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ABSTRACT  

Genome-scale metabolic modeling is a cornerstone of systems biology analysis of microbial 

organisms and communities, yet these genome-scale modeling efforts are invariably based on 

incomplete functional annotations. Annotated genomes typically contain 30-50% of genes without 

functional annotation, severely limiting our knowledge of the "parts lists" that the organisms have at 

their disposal. These incomplete annotations may be sufficient to derive a model of a core set of well-

studied metabolic pathways that support growth in pure culture. However, pathways important for 

growth on unusual metabolites exchanged in complex microbial communities are often less 

understood, resulting in missing functional annotations in newly sequenced genomes. Here, we 

present results on a comprehensive reannotation of 27 bacterial reference genomes, focusing on 

enzymes with EC numbers annotated by KEGG, RAST, EFICAz, and the BRENDA enzyme database, 

and on membrane transport annotations by TransportDB, KEGG and RAST. Our analysis shows that 

annotation using multiple tools can result in a drastically larger metabolic network reconstruction, 

adding on average 40% more EC numbers, 3-8 times more substrate-specific transporters, and 37% 

more metabolic genes. These results are even more pronounced for bacterial species that are more 

phylogenetically distant from well-studied model organisms such as E. coli. 

INTRODUCTION 

In the early days of genome sequencing, functional annotation involved computational prediction of 

gene function coupled with extensive manual curation by teams of experts (1-3). Today, with the 

exponential explosion of DNA sequencing (4) the fraction of genes that have undergone any degree 

of manual curation or even experimental validation is becoming vanishingly small (5, 6). Automated 

gene annotation tools employing different methodologies with minimal manual curation are widely 

used, functionally annotating by homology to existing annotations, or by identification of conserved 

domains/motifs within a coding sequence  (7, 8). Many draft genomes and metagenome bins are 

often run through a single annotation pipeline where genome annotations are inherited from previous 

genome annotations. Even when multiple annotation tools are used, integrating the different outputs 
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in a cohesive manner remains a major challenge (9, 10). However, individual metabolic annotation 

tools often return annotations for different subsets of genes, offering the potential to greatly increase 

the coverage of metabolic annotations by combining the outputs of multiple tools if the barrier for 

integration can be overcome. 

“Genome-scale” metabolic models implicitly assume complete and accurate functional annotation. 

However, 30-50% of genes in a typical genome still lack any functional annotation (11), a statistic 

which has not improved much over the past two decades of genome sequencing (3). More than 30% 

of these unannotated genes are estimated to have metabolic functions (12) leaving a significant gap 

in our understanding of the underlying metabolic processes. In addition, annotated genes include a 

large (and potentially growing) fraction of misannotations (13). Further, high-throughput untargeted 

metabolomics often contain a large fraction of peaks that cannot be reliably matched to any known 

metabolites (14), and many of those that can be identified often do not match any metabolic 

reconstruction of the microbial species involved (15), providing another strong indication of the extent 

of microbial metabolism we are missing with traditional metabolic annotation methods. Metabolic 

modeling efforts, however, are moving beyond studying core metabolic pathways in a single organism 

towards multi-species models, real-world communities and ecosystems (16-18), and incorporation of 

complex ‘omics and metabolite data, emphasizing the need for a more complete coverage of the 

metabolic functions identified in microbial genomes. 

In constraint-based genome-scale modeling methods such as Flux Balance Analysis (19), the 

issue of missing metabolic annotations is dealt with by “gap filling” - the addition of a set of metabolic 

reactions beyond those that were derived directly from the genome annotation (20). A variety of gap 

filling algorithms have been developed to predict the missing reactions necessary to make the 

metabolic network model sufficiently complete to produce biomass (21-24). In a broad collection of 

130 genome-scale metabolic models added to the ModelSEED database (25), on average 56 

additional gap filled reactions were needed for each model to produce biomass in simple defined 

nutrient media. Even after those additions an average of one-third of the reactions in each model 

were still blocked, meaning that there were still enough reactions missing in the network to preclude 

metabolic flux through those reactions (25, 26). In addition, the number of reactions that can partake 

in a gap filling solution is vast (3,270 in the case of E. coli), and the sets of reactions generated by 

different gap filling algorithms may have little or no overlap with each other (27). Clearly, a more 

complete identification and annotation of metabolic reactions would be preferable to the addition of 

dozens of poorly supported reactions just to patch the holes in the network. 

