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Abstract 

Runs of Homozygosity (ROH) are sequences that arise when identical haplotypes are inherited 

from each parent. Since their first detection due to technological advances in the late 1990s, 

ROHs have been shedding light on human population history and deciphering the genetic basis of 

monogenic and complex traits and diseases. ROH studies have predominantly exploited SNP 

array data, but are gradually moving to whole genome sequence (WGS) data as it becomes 

available. WGS data, covering more genetic variability, can add value to ROH studies, but require 

additional considerations during analysis. Using SNP array and low coverage WGS data from 

1885 individuals from 20 world populations, our aims were to compare ROH from the two 

datasets and to establish software conditions to get comparable results, thus providing guidelines 

for combining disparate datasets in joint ROH analyses. Using the PLINK Homozygosity 

functions, we found that by allowing 3 heterozygous SNPs per window when dealing with WGS 

low coverage data, it is possible to establish meaningful comparisons between data using the two 

technologies.  
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Introduction 

Runs of Homozygosity (ROH) are contiguous regions of the genome where an individual is 

homozygous across all sites. ROH arise when two copies of an ancestral haplotype are brought 

together in an individual. Consequently, that haplotype would be autozygous, i.e. homozygous by 

descent. ROH were first discovered using genome-wide microsatellite scans in the mid 1990s 

(Broman et al. 1999). Members of two families recruited to construct the first human genetic maps 

carried 4-16 ROH typically 2-40 cM in length; the most extreme individuals had a total of 253 cM 

in ROH, consistent with close inbreeding. Henceforth, ROH were found to be ubiquitous even in 

outbred populations; indeed, we are all inbred to some degree and ROH captures this aspect of 

our individual demographic histories (Biraben 1980; Donnelly 1983; Gibson et al. 2006; Keller et 

al. 2011).


ROHs have been a subject of study since their discovery due to their applications for 

understanding human population and disease genetics (Szpiech et al. 2013; Joshi et al. 2015). 

The number and length of ROH reflect individual and population history while the homozygosity 

burden can be used to investigate the genetic architecture of complex disease (McQuillan et al. 

2008; Pemberton et al. 2012; Ghani et al. 2015; Yang et al. 2015; Howrigan et al. 2016; Johnson 

et al. 2016). In view of their usefulness the number of articles published using ROH has been 

increasing significantly in the last years (162 in 2005, 322 in 2010 and 620 in 2016, PubMed 

search using R package RISmed) using predominantly DNA SNP array genotypes. It is expected 

that, with the current availability of full genome sequences, ROH will be used extensively as an 

augmentative approach to study population structure, demographic history and in deciphering the 

genetic structure of complex diseases.


The first aim of this article is, therefore, to compare the outcomes and general conclusions drawn 

for array-based data and low coverage (3-6x) whole genome sequence data from the same 

groups of individuals. The second is to obtain appropriate parameters of ROH calling that allow 

meaningful comparison between ROH obtained from both technologies.       


There are two major methods for identifying ROH: observational genotype-counting algorithms 

(Purcell et al. 2007) and model based algorithms (Pemberton et al. 2012). Observational 

approaches use algorithms that scan each chromosome by moving a fixed size window along the 

whole length of the genome in search of stretches of consecutive homozygous SNPs (Purcell et 

al. 2007). This approach is implemented in PLINK v1.9 where a given SNP is considered to 
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potentially be in an ROH by calculating the proportion of completely homozygous windows that 

encompass that SNP. If this proportion is higher than a defined threshold, the SNP is designated 

as being in a ROH. In the algorithm, a variable number of heterozygote positions or missing SNPs 

can be specified per window in order to tolerate genotyping errors and failures. An ROH is called 

if the number of consecutive SNPs in a homozygous segment exceeds a predefined threshold in 

terms of SNP number and/or covered chromosomal length. The simplicity of the approach used 

by PLINK allows efficient execution on data from large consortia (Joshi et al. 2015). On the other 

hand, haplotype-matching algorithms (e.g. Germline) (Gusev et al. 2009) for calculation of identity-

by-descent (IBD) can also be used to identify ROH, as a special case of IBD within an individual. 

