suspected to have infection
and, in a subset of cases, met the criteria for sepsis [36, 8]. We demonstrate the
efficacy of our data-driven approach by identifying and annotating clusters of
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patient episodes with significantly higher risk for mortality during hospitaliza-
tion, by visualizing physiological trends associated with these elevated rates of
mortality, and by benchmarking the performance of our framework on common
EMR analysis tasks such as missing data imputation.

2. Related Work

One approach to modeling EMR data focuses on the important task of pre-
diction in order to prevent or mitigate an impending adverse outcome. Tradi-
tional predictive modeling approaches, such as logistic regression and random
forests [5], can provide useful insights for clinical decision support. For exam-
ple, multi-task predictive models have proven successful in stratifying patients
according to risk of developing hospital-acquired infections [39, 40]. Other ap-
proaches have been able to recover clinically relevant phenotypes with striking
prediction capabilities for a wide range of medical conditions [15, 19]. Partic-
ularly in sepsis, supervised approaches have demonstrated remarkable perfor-
mance in early identification of patients at risk of entering septic shock [18, 17].
In essence, these models characterize the effects of a fixed set of predictor vari-
ables or features on an outcome of interest (supervised learning; a conditional
model), without directly modeling the features themselves. These approaches
also require complete case data (i.e. observations without missing entries).
Without first performing imputation, certain samples or even entire features
could be removed from analysis. More importantly, many of these approaches
assume that the population under study can be modeled as a single, homoge-
neous group, ignoring the possibility that the population represents a mixture
of distinct subgroups potentially amenable to different treatment regimes. In
contrast, we develop a framework able to account for both population hetero-
geneity and missing data and, in an unbiased manner, aim to identify latent
phenotypes in the population enriched for mortality events during hospitaliza-
tion rather than predict mortality events or cataloged conditions (e.g. ICD9
codes).

Unsupervised approaches, on the other hand, learn structure or dependen-
cies by modeling the whole data observation (outcome and features) together,
capturing dependencies among the different dimensions of the full observation
vector. Such approaches have proven successful recently in directly modeling
complex EMR observations or embedding them in lower-dimensional feature
spaces that can then be used for prediction or risk stratification [22, 30, 2, 26].
Multivariate statistical mixture models are another class of unsupervised learn-
ing approach that can formally represent heterogeneity in the population, treat-
ing both outcomes and features as probabilistic quantities to be modeled jointly
(joint model; [33]). However, such mixture models are difficult to apply in
their conventional form when elements of a multivariate observation are of dif-
ferent types (e.g. a categorical variable like gender and a continuous variable
like median diastolic blood pressure) as is common with EMR data. Similar
unsupervised work has recently been presented to model these data (e.g. [22]
and [30]). However, these studies either focused on a single clinical variable (uric
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acid trajectories [22]) or transformed multi-typed EMR observations into a sin-
gle representation for modeling purposes (e.g. bag-of-word representations [30]).
In contrast, we directly model 32 different physiological and demographic fea-
tures of both discrete and continuous types with our simple and extensible joint
probabilistic framework.

3. Methods

3.1. KPNC Sepsis Cohort Description

Kaiser Permanente Northern California is a highly integrated healthcare de-
livery system with 21 medical centers caring for an overall population of 4 million
members. The full KPNC dataset consists of 244,248 in-patient hospitalization
visits (mortality rate: 5.2%) with a suspected or confirmed infection and sepsis
diagnosis, drawn from KPNC medical centers between 2009 and 2013 [36]. We
refer to each in-patient visit as an episode for the remainder of this work. For
this analysis, we used a subset of the full dataset consisting of 53,659 in-patient
episodes, with an overall mortality rate of ∼6%. Our criteria for creating this
analysis cohort were the following: 1) hospitalization admission occurred via
the emergency department (to identify high-risk patients earlier in their care
delivery); 2) the length of hospitalization was at least twelve hours; and 3) all
vital signs were taken three or more times during the first three hours of hospi-
talization. Figure 1 illustrates the process by which we prepared our different
analysis cohorts.

Vital summarystatistics

0– 6hr
Cohort

KPNC

Cohort
selection

3h

Staticfeatures

6h

12h

Mortalityenrichment
Cluster trajectoryanalysis

m
b
in
e
d

Marginal importanceanalys

Figure 1: Flowchart of cohort selection, data pre-processing, and analysis dataset construc-
tion.