Recent genome-scale modeling of Clostridium beijerinckii NCIMB 8052 (28) demonstrated that the 

total number of genes and reactions included in the final curated model could be almost doubled by 

incorporating multiple annotation tools. The reconstruction of the C. beijerinckii metabolic network 

used 3 different database sources (SEED (29), KEGG (30), and RefSeq annotations captured in 

BioCyc (31)) to evaluate annotation coverage and produce a more robust model. Each annotation 

source contributed only about half of the reactions in the final curated model. Only a third of the 

reactions were present in all three sources, and these reactions were found to contribute significantly 

to a core set of active reactions in validation simulations. The small overlap between annotations was 
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not simply due to any source contributing more heavily to a particular area of metabolism, nor did any 

one source outperform another in terms of model connectivity. Likewise, in an analysis of nine 

prokaryotic genomes, the three enzyme annotation sources used – NCBI, KEGG, and the PEDANT 

protein database (32) – only agreed on less than one third of the annotated genes (33). 

Accurate metabolic models also rely on accurate determination of substrate transport between the 

bacterium and its environment. Transporter annotations have rarely been used in genome scale 

metabolic modeling because of the difficulty in computationally determining the exact substrate being 

transported. Because of this, many metabolic modeling methods simply assume that a transporter 

exists for the import of any necessary metabolite - an assumption that is incorrect in some cases. For 

example, the yogurt bacteria Streptococcus thermophilus has an unusual growth phenotype in that it 

grows poorly on glucose, even though it possesses all the required metabolic enzymes (34). Instead it 

preferably imports the disaccharide lactose, hydrolyzes it to glucose and galactose, then secretes the 

galactose back out of the cell. S. thermophilus lacks the typical glucose phosphotransferase system 

used by many bacteria, and instead has an efficient lactose import mechanism that makes it well 

adapted to grow in milk (34). Prediction tools such as TransportDB’s Transporter Automatic 

Annotation Pipeline (TransAAP, (35)) now allow researchers to generate substrate predictions that 

are sufficiently detailed to be included in metabolic pathways, and could give insights into growth or 

metabolite exchange phenotypes that are not readily apparent from the metabolic pathways present 

in the genome. 

We undertook an investigation into the effectiveness of several popular tools for genome 

annotation and their overlap with each other, focusing specifically on enzymatic annotations 

characterized by EC (Enzyme Commission) numbers, because those can be most unambiguously 

mapped across annotations from different sources (36). Note that many databases such as RAST, 

KEGG and MetaCyc also curate their own set of metabolic reactions and reaction variants beyond the 

canonical EC number hierarchy, however, differing reaction identifiers can be much more difficult to 

compare across the different tools. Using 27 bacterial reference genomes from BioCyc (31), we 

evaluated how many genes, EC numbers, and gene-EC annotations were unique or shared with other 

tools. We also undertook a study of how transporter annotations were handled between RAST (29), 

KEGG (30), and TransportDB (35), focusing especially on transporters with detailed substrate 

annotations. We hypothesized that by combining annotation tools we could alleviate some of the 

known problems with lack of coverage of metabolic annotations, especially for less well studied 

organisms and pathways, and transporters. 

MATERIAL AND METHODS 

Reference Genomes 

We focused on a total of 27 genomes of BioCyc Tier 1 & Tier 2 bacteria (31). These genomes are 

from a range of phyla, including 15 Proteobacteria, 6 Firmicutes, 3 Actinobacteria, 2 Bacteroidetes 

and 1 Cyanobacteria. In addition to a range of phyla, these 27 organisms also cover different lifestyles, 

including a human gut symbiont (Bacteroides thetaiotaomicron VPI-5482), pathogens (e.g. 

