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Abstract 

The dirty little secret behind genome-scale systems biology modeling efforts is that they are 

invariably based on very incomplete functional annotations. Annotated genomes typically 

contain 30-50% of genes with little or no functional annotation, severely limiting our knowledge 

of the "parts lists" that the organisms have at their disposal. In metabolic modeling, these 

incomplete annotations are often sufficient to derive a reasonably complete model of the core 

metabolism at least, typically consisting of well-studied (and thus well-annotated) metabolic 

pathways that are sufficient for growth in pure culture. However secondary metabolic pathways 

or pathways that are important for growth on unusual metabolites exchanged in complex 

microbial communities are often much less well understood, resulting in missing or lower 

confidence functional annotations in newly sequenced genomes. Here, we present preliminary 

results on a comprehensive reannotation of 27 bacterial Tier 1 and Tier 2 reference genomes 

from BioCyc, focusing on enzymes with EC numbers annotated by KEGG, RAST, EFICAz, and 

the Brenda enzyme database, and on membrane transport annotations by TransportDB, KEGG 

and RAST. 

Introduction 

Genome annotation has existed since the very first sequenced genomes. Initially, bacterial 

genomes were annotated primarily through manual curation of different groups of genes by 

experts. Today, automated gene annotation tools employing different methodologies with minimal 

manual curation are widely used, functionally annotating by homology to existing annotations, or 

by identification of conserved domains/motifs within a coding sequence. Many draft genomes and 

metagenome bins are often run through a single annotation pipeline where genome annotations 

are inherited from previous genome annotations. These annotation tools each have their own 

distinct advantages and limitations, often focusing on particular aspects of annotation or particular 

organisms. There is often a trade-off between general annotation tools which typically excel at 
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correctly identifying genes in core metabolic processes, and specialist annotation tools focusing 

on a particular set of genes or enzyme substrates (such as transporters). The array of different 

tools can be overwhelming, and the burden of learning the intricacies of multiple annotation 

pipelines can lead the typical researcher to choose only a single to annotate an entire genome. 

Additionally, even when multiple annotation tools are used, incorporating the different pieces of 

information in a cohesive manner remains a major barrier. Individual metabolic annotation tools 

often return annotations for different subsets of genes, offering the potential to greatly increase 

the completeness of metabolic annotations by combining the outputs of multiple tools. 

“Genome-scale” metabolic models implicitly assume complete and accurate genome 

annotation, however, only 50-70% of genes in a typical prokaryotic genome are annotated (1), 

with the most reliably annotated genes often those involved in core metabolic processes. Modern 

metabolic modeling efforts, however, are moving beyond studying core metabolic pathways in a 

single organism towards multi-species models, real-world communities and ecosystems. 

Additionally, incorporation of complex ‘omics and metabolite data is becoming increasingly 

common, and robust genome annotations are therefore necessary to aggregate these different 

data streams. There also exist steps in metabolic pathways converting molecules for which the 

responsible enzymes are unknown. For example, one third of the EC database consists of 

"orphan enzymes" that have been described in the literature but for which no sequence data is 

available (1). 

In Flux Balance Analysis, the issue of missing metabolic annotations is dealt with by “gap 

filling” - that is, adding a set of metabolic reactions beyond those that were derived directly from 

the genome annotation. A variety of gapfilling algorithms have been developed to predict a set of 

reactions to be added to make the metabolic network model sufficiently complete to be able to 

produce biomass (2-5). Henry et al. showed that in a broad collection of 130 genome-scale 

metabolic models added to the ModelSEED database, on average 56 additional gap filled 

reactions needed to be added to each model to produce biomass from simple defined nutrient 

media (6). But even after those additions, around a third of the reactions in each model were still 

inactive, meaning that there were enough holes left in the network to preclude metabolic flux 

through those reactions (6,7). In addition, the number of reactions that can partake in a gap-filling 

solution is vast (3,270 in the case of E. coli (8)), and the sets of reactions generated by different 

gap filling algorithms may have little or no overlap with each other (9). Clearly, if we could start 

with a more complete annotation of metabolic reactions to begin with, that would be preferable 

over having to add dozens of poorly supported reactions afterwards just to patch the holes in the 

network. 