Model-based approaches use Hidden Markov Models (HMM) to account for background levels of 

LD, like the one implemented in Beagle (Browning and Browning 2010). Tests on simulated and 

real data showed that the approach using PLINK outperformed Germline and Beagle in detecting 

ROH (Howrigan et al. 2011). These models have been used to find ROH in array and WGS data; 

however, the HMM model approach is also used with Whole Exome Sequence (WES) data as an 

alternative to discover SNP variants and small to medium length ROH (Zhuang et al. 2012; 

Mezzavilla et al. 2015). However, with the sparse nature of the WES target design, long ROH 

detection is not possible. Specific software, like “homozygosity heterogeneous hidden Markov 

model (HMM)” or H3M2, was designed to deal with this type of data (Magi et al. 2014).


Accurate ROH calling requires high density SNP genome-wide scan data. A number of factors 

influence the quality of ROH calling, including the marker density, their distribution across the 

genome, the quality of the genotype calling/error rates and minor allele frequency. Currently ROH 

studies have been carried out using genome-wide scan data overwhelmingly from SNP arrays (Ku 

et al. 2011; Yang et al. 2012; Joshi et al. 2015), both because of the availability of this data and 

the fact that array data is considered the gold standard with very low genotyping calling error 

rates (typically <0.001). However SNP arrays usually include ~1-2.5 million SNP typically with 

allele frequencies >0.05, chosen to best represent haplotype structure in target populations. 

Arrays with more than 300k SNP genome-wide coverage have been shown to be good enough to 

successfully detect ROH longer than 1 Mb, which correspond to true ROH arisen by autozygosity 

(McQuillan et al. 2008). Indeed, it is expected that long ROH will keep their homozygous status 

independently of the SNP coverage. However, the relative sparsity of SNPs on an array may mean 
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that true heterozygous SNPs between the markers on the array may be missed, thereby making 

two close-by ROHs appear as one, longer ROH.


A WGS approach, on the other hand, assays every variant so all accessible bases can now be 

genotyped and more than several million variants, from the most common to the most private can 

be obtained for each individual (Nielsen et al. 2011; Goodwin et al. 2016). For cost reasons, low 

coverage sequencing is often employed to maximize the number of participants in a study and 

strengthen its power. In this case rare SNPs are called significantly less often, with higher error 

rates, than common SNPs. Whole genome sequence with low-coverage (e.g. 4x average) has a 

high probability that only one of the two chromosomes of a diploid individual has been sampled at 

a specific site (Nielsen et al. 2011; Goodwin et al. 2016). Error rates of low coverage WGS can get 

up to 15% or higher. Of course, reducing and quantifying the uncertainty associated with SNP 

calling may be accomplished using sophisticated algorithms, and this approach has been subject 

to extensive research (Goodwin et al. 2016). However, the error rate for low coverage WGS is 

significantly higher than for array data, which will lead to inaccuracy in ROH calling. This is 

particularly important, as the cost of WGS becomes more affordable and data more available 

(Wetterstrand 2016), opening up new possibilities to study ROH in greater detail, replicate results 

from SNP array data studies, or to the study the relationship of ROH, especially shorter ones, with 

new populations or traits. Hence, parameters of ROH calling algorithms require tuning to the 

characteristics of the underlying data in order to obtain meaningful comparable results between 

studies using different technologies. While in the long run, high coverage data (>30x) will become 

more affordable, for the medium-term at least, low-coverage WGS data will be an important 

source for many analyses.