Mycobacterium tuberculosis), an obligate insect endosymbiont (Candidatus Evansia muelleri), an 
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unusual manganese oxidizing bacterium (Aurantimonas manganoxydans SI85-9A1), and a 

photoautotrophic cyanobacterium (Synechococcus elongatus PCC 7942). Genbank files were 

downloaded from NCBI (accessions listed in Table 1), and standardized to remove all functional 

annotation, retaining only the original open reading frames and locus tag/protein identification 

information (Supplementary Data file S3).  

Annotation Tools 

RAST (Rapid Annotation Subsystem Technology, (29)) is an open-source web server for genome 

annotation, using an assignment propagation strategy based on manually curated subsystems and 

subsystem-based protein families that automatically guarantees a high degree of assignment 

consistency. RAST returns an analysis of the genes and subsystems in each genome. We used the 

NMPDR website (rast.nmpdr.org) to generate genome-wide annotations for our 27 reference 

genomes and parsed any EC numbers from the functional annotation. This is also the core metabolic 

annotation tool used by the popular ModelSEED tool for generating draft genome-scale models of 

metabolism (37). 

KEGG (Kyoto Encyclopedia of Genes and Genomes, (30)) is a collection of genome and pathway 

databases for systems biology. We used KAAS (KEGG Automatic Annotation Server, 

http://www.genome.jp/tools/kaas, (38)) to generate genome-wide annotations for our 27 reference 

genomes. KAAS assigns KEGG Orthology (KO) numbers using the bi-directional best hit method 

(BBH) against a set of default prokaryotic genomes in the KEGG database. We mapped KO numbers 

to EC numbers using a mapping table provided by the KEGG BRITE Database 

(http://www.genome.jp/kegg-bin/get_htext?ko01000.keg). 

EFICAz (39) uses large scale inference to classify enzymes into functional families, combining 4 

methods into a single approach without the need for structural information. Recognition of functionally 

discriminating residues (FDR) allows EFICAz to use a method called evolutionary footprinting. 

EFICAz has been rigorously crossed validated, and achieves very high precision and recall, even for 

sequence similarities to known enzymes as low as 40%. We used a local install of EFICAz2.5 to 

generate EC number predictions for our 27 reference genomes. 

BRENDA (40) is a database containing 7.2 million enzyme sequences categorized into 82,568 

enzymatic functions based on the literature and contains functional and molecular information such as 

nomenclature, structure, and substrate specificity. We annotated our 27 reference genomes based on 

a BLAST search at >60% sequence identity against a local copy of the 2011 BRENDA database of 

enzyme reference sequences. 

All EC number annotations are available in Supplementary Data file S4. 

Transport Annotations 

Where available, pre-generated transporter annotations were downloaded from the TransportDB 2.0 

database (35). For those reference genomes that were not already present in the database (M. 
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trichosporium OB3b, Candidatus C. hertigii, Candidatus E. muelleri, and A. manganoxydans SI85-

9A1), we submitted the predicted protein sequences to the TransAAP web-based transporter 

annotation tool using the default parameters 

(http://www.membranetransport.org/transportDB2/TransAAP_login.html). We also retrieved 

transporter annotations from RAST and KEGG. For RAST, annotations were filtered for the 

subsystem for “Membrane Transport”. For KEGG, we mapped KO numbers to transporter annotations 

using a mapping table provided by the KEGG BRITE Database (http://www.genome.jp/kegg-

bin/get_htext?ko02000.keg). Substrate names were ranked from most to least specific (see Table 2). 

Substrates that can be incorporated as a transport reaction in a metabolic model were ranked 1 and 2. 

Broader substrate classes that could be used for gap filling or interpretation of transcriptomics data 

were ranked 3 and 4, and annotated transporters without substrate prediction were ranked 5. The full 

table of substrate names and ranking can be found in Supplementary Data file S6.  