Recent genome-scale modeling of Clostridium beijerinckii NCIMB 8052 (9) demonstrated 

that the total number of genes and reactions included in the final curated model could be almost 

doubled by incorporating multiple annotation tools. The reconstruction of the C. beijerinckii 

metabolic network used 3 different database sources (SEED (10), KEGG (11), and RefSeq 

annotations captured in BioCyc (12)) to evaluate annotation coverage and produce a more robust 

model. Reactions annotated by all three databases were considered most reliable reliabie, but 

only 34 percent of reactions fit that criteria. Furthermore, for reactions appearing in more than two 

databases, gene-protein-reaction annotations were compared, finding that one database was 

missing a gene-reaction relationship rather than suggesting an alternative one. The overlap 

between annotations from different sources corresponded with an active set of reactions that 
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represented the core metabolic network of C. beijerinckii and illustrated the importance of 

annotation agreement. However, while this convergence of annotations is true for primary 

metabolic pathways, a comparison of annotations for secondary metabolic pathways is less clear. 

Transporter annotations are rarely used in genome scale metabolic modeling, because of 

the difficulty in annotating which exact substrate is being transported by that transporter. Because 

of this, many metabolic modeling methods simply assume that there exist a transporter for any 

metabolite that needs to be imported into the cell or exported out of the cell. We know that this 

assumption is incorrect in some cases. For example, the yogurt bacteria Streptococcus 

thermophilus is known to have a highly unusual growth phenotype, in that it grows much better 

on lactose than on glucose (13), even though it does so by importing lactose, hydrolyzing it to 

glucose and galactose, and then metabolizing only the glucose, with the galactose secreted back 

out of the cell. The cause for its growth deficit when fed on glucose directly is that it lacks the 

usual glucose phosphotransferase system used by many bacteria, and instead it has a very 

efficient lactose import mechanism that makes it well adapted to grow in milk (13). Better 

prediction tools such as TransportDB’s Transporter Automatic Annotation Pipeline (TransAAP 

(14)) now allow us to generate substrate predictions that are sufficiently detailed to be included in 

metabolic pathways, and could give insights into growth or metabolite exchange phenotypes that 

are not readily apparent from the enzymes present in the genome. 

We undertook an investigation into the effectiveness of individual tools in genome 

annotation and their overlap with each other. Using 27 bacterial reference genomes from BioCyc 

(12), we evaluated how many genes, EC numbers, and gene-reaction links were unique or shared 

with the findings of other tools. We also undertook a study of how transporter annotations were 

handled between RAST (10), KEGG (11), and TransportDB (14).  

Methods 

Reference Genomes 

We utilized a total of 27 prokaryotic genomes of Metacyc Tier 1 & Tier 2 organisms (12). These 

genomes are from a range of phyla, including 15 Proteobacteria, 6 Firmicutes, 3 Actinobacteria, 

2 Bacteroidetes and 1 Cyanobacteria. In addition to a range of phyla, these 27 organisms also 

display a range of lifestyles, including a human gut symbiont (Bacteroides thetaiotaomicron VPI-

5482) and pathogens (e.g. Mycobacterium tuberculosis), an obligate insect endosymbiont 

(Candidatus Evansia muelleri), a bacterium with interesting metabolism (Aurantimonas 

manganoxydans SI85-9A1), and an important marine primary producer (Synechococcus 

elongatus PCC 7942). These organisms present various types of annotation challenges, such 

as identifying incomplete pathways in obligate intracellular organisms with small genomes, as 

well as the challenges of annotating incomplete, “draft” contigs compared to “finished” genomes. 

 

Genbank files were downloaded from NCBI (accessions list in Table 1). Genbank files are 

designed to hold both standard genomic information, as well as fields with user-specified or 

project specific information. The specification includes genomic features (e.g. “CDS” or “tRNA”) 

with embedded qualifiers (e.g. “product” or “locus_tag”). The 27 genomes here were all in various 
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states of completeness, used custom qualifiers, and on occasion used similar qualifier fields for 

different information. Therefore, our first priority was to “standardize” each genbank file to a 

similar, reduced state. As this work pertains only to protein-coding genes, only “CDS” features 

were retained. Additionally, CDS features identified as a pseudogene were removed. Qualifiers 

within CDS features that were retained included locus_tag, protein_id and translation. Thus, 

removed qualifiers include any that would bias our downstream analysis, such as included EC 

numbers or gene products. Our standardized genbank files use the same CDS genome 

coordinates as the original, and no attempt was made to correct these features. 