Results  

Comparing variant calling between technologies 

In order to have a meaningful comparison of ROH obtained from array and WGS low coverage 

data it is important to first analyze the differences in presence of heterozygous SNPs and variant 

calling between both technologies. To assess the error rate in heterozygote calling in the WGS, 

the percentage of concordance in the variant calling between the array and the WGS data, is 

shown for every population studied (Table 1). As expected, WGS included more heterozygotes 

SNPs since the SNP array captured only data from ~2.5M nucleotide positions in the autosomal 

genome, whereas the WGS provided data for the entire length of the genome (~2.8x109 
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nucleotide positions). On average, for all the populations analyzed, the WGS low coverage data 

had 6.3 times more heterozygous SNPs (2,558,000 ±71,700) compared to the array (404,700 

±7,717) (Table 1).  In WGS data there is 1 heterozygous SNP per 1.1 Kb vs 1 in 7.1 Kb in array 

data. On average the concordance in variant calling by array and WGS is 99.6% (±0.05%). Of the 

0.4% (±0.05) discordant calling, on average, 0.1% (±0.03) of the SNPs was called heterozygous 

by the array and homozygous by WGS and 0.3% (±0.02) of the SNPs was called heterozygous by 

WGS, but homozygous by array. Considering that array genotyping is the gold standard, WGS 

data, on average, led to erroneous calling of 0.3% (±0.02) of heterozygous SNP, which would 

incorrectly be reported as a break in a given ROH. On average, for all the populations, there will 

be 6,500 SNPs (±714) per individual wrongly called as heterozygous, and that is roughly 2.4 SNP 

(±0.3) per Mb. This error rate is however different across the studied populations, with the JPT 

having the higher error rate (13,000 wrongly called heterozygotes; 4.5 SNPs per Mb) and the ZUL 

having the lowest (740 wrongly called heterozygotes; 0.3 SNPs per Mb).


�5

Table 1. Mean number of heterozygote SNPs (per called SNP) in array and WGS low coverage 
data for 20 world populations 

	

      VARIANT CALLING    
   Ave N of 

Het. WGS 
Ave N of 

Het. Array 
 

Concor. Discor. He A − Ho W Ho A − He W 
 ROH 

error 
 

 FIN  2 432 921.7 398 280.1  99.6929 0.3071 0.0402 0.2669  0.227  
 GBR  2 463 526.4 405 223.1  99.6898 0.3102 0.0430 0.2672  0.224  
 IBS  2 440 125.2 399 870.1  99.6547 0.3453 0.0412 0.3041  0.263  
 TSI  2 445 524.4 401 124.4  99.6015 0.3985 0.0424 0.3562  0.314  
 CEU  2 479 523.5 417 837.2  99.6365 0.3635 0.0402 0.3232  0.283  
 ACB  3 283 726.5 454 173.7  99.6723 0.3277 0.0403 0.2874  0.247  
 ASW  3 262 716.1 462 107.3  99.6526 0.3474 0.0448 0.3026  0.258  
 MXL  2 524 698.2 385 362.1  99.7197 0.2803 0.0433 0.2370  0.194  
 CLM  2 317 649.7 377 844.5  99.6716 0.3284 0.0460 0.2825  0.236  
 PEL  2 100 245.2 352 485.3  99.6987 0.3013 0.0411 0.2601  0.219  
 PUR  2 421 174.0 381 603.3  99.4125 0.5875 0.0448 0.5427  0.498  
 CDX  2 313 375.1 371 361.9  99.7197 0.2803 0.0351 0.2452  0.210  
 CHB  2 330 226.6 377 553.5  99.7197 0.2803 0.0366 0.2437  0.207  
 CHS  2 317 649.7 377 844.5  99.6991 0.3009 0.0451 0.2558  0.211  
 JPT  2 320 417.1 375 586.6  99.3659 0.6341 0.0354 0.5988  0.563  
 KHV  2 350 584.8 368 521.5  99.8549 0.1451 0.0343 0.1109  0.077  
 YRI  2 840 113.4 463 890.4  99.5746 0.4254 0.0383 0.3871  0.349  
 LWK  2 840 253.9 441 435.7  99.5545 0.4455 0.0457 0.3998  0.354  
 ZUL  2 840 578.1 441 536.6  98.7062 1.2938 0.6338 0.6600  0.026  
 BAG  2 840 658.6 441 412.3  99.2791 0.7209 0.3157 0.4052  0.090  