RESULTS AND DISCUSSION 

Discrepancies in metabolic annotations between different tools 

In total, the RAST, KAAS, EFICAz and BRENDA tools produced 47,447 Gene-EC annotations (“gene 

X codes for an enzyme with EC number Y”) across the 27 reference genomes, for an average of 

1,757 annotations per genome. The metabolic gene-EC annotations produced by these automated 

genome-wide annotation tools differed drastically (Figure 1). Each tool produced on average between 

23% (EFICAz) and 48% (BRENDA) unique gene-EC annotations that were not predicted by any of 

the other tools. Overall, fewer than a quarter of all gene-EC annotations were agreed on by at least 3 

tools. 

When two annotation tools both assigned a particular gene an EC annotation, the two tools 

generally agreed and assigned at least one identical EC annotation in more than 50% of cases (Table 

3). BRENDA on average had the lowest agreement with other tools (56.0%-69.7%). Note also that 

BRENDA had a larger fraction (47.5%) of gene-EC annotations not shared by any other tools (Figure 

1). In contrast, EFiCAz showed the highest agreement with other tools (69.7%-86.4%) and had the 

lowest number of gene-EC annotations not shared by other tools (23.4%).  

Comparing annotation tools against each other can give a sense of which tools are closest to a 

consensus annotation, or which tools seem to be outliers, however assessing the integrity of these 

predictions is difficult without experimental validation. Therefore, to determine which tool provides the 

best ratio of true/false annotation predictions we compared their predictions to the EcoCyc database 

(41). EcoCyc is a gold-standard continuously updated database of experimentally determined and 

extensively hand-curated enzymatic functions in Escherichia coli K-12 substr. MG1655, the most-

studied model organism in modern biology. We used the gene-EC numbers annotated in EcoCyc as a 

set of true positives to evaluate how well the two most commonly used automated annotation tools, 

RAST and KEGG, are able to assign function to the enzymes in E. coli K-12. Overall, there was a 

high degree of overlap between the RAST and KEGG predictions (Figure 2) with EcoCyc, however 

neither tool covered all of EcoCyc, and both tools predicted a small number of reactions not 

experimentally validated.  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 23, 2018. ; https://doi.org/10.1101/160887doi: bioRxiv preprint 

https://doi.org/10.1101/160887
http://creativecommons.org/licenses/by/4.0/


One major caveat of using E. coli to evaluate the quality of annotation tools is that so much of our 

knowledge of microbial metabolism is based on E. coli, and therefore annotation tools can be 

expected to be trained or optimized on E. coli to some extent, so performance on E. coli is not 

necessarily indicative of results on other organisms. For example, the KEGG annotation provided by 

KAAS is done by calculating bidirectional best BLAST hits against annotated reference genomes 

including E. coli, essentially providing a direct lookup of E. coli annotations in the KEGG database. 

Coverage of the metabolic network reconstruction 

While the individual gene-EC annotations examined in the previous section reflected the quality and 

agreement between annotation tools, the total set of EC reactions annotated for a genome by each 

tool reflects the size and coverage of its metabolic network reconstruction. In this case, we simply 

counted the total number of different EC numbers, regardless of whether multiple genes are 

annotated with the same EC number (isozymes), or whether genes were annotated with multiple EC 

numbers (multifunctional enzymes). On average, the four tools combined produced 868 EC reactions 

per genome, with the largest agreement between RAST and KEGG (Figure 3). In general, KEGG 

produced a larger number of unique EC numbers, which could indicate more over-prediction, or more 

comprehensive pathway coverage. Note that both RAST and KEGG also generate many reactions 

without official EC numbers, so in some cases these annotation tools may produce annotations that 

are minor variants or subsets of the canonical EC number reaction in EcoCyc.  

EFICAz produced the least number of unique EC numbers, but high agreement with RAST and 

KEGG, suggesting that it can be used in combination with them to highlight high confidence 

annotations. Note that EFICAz also produces incomplete “three-digit” EC number annotations (e.g. 

1.2.3.-) which may be useful for hole filling, but were not considered in this analysis. 