Our cohort consisted of both static and dynamic features. The static features
that made up our dataset include: 1) age; 2) sex; 3) treatment facility code; 4)
KPNC membership status; 5) indicator of whether patient was transported in
from another site; 6) LAPS2, a KPNC single measure of acute disease burden at
the time of hospital admission; 7) COPS2, a monthly KPNC aggregate measure
of chronic disease burden; and 8) an indicator of patient mortality status at the
end of the episode. The vital signs included in this analysis were 1) diastolic
blood pressure, 2) systolic blood pressure, 3) heart rate, 4) respiratory rate,
5) temperature, and 6) pulse pressure. Outlying vital sign observations were
removed according to the following filters: heart rate > 300; systolic blood
pressure > 300; respiratory rate > 80; body temperature > 108; and body
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temperature < 85. We then computed the maximum, minimum, median, and
standard deviation of patient vital signs over different post-admission periods
(3, 6, or 12 hours). Pairing the summary statistics with their corresponding
static admission features resulted in three analysis cohorts, one for each post-
admission period (Figure 1).

3.2. Composite Mixture Model Definition

Here, we describe the composite mixture model, a flexible joint probability
model for multi-typed, multivariate data. The two central ideas behind the
CMM are that: 1) the population is heterogeneous (composed of subgroups
or clusters) and 2) we can specify the full joint distribution of a multi-typed
observation vector, x, by specifying appropriate univariate, exponential family
distributions for each dimension of x. The CMM takes the following form:

Pr(xi|Θ) =

K∑
k=1

πk

P∏
p=1

Prp(xi,p|θk,p) (1)

where xi is an observation vector of dimensionality P , K is the number of
mixture components or clusters in the model, Prp is the distribution of the pth

dimension (e.g. univariate Gaussian), and θk,p are the model parameters for the
pth dimension distribution in the kth mixture component. This structure is re-
flected in the plate notation diagram in Figure 2. For completeness, we show an
equivalent formulation of the CMM model in Figure 2 that includes the indicator
variables, Zi, categorical variables that take the value k (from 1 to K) if episode
i is assigned to cluster k. For example, suppose we had a three-dimensional ob-
servation vector wherein the first dimension contained integer count data, the
second dimension contained positive and negative real values, and the third di-
mension contained discrete categorical data. A potential CMM for these data
might consist of the following univariate distributions with different parameter
values for each distribution depending on the mixture component k to which
xi was assigned: Pr1 = Poisson(xi,1|λk,1), Pr2 = Normal(xi,2|µk,2, σ

2
k,2), and

Pr3 = Categorical(xi,3|γk,3) (γk,3 is the vector of probabilities for each possi-
ble discrete value of xi,3). The model structure implies that, given a mixture
component, the dimensions of the observation vector are independent of one
another. It is important to note that, despite the features being treated as in-
dependent, complex correlations among features can be recovered by mixing (or
averaging) over more components.

3.3. Composite Mixture Model Fitting to KPNC Dataset

As shown in Section 3.2, fitting a composite mixture model first requires
specification of the univariate distributions for each dimension of an obser-
vation vector. We support exponential family distributions for each observa-
tion dimension that can be efficiently estimated in parallel by computation of
sufficient statistics. For our analysis, categorical variables (including mortal-
ity status) were modeled with categorical distributions while age, LAPS2, and
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Figure 2: Plate notation diagram of composite mixture model. To indicate the relationship
between episodes and clusters, the formulation shown here includes the latent indicator vari-
ables, Zi, that specify the cluster assignment for episode i. This formulation is equivalent to
the one shown in equation 1.

COPS2, and the summary statistics of patient vital signs were modeled with
either normal, gamma, or exponential distributions where appropriate. To fa-
cilitate model estimation, we added a small amount of jitter to non-categorical
features. Specifically, we added a uniform random sample in the range −d/10
to d/10 to each value, where d is the smallest distance between unique values
of that feature.

To fit a model for a given number of clusters, we performed expectation-
maximization [9]. As expectation-maximization is a local optimization approach
sensitive to initialization, we performed 3 random restarts of each fitting pro-
cedure with a maximum of 100 iterations (we observed that this number of
iterations was generally sufficient for adequate model fitting). We determined
the optimal number of clusters by evaluating the Bayesian information criterion
(BIC) of all fitting restarts for each number of clusters tested (from 10 to 1000
clusters in increments of 10 for the individual post-admission datasets) and se-
lecting the model with the lowest BIC. We also considered alternative model
selection criteria such as Akaike information criterion (AIC), though BIC gen-
erated more reasonable results considering its harsher penalty on model com-
plexity. All composite mixture model data structures and fitting routines were
implemented in a custom R software package (available upon request).