Concor.	Concordant,	Discor.	Discordant		
He	A	–	Ho	W	SNP	called	heterozygote	by	array	and	homozygote	by	WGS	
Ho	A	–	He	W	SNP	called	homozygote	by	array	and	heterozygote	by	WGS	
ROH	error	%	of	SNPs	that	being	wrongly	called	can	break	a	ROH		

Mean variant calling concordance (in %) is shown. Discordance is discomposed in SNP called 
heterozygous by array but homozygous by WGS and vice versa. Finally a ROH error is defined as 
the % of SNP that according to variant calling discordance would break ROH in WGS low 
coverage data.

Concor. Concordant, Discor. Discordant  
He A – Ho W SNP called heterozygote by array and homozygote by WGS

Ho A – He W SNP called homozygote by array and heterozygote by WGS

ROH error % of SNPs that being wrongly called can break a ROH 
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Assessing the impact PLINK tolerating heterozygous SNPs in the search for ROH 

PLINK software, by allowing a certain number of heterozygous SNPs per window (the default 

value being 1 heterozygous SNP per window), already takes into account possible calling errors 

that may wrongly break a long ROH. By allowing this heterozygous SNP, the software produces an 

error that depends on the number of SNP (in homozygous state) per ROH. Figure 1 shows ep(P,h), 

a measurement of the empirically observed number of heterozygous SNPs found in ROHs in 

population P when allowing h heterozygous SNPs (1 heterozygous SNP in the array data and 1 to 

5 in WGS data). This figure shows that for most of the populations the ep(P,h) produced by 

allowing a single heterozygous SNP per ROH in array data is equivalent to allowing 4 to 5 

heterozygous SNPs in WGS data. A few populations deviated from this observation: TSI (0.27% 

for the array data vs 0.17% after allowing for 5 heterozygous in WGS data), ASW (0.185 vs 0.122), 

ACB (0.185 vs 0.138), YRI (0.13 vs 0.114), BAG (0.161 vs 0.133) and ZUL (0.136 vs 0.105). These 

differences are provoked by differences in the mean number of SNPs per ROH as it can be seen 

in Table 1 of the Supplementary material (Supplemental_Table_S1). For example, the TSI 

population has, on average, 368 SNPs in the homozygous state per ROH in the array data, less 

than half of the average SNP per ROH in array data across all populations (714.7).


!
!
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Figure 1. Effect of allowing heterozygous SNPs per window evaluated by ep(P,h) as a measure of 
the empirically observed actual number of heterozygous SNPs found in ROHs in population P 
when we allow h heterozygous SNP. (See supplementary material for the definition).
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Figure 2. Violin plots of the mean number of ROH longer than 1 Mb. Populations are colored by 5 
biogeographical groups by admixture analysis. Admixed (Hispanic-American: CLM, MXL; African-
American: ACB, ASW) – blue, Native Americans (PEL) – green, East (CHS, CDX, JPT) and South 
(KHV) Asia – tan, North (FIN, GBR, CEU) and South (IBS, TSI) Europe – violet, South (ZUL), East 
(BAG, LWK) and West (YRI) Africa – red. Four distributions per population are shown, array data 
with 1 heterozygous SNP allowed per window and WGS with 1 to 3 heterozygous SNPs allowed.
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Figure 3. Violin plots of mean ROH size longer than 1 Mb (in Mb). Different biogeographical 
groups have different x-axis scales in an attempt to maximize the difference between distributions 
within populations. See Figure 2 legend for population codes.
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!
Obtaining equivalent ROH estimates using data from both technologies 

According to both Table 1 and Figure 1 it seems appropriate to compare ROH from both 

technologies allowing 1 to 5 heterozygote SNPs in WGS data in order to obtain equivalent results. 