BLASTing against the BRENDA database of reference enzymes produced the smallest number of 

annotations, but a high fraction of unique EC numbers. Interestingly, of the top 10 unique EC numbers 

produced by this method, only one is also covered by RAST and KEGG, two of the EC numbers have 

been deprecated by the Enzyme Commission, and six are EC numbers that have been assigned in 

2000 or later and may not have been incorporated into the predictions by the other annotation tools 

yet. So even though a simple BLAST against a reference database such as BRENDA proves to be 

one of the less effective means for assigning metabolic functions, it may still have some value to 

capture recently described enzymes not already covered by the more sophisticated enzyme 

prediction tools. 

While counting the number of EC numbers reflects the size of the metabolic network, counting the 

numbers of genes that have received any metabolic annotation reflects the genome annotation 

coverage. Supplementary Figure S1 shows the number of genes in all of the reference genomes 

annotated with one or more EC numbers by each of the tools. On average, 1,361 genes per genome 

were assigned a function with at least one tool, and more than 65% of these genes were assigned a 

metabolic function by more than one tool. The results show that just as each tool adds a significant 

number of reactions to the metabolic network model, each tool also significantly contributes to the 

number of genes covered with metabolic annotations. 
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The EC numbers on which the different tools most often agree across the 27 reference genomes 

tended to belong to well-studied core metabolic pathways. Out of the 79 EC numbers on which all four 

tools agreed in at least half of the genomes (Supplementary Data S5), more than three quarters 

(61/79) were involved in biosynthesis or biodegradation of amino acids, nucleotides, carbohydrates, 

and cofactors; or in the processing of RNA, DNA and proteins. In contrast, almost none of these EC 

numbers were involved in biosynthesis or degradation of fatty acids, lipids, aromatics compounds, or 

secondary metabolites. 

The differing sets of annotations produced by each tool can enable a user to trade off confidence 

for coverage, with higher confidence obtained when accepting only annotations that were agreed 

upon by multiple tools (the intersection), or higher coverage obtained by using the combined set of 

annotations from multiple tools (the union). To examine the effect of taking the intersection (higher 

confidence) or union (higher coverage) of the annotation tools, we compared combinations of the four 

annotation tools against the E. coli K-12 “gold standard” metabolic reactions in EcoCyc (Figure 4). 

These combinations included the single tool annotations, as well as the union and intersection of all 

four tools combined in pairs, triplets and quartets. The resulting EC annotations from these 

combinations were then compared to the 1,064 EC numbers from EcoCyc, and the count of true 

positives, false positives, and false negatives were calculated for each combination. True positives 

(TP) correspond to EC numbers predicted by the annotation tools and present in EcoCyc. False 

positives (FP) are EC numbers annotated by the annotation tools, but not found in EcoCyc. False 

negatives (FN) are those EC numbers that are in EcoCyc but were not predicted by the annotation 

tools. Precision is defined as TP/(TP+FP), that is, the fraction of predicted EC numbers that are 

actually found in EcoCyc. Lower precision indicates an overprediction of EC annotations that are not 

experimentally verified. Recall is defined as TP/(TP+FN), that is, the fraction of EC numbers in 

EcoCyc that were correctly predicted by the annotation tools. Higher recall values indicate a more 

complete annotation covering more of the EcoCyc annotations, and lower values indicate EcoCyc EC 

annotations that were not predicted by the four tools. Thus, a more lenient annotation policy (e.g. 

merging annotations from all tools) will tend to generate fewer false negatives but more false positives, 

achieving a higher recall at the expense of lower precision. Conversely, a more restrictive annotation 

policy (e.g. only including EC numbers if all tools agree on them) can increase precision, but at the 

expense of a lower recall. 