3.4. Mortality Enrichment and Cluster Trajectory Analysis

To identify changes in the physiological status of a potentially septic patient
during hospitalization, we combined the 3h, 6h, and 12h datasets into a single
dataset (hereafter referred to as the combined dataset) and fit a CMM to all
observations (Figure 1). In this way, we treat the three observations for each
episode as independent, and while the static features were shared (driving all
three observations of a single episode to co-cluster with one another), changes in

6

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/160465doi: bioRxiv preprint 

https://doi.org/10.1101/160465
http://creativecommons.org/licenses/by-nc/4.0/


the vitals over the course of hospitalization drive association of a given episode
with different clusters over time. The first motivation for this choice was to
characterize latent phenotypes across the whole clinical population and every
post-admission period. Since patients would likely enter the emergency depart-
ment at different stages of their condition, this time-agnostic clustering would
allow a late-stage, debilitated patient within the first 3 hours after admission to
be co-clustered with a patient who reached a similar physiological state at, say,
12 hours post-admission. The second motivation for this approach was to ad-
dress the label-switching problem [35], a common challenge in mixure modeling.
Fitting each dataset separately would have resulted in different sets of labels for
each post-admission period that could not have been directly linked over time
(i.e. cluster 1 at 3 hours post-admission would likely not have corresponded to
cluster 1 at 6 hours post-admission).

Consequently, to generate cluster assignments for each episode and post-
admission period, we fit a CMM to the combined dataset, resulting in an optimal
number of 650 clusters (tested 50 to 1000 in increments of 50), with cluster
sizes ranging from 88 to 2,883 observations. As this number of clusters was
prohibitively large for visualization purposes, we then clustered the estimated
parameters of the fitted model using the partitioning around medoids (PAM)
algorithm [20] with the final number of clusters set to 20. These cluster labels
were used in analyses for Figures 4, 5, and 6. We then mapped the newly
assigned cluster labels to each observation in the dataset.

Once we assigned cluster labels to each combination of episode and post-
admission period, we combined the cluster labels for each of an episode’s three
post-admission periods into a single vector (cluster trajectory). As with our an-
notation of mortality enrichment for each post-admission period, we computed
the significance of enrichment of each cluster trajectory for mortality events us-
ing a one-tailed Fisher’s exact test. We adjusted for multiple hypothesis testing
with a Bonferroni-corrected significance level of ∼ 2.51e-05. (Figure 5).

To evaluate the physiological signatures of the three clusters at 12h post-
admission in the top mortality-enriched cluster trajectories, we first normalized
the LAPS2, COPS2, and vital sign features to values between 0 and 1 by per-
forming feature scaling (i.e. subtracting each feature by its minimum and divid-
ing by the difference between the feature’s maximum and minimum). We then
conducted Wilcoxon rank-sum tests, comparing each cluster-specific distribution
of LAPS2, COPS2, and vital sign statistics with their respective distributions in
the overall population and computing 95% confidence intervals on the estimated
difference between the cluster and overall population (Figure 6).

3.5. CMM-Derived Marginal Importance Analysis

Marginal importance plots are often used in conjunction with random forest
models to visually evaluate the marginal effect of different features on the rate
of a particular outcome [5, 21]. We adapted this concept to develop novel
visualizations based on CMM clusters. We first determined the optimal number
of clusters (200) for the 12h post-admission dataset (chosen arbitrarily) using
the BIC criterion as described in Section 3.3. Unlike in the previous analyses
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with the combined dataset, we retained the estimated parameters for this model
(θ̂) instead of clustering them further using PAM. The procedure we followed to
compute the two essential components of our CMM-based marginal importance
plot (estimated mortality rates (p̂d) and estimated sample sizes (n̂d) at different
values of a vital sign feature of interest) is shown in Figure 3. Briefly, from
a dataset X (N episodes, P features), we compute the matrix, W , containing
the posterior probabilities of assigment of each episode to one of the K clusters
(each row of W sums to 1). If we consider the sample size of a single episode to
be 1, these probabilities represent the distribution of that sample size over the K
clusters. Simultaneously, we generate a dummy feature matrix for a feature of
interest f (lower left of Figure 3). In this dummy feature matrix, we enumerate
a column containing a range (from their lowest to highest observed values) for
a feature of interest. All other feature columns are set to 0. We then use the
estimated CMM model parameters, θ̂, to compute the matrix, Mf , containing
the posterior probabilities of assignment of each dummy feature row to one of
K clusters. We also compute the expected rate of mortality (p̂d) given each
value in the range of f , by averaging the estimated conditional frequency of
mortality in each cluster over all K clusters. Finally, we compute the estimated
sample sizes (n̂d) at each value of f by multiplying the W by the transpose of
M and taking the sum of the rows of the resulting NXF matrix. In this way,
we computed the cumulative density (the estimated number of episodes) across
all episodes represented at each value in the range of a feature of interest. The
range of feature values becomes the domain of our marginal importance plot
and mortality rate is plotted on the y-axis, with the estimated mortality rate
(p̂d) and sample sizes (n̂d) used to construct the curve and 95% Wilson score
confidence intervals ( [41]; shown in Figures 7a, 7b, 7c, 7d). We note that, even
after filtering patient vital signs for outliers, certain extreme values can still be
observed during a typical hospitalization ( [10]; e.g. blood pressure values of 0
for cardiac arrests; Figure 7a).