Violin plots show the distribution of mean number of ROH (Figure 2), mean ROH size (Figure 3) 

and mean total sum of ROH (Figure 4) per population and using array data, compare to WGS data 

with 1, 2 or 3 tolerated heterozygotes per window. Almost without exception, the distribution 

between array and WGS data is most similar when 3 heterozygous SNPs in the WGS data are 

�9

Figure 4. Violin plots of mean total sum of ROH longer than 1 Mb (in Gb). See figure 2 legend for 
population codes.
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allowed per window. Mean values and standard deviations for up to 5 heterozygous SNPs allowed 

per window are shown in Supplementary Table 2 (Supplemental_Table_S2). Figure 5 (top row of 

images) shows the correlations with the array data as heat-maps between number of ROH (i), 

mean ROH size (ii), and total sum of ROH (iii) for each population and a different number of 

allowed heterozygous SNPs in the WGS data (values and probabilities shown in 

Supplemental_Table_S3). The correlations, as expected, increase with more heterozygous SNPs 

being allowed in the WGS data. Correlations are not homogeneous, south and East Asian 

populations show lower correlations in comparison with other populations. An alternative 

representation by line charts is shown in Supplementary Figure 1 (Supplemental_Fig_S1), where 

differences between populations are perceived more easily. Results of the statistical comparison 

between ROH obtained from array and WGS (with a different number of heterozygous SNPs 

allowed) (Figure 5 bottom row of images) by the Mann-Whitney-Wilcoxon (MWW) nonparametrical 

test are shown as a heat-map of significance (p values; blue = not significant) in Figure 5 bottom 

row of images. P-values are presented in Supplementary Table 3 (Supplemental_Table_S3). Figure 

5 shows heterogeneous results across populations. In general, by allowing 3 heterozygotes SNPs 

per window in WGS the statistical outcomes in the number of ROH, mean ROH size and total sun 

of ROH are similar between array and WGS data. However, Figure 5 bottom row also shows that 

for the Asian populations, especially the JPT, for the number of ROH and total sum of ROH 

differences between array and WGS data are significant for every heterozygous SNP allowed.
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Comparing ROH with different lengths 

Considering WGS data with 3 heterozygous SNPs allowed per window, the best PLINK condition 

to obtain ROHs comparable with ones obtained from array data, it is interesting to compare the 

mean sum of ROH, between technologies, in different ROH length categories (Figure 6). This is 

relevant because the study of different ROH lengths has different applications, as indicated in 

Table 2. Figure 6 shows that for ROH longer than 1Mb, the array and WGS mean total lengths are 

very similar, with some exceptions like the JPT, in the case of ROH longer than 8 Mb. However, 

WGS data systematically detected more short ROH (0.3 – 1Mb) than array data. This outcome is 

expected and is caused by the lower SNP coverage of array data, since PLINK considered just 

ROH containing at least 50 SNPs. This gap between array and WGS data can be corrected for 

small ROH by changing PLINK parameters and relaxing the number of SNPs needed to call a 

ROH (--homozyg-snp 30, data not shown).


!
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Figure 5. Heatmaps of correlations and MWW tests of mean number of ROH, mean ROH size and 
mean total sum of ROH between array data allowing 1 heterozygous SNP per ROH and WGS data 
allowing 1 to 5 heterozygous SNPs per ROH (y-axis). Top row of images| Pearson correlations. 
Bottom row of images| P-values of Mann-Whitney-Wilcoxon non-parametrical test (MWW), red 
shows significant difference between array and WGS while blue shows distributions that cannot 
be considered different. See Figure 2 legend for population codes.
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Figure 6. Mean sum of ROH in different length categories. The light colored lines represent WGS 
with 3 heterozygous SNP allowed per window and dark colored lines represent array data with 1 
heterozygous SNP allowed per ROH. See Figure 2 legend for population codes.