 

We sought to match the locus tag prefix for a genome with the one present in BioCyc. Once this 

was accomplished for all of the 27 organisms, we began the process of running each genome 

through the various tools.  

 

Table 1. Reference genomes used in this study 
Genome Name Biocyc ID Phylum NCBI Accessions Proteins  

Mycobacterium tuberculosis CDC1551 MTBCDC1551 Actinobacteria AE000516 4189 

Mycobacterium tuberculosis H37Rv MTBH37RV Actinobacteria AL123456 4018 

Streptomyces coelicolor A3(2) SCO Actinobacteria 
NC_003888, 
NC_003903, 
NC_003904 

8152 

Bacteroides thetaiotaomicron VPI-
5482 

BTHE Bacteroidetes AE015928, AY171301 4825 

Candidatus Cardinium hertigiib CBTQ1 Bacteroidetes 
HG422566, 
CBQZ010000001- 
CBQZ010000011 

739 

Synechococcus elongatus PCC 7942 SYNEL Cyanobacteria CP000100, CP000101 2661 

Listeria monocytogenes 10403S 10403S_RAST Firmicutes CP002002 2814 

Bacillus anthracis Ames ANTHRA Firmicutes 
NC_003997, AE017335, 
AE017336 

5602 

Bacillus subtilis 168 BSUB Firmicutes AL009126 4185 

Clostridium 
saccharoperbutylacetonicum ATCC 
27021 

CLOSSAC Firmicutes CP004121, CP004122 5821 

Eubacterium rectale ATCC 33656 EREC Firmicutes CP001107 3626 

Peptoclostridium difficile 630 PDIF272563 Firmicutes AM180355, AM180356 3809 

Agrobacterium fabrum C58 AGRO Proteobacteria 
AE008687, AE008688, 
AE008689, AE008690 

5402 

Aurantimonas manganoxydans SI85-
9A1 

AURANTIMONA
S 

Proteobacteria 
AAPJ01000001- 
AAPJ01000035 

3650 

Caulobacter crescentus CB15 CAULO Proteobacteria AE005673 3737 

Caulobacter crescentus NA1000 CAULONA1000 Proteobacteria CP001340 3885 

Escherichia coli CFT073 ECOL199310 Proteobacteria AE014075 5379 

Escherichia coli K-12 substr. W3110 ECOL316407 Proteobacteria NC_007779 4410 

Escherichia coli B str. REL606 ECOL413997 Proteobacteria CP000819 4209 
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Escherichia coli K-12 substr. MG1655a ECOLI Proteobacteria U00096 4140 

Escherichia coli O157:H7 str. EDL933 ECO0157 Proteobacteria AE005174, AF074613 5449 

Candidatus Evansia muellerib EVA Proteobacteria LM655252 330 

Helicobacter pylori 26695 HPY Proteobacteria CP003904 1594 

Methylosinus trichosporium OB3b MOB3B Proteobacteria 
NZ_ADVE02000001- 
NZ_ADVE02000003 

4344 

Candidatus Portiera aleyrodidarum 
BT-QVLCb PABTQVLC Proteobacteria CP003867 280 

Shigella flexneri 2a str. 2457T SHIGELLA Proteobacteria AE014073 4068 

Vibrio cholerae O1 biovar El Tor str. 
N16961 

VCHO Proteobacteria AE003852, AE003853 3828 

a: Tier 1 Pathway Genome Database (EcoCyc) 

b: Endosymbiont with reduced genome 

Annotation Tools 

RAST (Rapid Annotation Subsystem Technology, (10)) is an open-source web server for 

genome annotation, using a "Highest Confidence First" assignment propagation strategy based 

on manually curated subsystems and subsystem-based protein families that automatically 

guarantees a high degree of assignment consistency. RAST returns an analysis of the genes 

and subsystems in each genome, as supported by comparative and other forms of evidence. 