3.6. CMM-Based Missing Data Imputation

For our missing data analysis, we introduced missing entries (completely at
random; MCAR) at a rate of 5% in the 6 hr dataset (arbitrarily chosen) for
all features except age, gender, and mortality, which were assumed non-missing
for all records. The resulting dataset contained 12,344 complete records (i.e.
records with no missing values).

Imputation using the CMM involves three steps: 1) performing a CMM fit
on either A) the remaining complete records of the MCAR dataset or B) the
MCAR dataset after performing population mean imputation, 2) re-computing
the cluster membership probabilities for each episode conditioned on the non-
missing features, and 3) imputing each missing value with either A) the cluster-
averaged expected value (for non-categorical variables) or B) the label associ-
ated with the mode of the cluster-averaged expected category probabilities (for
categorical features).

We compared imputation using the CMM to population mean imputation
(as a baseline), multivariate imputation using chained equations (MICE) [6, 38],
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Figure 3: Diagram of computational procedure for constructing CMM-based marginal im-
portance plots.

and k-nearest neighbors imputation. For our purposes, we set the prediction
method of MICE to predictive mean matching [6] for non-categorical vari-
ables and logistic/polytomous regression for categorical variables. For k-nearest
neighbors, we tested neighborhoods of size 5 and 20, assigning the value with
the largest frequency (’majority vote’) among neighbors for discrete, categorical
variables or the mean of neighbor values for continuous variables.

For each feature column with missing values, imputation performance was
characterized by a distance, D. For non-categorical features, we used the sum
of squared deviations from the observed values: D =

∑N
i (x̂i − xi)

2, where
xi and x̂i are the observed and imputed values for the ith imputed record,
respectively, and N is the total number of imputed records. For categorical
features, we used the counts of incorrectly imputed values: D =

∑N
i [x̂i 6= xi],

where brackets indicate 1 when the condition is true and 0 otherwise. Distances
for each feature were then normalized by the corresponding distance obtained
using population mean imputation. Rankings of distance across imputation
methods were robust to the choice of distance metric (squared deviations or
absolute deviations for non-categorical features; overlap, occurrence frequency,
inverse occurrence frequency, Eskin [11], Goodall [13] for categorical features).