Figure 4 shows a plot of precision versus recall for all the different combinations of tools. Out of the 

individual tools, KEGG performed best in terms of both precision and recall on this dataset (although 

as mentioned before, performance on E. coli K12 may not reflect performance on other genomes), 

and a simple Blast against the BRENDA database performed worst. Combinations that contain some 

union of the tools have a higher recall than each of the individual tools in the combination, but a 

somewhat lower precision (>80%). In contrast, intersections of annotations from two or more tools 

show very high (>90%) precision but much lower recall (<65%). A consensus annotation that 

produces both higher recall and higher precision might be achieved by means of a weighted sum of 

all the annotation sources, similar to the approach taken by EnzymeDetector (33). 
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Even though we expected the E. coli K-12 genome to be a best-case annotation candidate, there 

were still significant differences in the annotations produced by the different tools, with each tool only 

covering a subset of the known enzymes in EcoCyc. The four annotation tools annotated a 

significantly larger fraction of the genome, and showed much more agreement on E. coli than on more 

remote lineages such as Actinomycetes, Bacteroidetes, or Clostridia (Figure 5A). For E. coli K-12, 

60% of EC numbers were agreed on by 3 or more tools, while 28% EC numbers come from only a 

single tool. In contrast, for P. difficile 630, only 33% of EC numbers were agreed on by 3 or more tools, 

and 48% of EC numbers come from only a single tool. Compared to the five E. coli strains in our 

dataset, the annotation tools also cover on average around 30% fewer genes for the 13 genomes in 

the bottom half of Figure 5B. We see a similar effect when we compare the annotation coverage for B. 

subtilis – arguably the best studied Gram-positive model organism – with all 8 other Gram-positive 

genomes in our dataset. These results suggest that genome coverage for each tool, and agreement 

in annotations across tools are significantly worse for organisms that are more phylogenetically 

distant from well-studied model organisms, making it all the more important to combine multiple tools 

when annotating these genomes. 

Transporter Annotations 

Knowledge of the molecules and substrates an organism can transport and exchange with the 

environment can help to build a more accurate metabolic model. Both RAST and KEGG include 

membrane transport annotations, yet both tools yielded on average only 114 and 204 transporter 

predictions per genome, respectively (Figure 6A and Supplementary Figure S2). Many of these 

annotated transporters lack substrate predictions (52% of transporter annotations in RAST, 25% in 

KEGG) or have ambiguous substrate predictions (ranks 3-4 (Table 2); 20% in RAST, 28% in KEGG), 

while less than half have substrate predictions that are sufficiently detailed to be incorporated in a 

metabolic model (ranks 1-2; 28% in RAST, 48% in KEGG; Figure 6B). In contrast, TransportDB 

produces an average of 426 transport annotations per genome, and most of those have specific 

substrate predictions (59% rank 1-2; 32% rank 3-4, 10% rank 5; Figure 6B). 

Transporter annotations by RAST, KEGG and TransportDB showed surprisingly little overlap. Out 

of the more than 15,000 genes annotated as transporters (regardless of substrate prediction), the 

three tools only agree on 2.8% (423/15,161). Out of those, only 130 genes are annotated by all three 

tools with a specific substrate prediction (ranks 1-2). When two or more tools provide a sufficiently 

specific substrate annotation, the substrate annotations tend to agree 85% of the time, even if they 

may not be perfectly identical (for example, one transporter was annotated as “leucine/valine”, 

“leucine”, and “branched-chain amino acid” by TransportDB, RAST and KEGG respectively). Overall, 

the detailed transporter annotations by TransportDB’s Transporter Automatic Annotation Pipeline 

provide a significant advance over more general metabolic annotation tools such as RAST and KEGG. 

Conclusions 

This analysis has led us to make recommendations for providing a more comprehensive metabolic 

genome annotation. We found that a single annotation tool is often insufficient unless one is only 
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interested in core metabolism where different tools often agree. Organisms that are phylogenetically 

farther removed from well-studied model organisms are particularly susceptible, in which case 

annotation tools will tend to diverge far more. In addition, one can trade off confidence in predictions 

versus greater coverage by using the intersection or union of multiple annotation tools. BLASTing 

against a database of reference sequences is generally an inefficient method for annotating enzymes 

but may be useful to cover more recently assigned EC numbers not yet included by other tools. Still, 