 ROH size 
Class 

 SNP Array WGS low coverage WES Applications  

 Short < 1Mb  Poor performance due 
to low SNP coverage. 
Can be adjusted to 
detect ROH by 
modifying the number 
of SNPs required in a 
ROH.  

Able to detect but 
need to build 
adjustment for 
genotype calling 
errors.  

Able to detect but 
only in selected 
genomic regions. 
Software like H3M3 
allows meaningful 
regional analysis.  

Detection of rare 
variants involved in 
deleterious recessive 
alleles and directional 
dominance. Analysis of 
LD patterns and 
extreme bottle necks. 

 

 Medium 1-8Mb  Able to detect if the 
array has at least 300K 
SNPs. ROH 
boundaries will be 
fuzzier in comparison 
with WGS low 
coverage data. 

Good performance 
but need to build 
adjustment for 
genotype calling 
errors. Allowing 3 
heterozygous SNPs 
per ROH would grant 
meaningful 
outcomes. 

Able to detect, but 
only in selected 
genomic regions 
and boundaries of 
ROH could be 
fuzzy if they reach 
into non-exonic 
regions. 

Detection of rare 
variants involved in 
diseases. Analysis of 
inbreeding depression. 
Genome architecture 
and ROH island 
detection. Population 
history, bottle necks, 
remote consanguinity 
and genetic drift.  

 

 Long > 8Mb  Good performance if 
the array has at least 
300K SNPs. 

Good performance 
but need to build 
adjustment for 
genotype calling 
errors. Allowing 3 
heterozygous SNPs 
per ROH would grant 
meaningful 
outcomes. 

Poor performance 
due to short size 
of most exons and 
their sparsity 
across the 
genome. 

Analysis of inbreeding 
depression. Validation 
ofGWAS findings. 
Population history and 
cultural practices, 
close consanguinity.  

 

	

Table 2. Performance of different technologies (array, WGS low coverage and WES) with different 
ROH size classes (Short < 1Mb, Medium 1 – 8Mb and Long > 8Mb).
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Discussion and Conclusions 

Runs of Homozygosity were first detected due to the ability to perform denser genome-wide 

microsatellite marker scans in the late 1990s (Broman et al. 1999). Soon after the first ROH study 

using short tandem repeat polymorphisms (STRPs) was released, the first SNP arrays started to 

become available. During those first years, using arrays with densities of 40K and 120K SNPs, 

ROH were discovered to be ubiquitous across all human populations (Gibson et al. 2006). 

However, it was not until the first arrays with more than 300K SNPs were used that the analysis of 

ROH started to shed some light onto the understanding of human demographic history and in 

deciphering the genetic structure of traits and complex diseases (Ku et al. 2011; McQuillan et al. 

2012; Wang et al. 2015). Currently array-based genotyping covers around 1.9 to 2.2 million SNPs, 

allowing meaningful detection of ROH longer than 1Mb, and even though this is an important 

improvement over previous arrays, it covers only ~2% of the total common SNPs present in the 

human genome (LaFramboise 2009; Lamy et al. 2011). This prevents the use of array data for 

detecting shorter ROH, an essential component contributing to the understanding of human 

genetics. WGS will soon allow shorter ROH to be more reliably called; permitting the effect of very 

short ROH on diseases risk to be quantified. Thus, analyzing the effect of different lengths of ROH 

may reveal the relative contributions of rare and common variants to the demographic history of 

human populations. 


Ideally, WGS deep coverage would be the best option to study ROH, since genotype calling will 

be robust for low MAFs and ROHs of virtually any size would be detected. However, two major 

issues prevent the use this technology. First, the lack of WGS deep coverage data for population 

studies and secondly, the extreme computational expense of analyzing this type of data using 

current software. Unlike deep coverage, low coverage WGS data is more abundant and 

affordable, and the computational effort of obtaining ROH is less computationally intensive. The 

only drawback of using this data is the calling error associated with it. By comparing ROH 

obtained from array data, we demonstrate in this article that this problem can be mitigated by 

allowing 3 heterozygous SNPs per window using PLINK software to obtain ROH longer than 1Mb. 