4. Results

4.1. CMMs Reveal Temporal & Physiological Signatures of Mortality Risk in
Sepsis

An important challenge in treatment of sepsis is the detection of (sometimes
subtle) physiological changes in a patient while accounting for the heteroge-
neous presentation of the condition. We characterize these latent changes by
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modeling the full demographic and physiological space of all episodes, regard-
less of time, subsequently identifying the regions or clusters of this space with
which a patient episode associated during an ED hospitalization. To this end,
we concatenated the 3h, 6h, and 12h datasets into a combined dataset, fit a
CMM to all observations, and generated assignments for each episode at each
post-admission time to one of twenty clusters (see Figure 1). This approach
allowed us to characterize demographic and physiological heterogeneity across
all episodes regardless of time and severity of condition (more discussion of ra-
tionale in Methods section 3.4). Despite our use of vital sign summary statistics
as features, we observed considerable feature variability within each of the 20
clusters, indicating that clustered episodes were not assuming single, repeated
values for any feature. We ascribe clinically relevant annotations to our clusters
by assessing each of them for statistical significance of enrichment for mortality
events during hospitalization. We note that this data-driven cluster annotation
method could just as easily been applied to other binary-valued adverse health
events (e.g. ICU transfer, need for mechanical ventilation, etc.), indicating the
portability of our approach to other settings or healthcare centers.
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Figure 4: (a) Proportions of episodes assigned to each of the final 20 clusters for each
post-admission period. The corresponding number of episodes assigned to each cluster are
shown in each cell. (b) Mortality enrichment for each cluster and each post-admission period.
The enrichment value is log(-log(p)) (for exposition purposes) where p is a one-tailed Fisher’s
exact test p-value evaluating the significance of enrichment of mortality events for each cluster
during a given post-admission period. Black cells indicate clusters to which no episodes were
assigned during that post-admission period.
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From this analysis, we determined the proportion of episodes in each cluster
at each post-admission time and identified those clusters more or less associ-
ated with mortality events. We found that while the majority of the episodes
were assigned to one of the top seven clusters over all post-admission periods,
some clusters were associated with progressively fewer episodes from 3h to 12h
post-admission (e.g. cluster 8) while other clusters (e.g. cluster 10) became
associated with more episodes over time (Figure 4a). These patterns highlight
the diverse demographic/physiological “landscape” through which patients pro-
gressed during their hospitalization and indicate how some clusters represent
transient “stops” in a patient’s progression. When we considered each cluster
separately, we found that mortality events were significantly underrepresented
in episodes assigned to clusters 2, 4, and 5. Conversely, clusters 1, 3, 10, 13,
14, 15 and 17 showed high degrees of enrichment for mortality events (Fig-
ure 4b), indicating population heterogeneity even among those patient episodes
considered at high risk for mortality.
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Figure 5: Cluster trajectories in the KPNC sepsis cohort enriched for mortality events.
Trajectories are ranked in descending order by the -log p-value of a one-tailed Fisher’s exact
test. A cluster trajectory appears in each row and consists of three cluster assignments, one for
each of the three post-admission periods (3h,6h,12h). For example, the top cluster trajectory
indicates episodes that were assigned to cluster 3 at 3, 6, and 12 hours post-admission.

To further analyze temporal patterns in cluster membership, we then con-
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Figure 6: Estimated differences between cluster-specific and population values of each feature.
The dots represent the estimated difference while whiskers represent the 95% confidence in-
terval as computed by Wilcoxon rank-sum tests. The colors of each cluster’s dot and whiskers
correspond to those in Figure 5. The lack of an overlap between these intervals and a differ-
ence of 0 (gray line) reflects a significant difference in cluster-specific values of the feature as
compared to the overall population.

sidered the full sequence of cluster assignments for each episode’s observations
(cluster trajectory). This analysis resulted in 1,993 unique cluster trajectories,
18 of which were highly enriched for mortality events (Figure 5). The trajec-
tory most enriched for mortality events involved episodes in which the patient
remained in cluster 3 while other trajectories involved association with different
clusters over the 12-hour post-admission period (e.g. trajectory 11 in Figure 5
starts in cluster 8 at 3 hours post-admission then transitions to clusters 6 and
3 at 6 and 12 hours post-admission, respectively). For these mortality-enriched
trajectories, episodes tended to associate with a diverse set of clusters at 3 hours
post-admission but generally transitioned into one of three clusters (1, 3, or 10)
at 12 hours post-admission.

We assessed the physiological signatures of these three clusters at 12 hours
post-admission by determining whether patient episodes associated with these
clusters had features that were significantly different from those of the overall
population (Figure 6; described in Methods, section 2.4). Interestingly, we
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find that while all three clusters associated with an elevated mortality risk,
they reflect distinctly different physiological sub-populations, again highlighting
the heterogeneity inherent in the presentation of sepsis. For example, while
cluster 3 episodes showed significantly higher acute disease burden (LAPS2)
than those episodes in clusters 1 and 10, cluster 1 episodes showed significantly
higher chronic disease burden (COPS2). Notably, cluster 10 episodes showed
significantly less chronic and acute disease burden than the overall population.