all these efforts require manual effort to bring together annotation from multiple sources. More tool 

development is needed to merge annotations beyond simple EC numbers, and a universal reference 

database for well-balanced reactions and metabolites would be a very valuable resource to merge 

annotations that use different reaction nomenclatures (42-44). Likewise, now that annotation tools 

such as TransportDB are producing significant numbers of transporter annotations with substrate 

predictions that are precise enough to be included in metabolic modeling, more tool development may 

be needed to fully take advantage of these substrate predictions in Flux Balance Analysis methods, 

and move beyond the current implicit assumption used by most algorithms that all metabolites can be 

transported when needed. 

 

SUPPLEMENTARY DATA 

 

Supplementary Figure S1. Overlap of annotated genes between the tools (average numbers of genes 

annotated per genome). 
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Supplementary Figure S2 - Average transporter annotations per genome produced by TransportDB 

(426.0), KEGG (203.8) and RAST (113.7) and the distributions of their substrate specificities (rank 1 

is most specific, rank 5 has no substrate prediction). 

Supplementary Data S3. Zip file with the 27 reference genomes in Genbank format, cleaned to 

include only coding sequences and locus tags. 

Supplementary Data S4. Excel file with all EC annotations by all 4 tools for all 27 genomes. 

Supplementary Data S5: Excel file with the EC numbers predicted by all 4 tools in most genomes. 

Supplementary Data S6: Excel file with all transporter annotations by all 3 tools for all 27 genomes. 

Supplementary Data S7: Excel file with all substrate ranks. 
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Table 1. Reference genomes used in this study 

Genome Name Biocyc ID Phylum NCBI Accessions Proteins  

Mycobacterium tuberculosis CDC1551 MTBCDC1551 Actinobacteria AE000516 4189 

Mycobacterium tuberculosis H37Rv MTBH37RV Actinobacteria AL123456 4018 

Streptomyces coelicolor A3(2) SCO Actinobacteria 
NC_003888, 
NC_003903, 
NC_003904 

8152 

Bacteroides thetaiotaomicron VPI-5482 BTHE Bacteroidetes AE015928, AY171301 4825 

Candidatus Cardinium hertigiib CBTQ1 Bacteroidetes 
HG422566, 
CBQZ010000001- 
CBQZ010000011 

739 

Synechococcus elongatus PCC 7942 SYNEL Cyanobacteria CP000100, CP000101 2661 

Listeria monocytogenes 10403S 10403S_RAST Firmicutes CP002002 2814 

Bacillus anthracis Ames ANTHRA Firmicutes 
NC_003997, AE017335, 
AE017336 

5602 

Bacillus subtilis 168 BSUB Firmicutes AL009126 4185 

Clostridium saccharoperbutylacetonicum 
ATCC 27021 

CLOSSAC Firmicutes CP004121, CP004122 5821 

Eubacterium rectale ATCC 33656 EREC Firmicutes CP001107 3626 

Peptoclostridium difficile 630 PDIF272563 Firmicutes AM180355, AM180356 3809 

Agrobacterium fabrum C58 AGRO Proteobacteria 
AE008687, AE008688, 
AE008689, AE008690 

5402 

Aurantimonas manganoxydans SI85-9A1 
AURANTIMONA
S 

Proteobacteria 
AAPJ01000001- 
AAPJ01000035 

3650 

Caulobacter crescentus CB15 CAULO Proteobacteria AE005673 3737 

Caulobacter crescentus NA1000 CAULONA1000 Proteobacteria CP001340 3885 

Escherichia coli CFT073 ECOL199310 Proteobacteria AE014075 5379 

Escherichia coli K-12 substr. W3110 ECOL316407 Proteobacteria NC_007779 4410 

Escherichia coli B str. REL606 ECOL413997 Proteobacteria CP000819 4209 

Escherichia coli K-12 substr. MG1655a ECOLI Proteobacteria U00096 4140 

Escherichia coli O157:H7 str. EDL933 ECO0157 Proteobacteria AE005174, AF074613 5449 