In all populations, the highest correlation was achieved when allowing 3 to 4 heterozygous SNPs 

per window (Figure. 5 top row of images). Regarding MWW tests (Figure. 5 bottom row of 

images), unlike mean number and total sum of ROH, for most of the populations, mean ROH size 

remains equivalent between technologies when allowing 3 or more heterozygous SNPs per 
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window. As expected, we get more ROH by allowing more heterozygous SNPs, but the mean size 

remains constant. As a consequence, the mean total sum of ROH increases with more 

heterozygous SNP allowed. 


Interestingly, four populations from East and South Asia did not conform to the patterns observed 

in the other populations; in fact for the Dai and Han populations from China (CDX, CHS), Kinh 

population from Vietnam (KHV) and the Japanese population (JPT), it was not possible to obtain 

the same mean number and total sum of ROH between array and WGS data. This may be 

explained by population structure, but perhaps the inferior performance of the Infinium Omni 

2.5-8 Bead chip in Asian populations (Ha et al. 2014) is the more plausible explanation. This could 

also explain why it was not possible to obtain same number of ROH in the Baganda population 

from Uganda (BAG) or the same mean ROH size in the Zulu population from South Africa (ZUL). 


WGS data present the ability to identify shorter ROH (Figure 6), however it would be important to 

compare the short ROH detected using low coverage, compared to high coverage data to 

establish a comparative analysis guideline. In Table 2 we present a comparison in performance of 

the application of three different technologies (SNP array, WGS low coverage and WES data) to 

detect short, medium and long ROH.


This study provides evidence-based guidelines for the combined analysis of array and low 

coverage WGS data when studying ROH to investigate population history and to detect 

associations with complex diseases and traits. To date, ROH studies remain underexplored in the 

search for genetic variants associated with common diseases in different populations and in the 

detection of signals of selection.


Materials and Methods 

Description of Data 

Individuals with both genome-wide SNP genotypic data and WGS low coverage data from the 

1000 Genomes Project – Phase 3 (KGP) (Sudmant et al. 2015; The 1000 Genomes Project 2015) 

and the African Genome Variation Project (AGVP) (Gurdasani et al. 2015) were used. For both 

datasets the Infinium Omni 2.5-8 Bead chip from Illumina was used. The KGP, includes a total of 

1685 individuals from 18 populations with genotypic data available from array and WGS low 

coverage (4x). From Europe: FIN (Finish in Finland, n=99), GBR (British in England and Scotland, 

n=91), IBS (Iberian populations in Spain, n=105), TSI (Tuscany in Italy, n=102) and CEU (Utah 

residents with European ancestry=99). From America: ASW (Americans of African ancestry in 
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Huston, n=61), ACB (African Caribbean in Barbados, n=96), PUR (Puerto Rican in Puerto Rico 

with admix ancestry, n=104), PEL (Peruvian in Lima, Peru with Amerindian ancestry, n=85), CLM 

(Colombian in Medellin, Colombia with admix ancestry, n=95) and MXL (Mexican with admix 

ancestry in Los Angles, USA, n=100). From Asia: CDX (Chinese Han in Xishuangbanna, China, 

n=98), CHB (Chinese Han in Beijing, China, n=100), CHS (Southern Han Chinese, n=105), JPT 

(Japanese in Tokio, Japan, n=100) and KHV (Kinh in Ho Chi Minh city, Vietnam n=99). From Africa: 

YRI (Yoruba in Ibadan, Nigeria, n=108) and LWK (Luhya in Webuye, Kenya, n=99). The AVGP 

includes 2185 samples from 16 African populations; we use WGS data for two: 100 Zulu from 

South Africa and 100 Baganda from Uganda, where genotype data from the Omni 2.5-8 SNP 

array and WGS data at 4x coverage are available. Only SNPs of the 22 autosomes were included 

in this analysis. For each population, data from both array genotyping and WGS were filtered to 

remove SNP with minor allele frequencies lower than 0.05 and those that divert from H-W 

proportions with p < 0.001. This filtering limits the effects of ascertainment bias caused by the 

small number of individuals in the SNP discovery panel, in the case of the array, and the calling 

errors associated with a low depth coverage of whole genome sequence data. 