In addition, the vital sign characteristics of the different mortality-enriched
cluster episodes were distinctly different. Vital sign median levels and standard
deviations for cluster 3 generally deviated more substantially from those in
the overall dataset when compared with the same characteristics in clusters
1 and 10. In particular, cluster 3 episodes showed significantly lower median
blood pressure, pulse pressure, and body temperature, higher median heart
and respiratory rates, and the highest vital sign variability. Cluster 1 vital
sign patterns were generally similar to those of cluster 3. However, cluster 1
episodes did show significantly lower heart rate, higher body temperature, and
generally lower vital sign variability for blood pressure, heart rate and pulse
pressure. Cluster 10 episodes also showed different physiological trends: higher
median blood pressure and pulse pressure, lower variability in body temperature,
and respiratory rate median levels and variability close to those of the overall
population. This analysis suggests that while a patient may be placed in a high-
risk strata, their physiological state can be quite distinct from that of another
high-risk patient. To validate the clinical interpretability of these physiological
signatures, we provided them to our clinical collaborators with some orientation
as to what was plotted to see if they could assign a coarse categorization to the
clusters. They determined that cluster 3 episodes represented ’severe physiologic
instability’, cluster 1 episodes indicated ’respiratory failure in chronic disease’
and cluster 10 episodes represented ’moderate hemodynamic compromise’.

4.2. CMMs Enable Cluster-Based Visualization of Physiological Trends of Mor-
tality Risk

In the previous analysis, we showed that the CMM can stratify populations
into physiologically distinct subgroups that could highlight the need for differ-
ent treatment regimens. To display these patterns, we adapted a technique
often used in conjunction with random forest models: marginal importance
plots [5, 21]. These plots show the expected mortality rate and 95% confidence
intervals, at different values in the range of a given vital sign feature of inter-
est (Figures 7a, 7b, 7c, and 7d; described in Figure 3). For this analysis, we
fit the CMM model to the 12h dataset only and find trends largely reflecting
current clinical knowledge and practices: median diastolic blood pressure and
body temperature levels associated with low levels of mortality at 12 hours post-
admission are within a range (i.e. “within normal limits”) outside of which the
mortality rate begins to increase. The added advantage of this approach is 1)
statistical assessment of confidence in the smoothed mortality rate estimates, 2)
increases in dynamic range of mortality risk due to averaging over the different
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clusters in the CMM and 3) evaluation of nonlinear relationships between vital
sign features and mortality risk.

In the case of median diastolic blood pressure (Figure 7a), the mortality
rate varied between ∼6% (similar to the overall population rate) at values near
75 to rates in excess of 50% at values near 25, reflecting the importance of
blood pressure management in sepsis ([14] and references therein). Likewise, in
the case of body temperature (Figure 7c), mortality rates were at their lowest
(∼5%) at approximately 98◦F, climbing to rates of nearly 60% as body tem-
perature dropped to 85◦F. In the case of standard deviations of the different
vital sign features (Figures 7b and 7d), the plots indicate that, in general, in-
creased variability in a patient’s vital signs is associated with higher rates of
mortality. However, this relationship was not linear (e.g. Figure 7d), suggest-
ing that some variability was not harmful for patients, within a specific range
dependent on each variable. Overall, in stratifying the population (as opposed
to treating it as a homogeneous group) the CMM helps to identify “pockets”
of demographic/physiological space that are strongly associated with increased
mortality, thus facilitating more precise characterization of the marginal physi-
ological trends associated with increased rates of mortality.

4.3. CMMs Provide Competitive Missing Data Imputation by Joint Learning of
Feature Dependencies

As the CMM is a joint probability model, we can use the learned structure
from a trained CMM to impute missing observations, a common task in EMR
analysis. Indeed, recent unsupervised structure learning approaches have proven
successful at this task [3]. We compare the CMM’s performance on a modified
version of the 6h dataset (with 5% missing data introduced; see Methods) with
that of three other imputation approaches: 1) MICE [6], a gold standard method
for missing data imputation, 2) k-nearest neighbors, a nonparametric approach
to imputation and 3) imputation with the population mean (our baseline). As
MICE (based on fully conditional regressions) and CMMs (based on unsuper-
vised learning) are designed for very different purposes, our goal in evaluating
the CMM’s data imputation performance is to not to draw direct comparisons
to stand-alone imputation methods, but rather to assess the situations in which
CMMs might prove useful for data imputation. Figure 8 shows the distances,
relative to population mean imputation, for select features using various im-
putation methods. Overall, the average relative distances across all features
are 0.570 ± 0.001 (CMM using complete records), 0.524 ± 0.001 (CMM using
population mean imputation), 0.398 ± 0.009 (MICE), 0.528 (5-nearest neigh-
bors), and 0.501 (20-nearest neighbors), indicating the CMM’s general utility
for missing data imputation.