We used the NMPDR website (rast.nmpdr.org) to generate genome-wide annotations for our 27 

reference genomes. 

 

KEGG (Kyoto Encyclopedia of Genes and Genomes, (11)) is a collection of genome and 

pathway databases for systems biology. We used the KAAS (KEGG Automatic Annotated 

Server, www.genome.jp/tools/kaas, (15)) to generate genome-wide annotations for our 27 

reference genomes. KAAS assigns KEGG Orthology (KO) numbers using the bi-directional best 

hit method (BBH) against a set of default prokaryotic genomes in the KEGG database. 

 

EFICAz (16) uses large scale inference to classify enzymes into functional families, combining 4 

methods into a single approach without the need for structural information. Recognition of 

functionally discriminating residues (FDR) allows EFICAz to use a method called evolutionary 

footprinting.The latest EFICAz has high precision and recall ability: under test using sequence 

similarity of >40%, precision and recall were 0.88 and 0.85, while at sequence similarity of 

>60%, they were near unity. We used a local install of EFICAz2.5 to generate EC number 

predictions for our 27 reference genomes. 

 

Brenda (17) is a publicly available enzyme database (containing 82,568 enzymes and 7.2 

million enzyme sequences as of 2017) based on the literature and contains functional and 

molecular information such as nomenclature, enzyme structure, and reactions and specificity. 

We annotated our 27 reference genomes based on a BLAST search at >60% sequence identity 

against a local copy of the Brenda database of enzyme reference sequences. 
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Transporter annotations 

Where available, pregenerated transporter annotations were downloaded from the TransportDB 

2.0 database (14). For those reference genomes that were not already present in the database 

(M. trichosporium OB3b, Candidatus C. hertigii, Candidatus E. muelleri, and A. manganoxydans 

SI85-9A1), we submitted the genome to the TransAAP web-based transporter annotation tool 

(http://www.membranetransport.org/transportDB2/TransAAP_login.html)). We also retrieved 

transporter annotations from RAST and KEGG. Substrate names were standardized to allow 

comparison and ranked 1-5 from most to least specific. Substrates that consist of a single 

metabolite that can be incorporated as a transport reaction reaction in a metabolic model are 

ranked 1. Substrate predictions that map to a small number of possible reactions are ranked 2. 

Broader substrate classes that are not directly usable to construct a metabolic network but could 

be used for gapfilling or interpretation of transcriptomics data are ranked 3 and 4. Finally, 

annotated transporters without substrate prediction are ranked 5. 

 

Table 2. Examples of substrate annotation ranking, from most specific (rank 1) to least 

specific (no substrate, rank 5) 

Rank Substrate examples 

1 ● Fe 
● lysine 

2 ● Mg/Co/Ni 
● aromatic amino acid 

3 ● ferric siderophore 
● sugar 

4 ● multidrug efflux 
● protein 

5  No substrate annotated 

 

Results 

EC number annotations 

In total, the four annotation tools produces 47,447 unique Gene-EC annotations (“gene X codes 

for an enzyme with EC number Y”) across the 27 reference genomes, or an average of 1757 

annotations per genome. The Venn diagram in Figure 1 illustrates the degree of overlap - and 

non-overlap - between the sets of annotations produced by the four tools.  
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Figure 1. Large differences exist between the sets of Gene-EC annotations generated by the 

four annotation tools across the 27 reference genomes.  

 

It is clear that the metabolic annotations produced by these automated genome-wide annotation 

tools can differ drastically. Each tool produced on average between 23% (EFICAz) and 48% 

(Brenda) unique gene-EC annotations that were not predicted by any of the other tools. Overall, 

fewer than a quarter of all gene-EC annotations are agreed on by at least 3 tools. 

 

Table 3. Number of gene-EC annotation disagreements that exist across pairs of tools. 

Tool Combination Gene-EC Disagreements 

KEGG-RAST 4218/20915 (20.2%) 

KEGG-EFICAz 2264/16677 (13.6%) 

KEGG-BRENDA 2971/6748  (44.0%) 

RAST-EFICAz                       2717/15694 (17.3%) 

RAST-BRENDA 2381/6288 (37.9%) 

EFICAz-BRENDA 1699/5601 (30.3%) 

 

The EC numbers on which the different tools most often agree across the 27 reference 

genomes tend to belong to well studied core metabolic pathways, such as glycolysis, amino 

acid and nucleotide biosynthesis, etc. 