Identification and Characterization of ROH: 

We use PLINK v1.9 to identify ROH. The following conditions where used:


--homozyg-snp 50. Minimum number of SNPs that a ROH is required to have


--homozyg-kb 300. Length in Kb of the sliding window


--hmozyg-density 50. Required minimum density to consider a ROH (1 SNP in 50Kb)


--homozyg-gap 1000. Length in Kb between two SNPs in order to be considered in two different 

segments.


--homozyg-window-snp 50. Number of SNPs that the sliding window must have


--homozyg-window-het (1 to 5). Number of heterozygous SNP allowed in a window 


--homozyg-window-missing 5. Number of missing calls allowed in a window


--homozyg-window-threshold 0.05. Proportion of overlapping windows that must be called 

homozygous to define a given SNP as in a “homozygous” segment.


The minimum length of a ROH was set to 300 kb. PLINK allows the setting of different variable 

number of heterozygous SNPs per window, with a default value of 1 heterozygous genotype per 

ROH, in order to tolerate genotyping calling errors (--homozyg-window-het 1). This is especially 
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relevant in dealing with WGS low coverage data and therefore we are testing the equivalence 

between ROH obtained from array genotyping and WGS data.


Our goal is to determine under which conditions detecting ROHs using low coverage sequence 

data results in the comparable results as using array data. There are several characteristics of 

ROHs we can measure and we would like these characteristics to be the same no matter the 

technology used.


Our first characteristics is ep(P,h), a measure of the empirically observed number of heterozygous 

SNPs found in ROHs in population P when we allow h heterozygous SNPs (see supplementary 

material for the definition). This observed number of heterozygous SNPs differs from the 

parameter used for detecting ROHs depending on the population and technology platform 

characteristics. Figure 1 shows ep(P,h) for different populations. ep(P,h) values for different 

populations (P) and heterozygous SNP allowed (h) are shown in Supplemental_Table_S1. These 

results show that for low coverage sequence data, h should be at least 3 to get the same 

characteristics as array data. The analysis below explores this in more detail. 


Statistical Analysis 

For comparison purposes three variables per population were defined. Mean number of ROH as 

the mean number of ROH longer than 1Mb. Mean ROH size as the mean size of ROH longer than 

1Mb. Total sum of ROH as the mean total sum of ROH longer than 1Mb. Considering just ROH 

longer than 1Mb allows the selection of only the ROH arising from identity by descent and to 

remove any LD effects. Data distributions were illustrated using violin plots. This plot combines a 

box plot with a kernel density plot, where the interval width is obtained by the rule of thumb. The 

violin shows a colored kernel density trace with the interquartile range as a black line and median 

as a white dot. This representation is especially relevant when dealing with data or variables that 

show skewed distributions and is a good means of comparison between populations, when 

dealing with asymmetric distributions where the median is more informative than the mean. 

Statistical comparisons between mean number of ROH, mean ROH size and mean total sum of 

ROH for different populations, technologies and PLINK conditions were performed by Pearson’s 

correlation and Mann-Whitney-Wilcoxon non-parametric test (MWW). All the exploratory and 

statistical analyses were performed using R.


Data access  
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African Genome Variation Project data (AGVP) are available from the European Genome-phenome 

Archive (EGA, http://www.ebi.ac.uk/ega/), hosted by the EBI, under accession Numbers 

EGAS00001000363 and EGAS00001000286.
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