For all features, CMM imputation using estimates based on population mean
imputation outperformed CMM imputation using estimates based solely on
complete records (Figure 8). This result was expected, as the former has over
four times as much training data as the latter. For all summary statistics of vital
signs, MICE outperformed both CMM imputation methods and was compara-
ble in performance to k-nearest neighbors. As MICE leverages fully conditional
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Figure 7: Marginal importance plots for diastolic blood pressure (median (a) and standard
deviation (b)) and pulse pressure (median (c) and standard deviation (d)) at 12 hours post-
admission. The dark line in the center of the band is the estimated mortality rate at each
value of the vitals feature of interest while the lighter bands are 95% Wilson’s score intervals.

data in its imputation and vitals are expected to be globally predictive of one
another, this result is not surprising. No approach significantly improved over
population imputation for the three categorical features in the dataset (mem-
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bership status, transport code, and facility code).
CMM-based imputation did result in substantially smaller distances for one

important physiological feature: LAPS2. While LAPS2—which is based on
laboratory, vital sign, and neurologic information obtained within the 72 hours
preceding hospitalization—shows very little conditional dependence on the other
features in the dataset across the entire population (hence the slight improve-
ment MICE yields over population mean imputation), the CMM seems to detect
latent structure according to this measure of acute illness, offering a significant
improvement over population mean imputation. This result corroborates our
previous findings of population structure according to mortality risk.

Figure 8: Distances between imputed and observed values from four different imputa-
tion methods for select features, relative to distances from population mean imputation
(Dnormalized = Dimp./Dpop. mean imp.), where D is the appropriate distance for each fea-
ture as described in section 3.6). Error bars represent standard deviation across imputations
on 3 independent CMM fits (for CMM imputations) or across 20 independent imputations (for
MICE). Performance was similar for TRANSPORT and two other categorical features (mem-
bership and facility codes) not shown. TRANSPORT, patient transport code; BPDIA, median
diastolic blood pressure; BPSYS, median systolic blood pressure; HRTRT, median heart rate;
PP, median pulse pressure; RSPRT, median respiratory rate; TEMP, median temperature.

5. Discussion & Conclusions

We demonstrated the flexibility and efficacy of our composite mixture model
approach in analyzing multi-typed EMR datasets characterized by population
heterogeneity and data missingness. The model can be used to stratify clini-
cal populations according to risk of different unfavorable outcomes at different
points in a hospitalization and to evaluate the marginal associations of patient
physiology with higher rates of such outcomes. With the wide range of common
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EMR data types supported by the CMM, specification of a new model or exten-
sion of existing models to new data types is straightforward without requiring
significant development efforts. Coupled with the cluster-based techniques we
present here, the CMM can be used to statistically annotate groups of patients
in an unbiased manner, an approach that can be easily be deployed as part of a
patient monitoring system in other healthcare centers. Once the CMM is fit on
episode data across a range of post-admission time periods, new patient feature
vectors or patient feature vectors updated with new information and be fed to
the model to determine changes in the probability of assignment of the patient
to high-risk clusters. As a joint rather than conditional probability model, the
CMM not only provides a useful framework to impute missing observations but
also to predict outcomes of interest for held-out samples, enabling analyses that
can complement purely predictive modeling studies.

Our work is most closely related to the unsupervised learning study Pivo-
varov et al. [30] and the supervised learning works by Halpern et al. [15] and
Joshi et al. [19]. In [30], the authors transform different EMR data types (includ-
ing clinical notes and ICD9 codes) into a single type of representation (bag-of-
words) meant to be fit by a latent Dirichlet allocation-based mixture model [4].
In contrast, we directly model demographic and physiological variables of both
discrete and continuous types from in-patient episodes.

Another important difference between this study and others is the data-
driven approach we take to annotate and evaluate our clusters. Benchmarking
of clustering approaches is problematic. In Halpern et al. [15] and [19], the
authors take a supervised (or weakly supervised) approach to address this issue
using “gold standard” (or “silver standard”) labels, evaluating the ability of
their methods to recover manually curated phenotypes usually associated with
certain clinical conditions (external evaluation; [12]). As we do not have ac-
cess to such supervised information for sepsis [1, 8, 24] and are working in a
more specific population of interest (e.g. suspected septic patients as opposed
to all emergency department patients), we instead opt for an indirect evalua-
tion of our clusters [12]: assessing their utility for the chosen goal of enriching
patients into subgroups with statistically significantly higher rates of adverse
health outcomes like mortality during hospitalization. We take this unbiased
approach to discover and evaluate potentially uncharted, latent phenotypes rele-
vant to sepsis treatment since manually curated conditions or prediction targets
might introduce subjective bias into the kinds of phenotypes discovered. Conse-
quently, an advantage of the CMM model, coupled with our statistically driven
evaluation of the physiological signatures of high risk clusters, is its ability to
generate clinically interpretable readouts of different patient subgroups of inter-
est. While we make no claim of superiority in our clustering, we do believe that
the flexibility and portability of the CMM, coupled with the novel cluster-based
analyses we present here, provide a complementary, data-driven approach to
clinical phenotyping and risk analysis.