Candidatus Evansia muellerib EVA Proteobacteria LM655252 330 

Helicobacter pylori 26695 HPY Proteobacteria CP003904 1594 

Methylosinus trichosporium OB3b MOB3B Proteobacteria 
NZ_ADVE02000001- 
NZ_ADVE02000003 

4344 

Candidatus Portiera aleyrodidarum BT-
QVLCb PABTQVLC Proteobacteria CP003867 280 

Shigella flexneri 2a str. 2457T SHIGELLA Proteobacteria AE014073 4068 

Vibrio cholerae O1 biovar El Tor str. 
N16961 

VCHO Proteobacteria AE003852, AE003853 3828 

a: Tier 1 Pathway Genome Database (EcoCyc) 

b: Endosymbiont with reduced genome 
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Table 2. Examples of substrate annotation ranking, from most specific (rank 1) to least specific (no 

substrate, rank 5). See Supplementary Data file S7 for the full table. 

Rank Substrate Examples 

1 Metabolite that can be incorporated as a 

transport reaction in a metabolic model 

● Fe 

● lysine 

2 Substrate(s) that map to a small number of 

possible transport reactions 

● Mg/Co/Ni 

● aromatic amino acid 

3 Broader substrate classes not directly usable 

to construct a metabolic network 

● dipeptide 

● sugar 

4 Very broad class of substrates ● multidrug efflux 

● protein 

5 No substrate annotated  

 

Table 3. Percentage of gene-EC annotation agreements that exist between pairs of tools. The 

denominator is the number of genes across the 27 reference genomes that are covered by both tools. 

The numerator counts the number of such genes for which both tools provide at least one identical 

gene-EC number annotation. 

Tool Combination Gene-EC Agreements 

KEGG-RAST 16,697/20,915 (79.8%) 

KEGG-EFICAz 14,413/16,677 (86.4%) 

KEGG-BRENDA 3,777/6,748 (56.0%) 

RAST-EFICAz 12,977/15,694 (82.7%) 

RAST-BRENDA 3,907/6,288 (62.1%) 

EFICAz-BRENDA 3,902/5,601 (69.7%) 
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Figure 1. Large differences exist between the sets of Gene-EC annotations generated by the four 

annotation tools across the 27 reference genomes. 

 

 

Figure 2. Gene-EC annotations produced by KEGG and RAST for E. coli K-12, compared to the 

EcoCyc gold standard. The sets and intersections are drawn proportionally to the number of 

annotations in each. 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 23, 2018. ; https://doi.org/10.1101/160887doi: bioRxiv preprint 

https://doi.org/10.1101/160887
http://creativecommons.org/licenses/by/4.0/


 

Figure 3. Reaction overlap between the annotation tools (average number of EC numbers per 

genome). 

 

 

Figure 4. Precision vs Recall of EC numbers for different combinations of tools on EcoCyc. Individual 

tools are denoted by B, E, K, or R for BRENDA, EFICAz, KEGG, and RAST, respectively. 
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Figure 5. A: Fraction of EC numbers for each genome on which one, two three or all four tools agree. 

The 27 reference genomes were sorted with respect to the fraction of EC numbers that were 

predicted by 3 or more tools (blue bars). The top of the list is dominated by model organisms such as 

E. coli, B. subtilis, and closely related organisms. As we move farther away from such well-studied 

model organisms, the fraction of unique EC numbers predicted only by a single tool (red bars) 

increases, at the expense of those predicted by multiple tools. B: The fraction of genes annotated as 

enzymes by each tool likewise decreases as we move farther away from model organisms such as E. 

coli. Note that two of the organisms with a drastically reduced genome content, Candidatus Portiera 

aleyrodidarum BT-QVLC and Candidatus Evansia muelleri, also have a relatively higher fraction of 

core metabolic enzymes. 
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Figure 6. A: Total number of genes annotated as transporters, regardless of substrate. B: Transporter 

annotations with substrates predictions specific enough to be included in metabolic models (rank 1 or 

2). 
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