 

The EcoCyc database (18) is an extensively hand-curated and continuously updated database 

summarizing all the experimentally determined enzymatic functions in Escherichia coli K-12 

substr. MG1655, the single best studied model organism in the history of modern biology. We 

can use the EC numbers annotated in EcoCyc as a gold standard to evaluate how well the 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/160887doi: bioRxiv preprint 

https://doi.org/10.1101/160887
http://creativecommons.org/licenses/by/4.0/


automated annotation tools are able to annotate the enzymes in E. coli K-12. Figure 2 shows 

how the set of gene-EC annotations generated by KEGG and RAST compare against EcoCyc. 

 

 
Figure 2. Gene-EC annotations produced by KEGG and RAST for E. coli K12, compared to the 

EcoCyc gold standard. The sets and intersections are drawn proportionally to the number of 

annotations in each. 

 

Using EcoCyc as the Gold Standard for E. coli K12, the different tools achieve a Precision of 

78% (BRENDA) to 92% (KEGG), and a Recall of 33% (BRENDA) to 85% (KEGG). Note that 

even on E. coli K12, which we expect to be a best-case situation, there are significant 

differences in the annotations produced by the different tools, and each tools is only able to 

cover a subset of the known enzymes in EcoCyc. 

 

The annotation tools show much more agreement on E. coli than on more remote lineages such 

as Actinomycetes, Bacteroidetes, or Clostridia. For E. Coli K12, 60% of EC numbers are agreed 

on by 3 or more tools, while 28% EC numbers come from only a single tool. In contrast, for P. 

difficile 630, only 33% of EC numbers are agreed on by 3 or more tools, and 48% of EC 

numbers come from only a single tool. 
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Figure 3. The 27 reference genomes were sorted with respect to the fraction of EC numbers 

that were predicted by 3 or more tools (blue bars). The top of the list is dominated by model 

organisms such as E. coli, B. subtilis, and closely related organisms. As we move farther away 

from such well-studied model organisms, the fraction of unique EC numbers predicted only by a 

single tool (red bars) increases, at the expense of those predicted by multiple tools. 

 

The disjoint sets of annotations produced by the different tools provide us with an opportunity to 

trade off confidence in the annotations versus coverage. If higher confidence is required, we can 

focus solely on the subset of annotations that is agreed upon by multiple tools. Conversely, if 

the lack of genome coverage or metabolic network coverage is considered a problem, we can 

use the union of multiple tools to achieve a wider annotation. 

 

Figure 4A shows the number of unique EC numbers annotated by each of the tools across the 

27 reference genomes, which reflects the size of the metabolic network reconstruction (average 

868 EC numbers per genome). Figure 4B shows the number of genes in all of the reference 

genomes annotated with one or more EC numbers by each of the tools, which reflects the 

overall genome annotation coverage (average 1361 genes per genome, or 34% of the genes).  

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/160887doi: bioRxiv preprint 

https://doi.org/10.1101/160887
http://creativecommons.org/licenses/by/4.0/


 
Figure 4. Combining Annotation Tools Improves Genome annotation and Metabolic Network 

Coverage. A: Total unique EC numbers annotated. B: Total genes annotated with EC numbers 

 

Note that each tool adds a significant number of reactions to the metabolic network model, and 

each tool significantly contributes to the number of genes covered with metabolic annotations. 

 

 

 
Figure 5. Precision vs Recall for different combinations of tools on EcoCyc. Individual tools are 

denoted by B,E,K, or R for Brenda, EFICAz, KEGG, and RAST, respectively. 

 

 

Choosing E. coli K12 as the “gold standard”, we took the EC numbers annotated by 

each tool and performed the union and intersection of each of the combinations. These 

combinations included all pairs, triplets as well as the list of ECs from the union and 

intersection of all 4 tools combined.  We then compared each of these EC lists to the 

1064 EC numbers from EcoCyc. The number of true positives, false positives, and false 

negatives were calculated for each combination. True positives (TP) correspond to EC 
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numbers predicted by the annotation tools, and present in EcoCyc. False positives (FP) 

are EC numbers annotated by the tools, but not found in EcoCyc. False negatives (FN) 

are those EC number that occur in EcoCyc, but were not predicted by our annotation 

tools.. Precision is defined as the (TP)/(TP+FP) and recall as (TP)/(TP+FN).  