The CMM is not without its drawbacks. For one, manually specifying the
model template, or list of univariate distributions that model each feature col-
umn of a dataset, can be prohibitive in high feature dimensions. Also, while

17

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/160465doi: bioRxiv preprint 

https://doi.org/10.1101/160465
http://creativecommons.org/licenses/by-nc/4.0/


model fitting routines have been vectorized and the component distributions
(i.e. exponential family distributions) are amenable to embarrassing data par-
allelism [28], our approach was not optimized further. As such, estimation of
a CMM can be computationally intensive (e.g. approximately 3.5 hours on a
single core for the 3 hr dataset, with 53,659 episodes and 32 features, fitting to
250 (the optimal number) clusters). In previous non-medical applications, we
overcame this computational burden by leveraging scalable high-performance
computing software framework for streaming data analysis [37]. We are cur-
rently extending our model fitting software to automatically identify “default”
distributions for a given feature column as well as exploring scalable (i.e. data-
parallel) estimation routines.

In addition to demographic information, we opted to model a particular set
of patient vital sign statistics representative of level and variability over fixed
post-admission periods. However, this approach ignores dynamic patterns in
the vital signs including changes in the cross-correlation between different vital
sign types that might also be indicative of changes in patient health [27] and
could be included as features. In addition, an alternative approach to modeling
the vital signs would be to extend the CMM with distributions appropriate
for time series data (e.g. a Gaussian process; [31, 22]). Such an extension
could potentially reduce the number of parameters in the overall CMM and
lessen model specification and estimation time. Moreover, while not included
in our analyses, lab test results can aid in the risk stratification of patients and,
like vital signs, provide clinically actionable targets for intervention to improve
patient health. As part of our ongoing and future work, we are investigating
these extensions to our analyses.

We achieved competitive missing data imputation performance with the
CMM, though it is important to note how that analysis also highlights dif-
ferences between unsupervised and supervised learning approaches. Regression-
based methods like MICE make predictions based on population-wide condi-
tional information. Thus, features for which MICE performs well could indicate
strong conditional dependencies between those features and all other features
at the population level. In contrast, CMM-based imputation makes predictions
based on identifying latent local structure, identifying subpopulations of the full
dataset that are more similar to one another. In particular, the CMM uncovers
latent structure with respect to features like LAPS2, leading to improved im-
putation performance, even though the current formulation of the model does
not include conditional dependencies. It is worth noting that our assumption of
conditional independence among feature dimensions given a mixture component
represent one potential model structure of the CMM. Conditional dependencies
can be introduced into the CMM rather straightforwardly (e.g. replacing uni-
variate normal distributions with linear regressions conditioned on other fea-
tures) and will be the subject of future work. Taken together, these results
suggest that the CMM could be used in concert with other data imputation
approaches to address missing data challenges on a per-feature basis.

Our CMM-based analysis and data-driven cluster annotation of the KPNC
sepsis cohort revealed physiologically distinct subpopulations associated with
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elevated rates of mortality. In a patient monitoring context, a patient’s obser-
vation vector could be passed as input to our fitted model at different points in
their hospitalization to evaluate the probability of their association with high-
risk clusters. Moreover, an important follow-up analysis could identify patterns
in those episodes assigned to high risk clusters at 3 hours post-admission that
were assigned to low risk clusters later in their hospitalization (and vice versa).
Specifically, as our full dataset also includes discrete time series of the medica-
tions and procedures ordered by the clinician during each hospitalization, we
can evaluate whether certain medications or procedures were over-represented
in trajectories in which patients transitioned into clusters of higher or lower
risk. Overall, our CMM framework provides a valuable decision support tool to
characterize and stratify heterogeneous clinical populations, capturing clinically
relevant changes in patient physiology while accounting for the data missingness
and wide variety of data types inherent in large-scale electronic medical record
data.
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