 

Figure 5 shows a plot of precision versus recall for all the different combinations of 

tools. Three groupings of points stand out from this graph. First, all the combinations 

that contain some union of the tools have high precision and high recall. Secondly, the 

combinations that are a result of intersections of EC lists are bunched in an area of very 

high precision but much lower recall. In between these two groups lie the single tool 

results. One can see that precision and recall are lowest for Brenda alone; KEGG in this 

case has the best precision and recall of the four alone. When any set of tools intersects 

with Brenda, precision remains about the same but recall drops dramatically (e.g. 

comparing ER and BER). On the other hand, a union with KEGG increases recall. In 

some cases, the combination of tools makes the precision and/or recall worse.  

Transporter Annotations 

Both RAST and KEGG yield surprisingly few transporter annotations, with an average of 

114 and 204 transporter predictions per genome respectively. In addition, most of the 

annotated transporters lack substrate predictions (52% of transporter annotations in 

RAST, 47% in KEGG) or have ambiguous substrate predictions (ranks 3-4; 20% in 

RAST, 21% in KEGG), while less than a third have substrate predictions that are 

sufficiently detailed that they could be incorporated in a metabolic model (ranks 1-2; 

28% in RAST, 33% in KEGG). In contrast, TransportDB produces an average of 426 

transport annotations per genome, and most of those have specific substrate 

predictions (59% rank 1-2; 32% rank 3-4, 10% rank 5). 

Transporter annotations by the different tools show remarkable little overlap. Out of the 

more than 15,000 genes annotated as transporters (regardless of substrate prediction), 

the three tools only agree on 2.8% (423/15161). Out of those, only 69 genes are 

annotated by all three tools with a specific substrate prediction (ranks 1-2) 
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Figure 6. A: Total number of genes annotated as transporters, regardless of substrate. B: 

Transporter annotations with substrates predictions specific enough to be included in metabolic 

models (rank 1 or 2). Note that the sizes of the sets in these Venn diagrams are drawn 

proportional to the number of genes in each. 

 

When two or more tools provide a sufficiently specific substrate annotation, the substrate 

annotations tend to agree 68% of the time, even if they may not be perfectly identical (for 

example, one transporter was annotated as “leucine/valine”, “leucine”, and “branched-chain 

amino acid” by TransportDB, RAST and KEGG respectively) 

Discussion 

RAST and KEGG are the most widely used tools for metabolic network reconstruction. 

However, they do not necessarily produce identical annotations. In our analysis, KEGG 

produced the best Precision and Recall on E. coli K12. In general, KEGG produces a larger 

number of unique EC numbers, which could indicate more over-prediction, or more 

comprehensive pathway coverage. Note that both also generate many reactions without official 

EC numbers. 

 

EFICAz produces the least number of unique EC numbers, but can be used in combination with 

RAST or KEGG to highlight high confidence annotations. EFICAz also produced 3-digit EC 

number annotations which may be used for hole filling. 

  

BLAST against the Brenda database of reference enzymes produced the smallest number of 

annotations, but a high fraction of unique EC numbers. Of the top 10 unique EC numbers 

produced by this method, only one is also covered by RAST and KEGG, two of the EC numbers 

have been deprecated, and six are EC numbers that have been assigned in 2000 or newer, and 

may not have been incorporated into the predictions by the other annotation tools yet. 
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Recommendations  

1. Do not just use a single annotation tool unless you are only interested in core 

metabolism. 

2. Trade off confidence versus coverage by looking at the intersection or union of multiple 

annotation tools. 

3. EFICAz can be used to identify higher confidence annotations, or partial EC numbers for 

hole filling 

4. BLASTing against a database of reference sequences such as the Brenda database is 

generally an inefficient method for annotating enzymes, but may be useful to cover more 

recently assigned EC numbers not yet included by other tools. 

5. More tool development is needed to allow merging of annotations beyond simple EC 

numbers. 
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