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ABSTRACT 15 

Background. One of the main challenges in precision medicine is the identification of molecular 16 

features associated to drug response to provide clinicians with tools to select the best therapy 17 

for each individual cancer patient. The recent adoption of next-generation sequencing 18 

technologies enables accurate profiling of not only gene expression but also alternatively-19 

spliced transcripts in large-scale pharmacogenomic studies. Given that altered mRNA splicing 20 

has been shown to be prominent in cancers, linking this feature to drug response will open new 21 

avenues of research in biomarker discovery.  22 

Methods. To address the lack of reproducibility of drug sensitivity measurements across 23 

studies, we developed a meta-analytical framework combining the pharmacological data 24 

generated within the Cancer Cell Line Encyclopedia (CCLE) and the Genomics of Drug 25 

Sensitivity in Cancer (GDSC). Predictive models are fitted with CCLE RNA-seq data as 26 

predictor variables, controlled for tissue type, and combined GDSC and CCLE drug sensitivity 27 

values as dependent variables. 28 

Results. We first validated the biomarkers identified from GDSC and CCLE using an existing 29 

pharmacogenomic dataset of 70 breast cancer cell lines. We further selected four drugs with the 30 

most promising biomarkers to test whether their predictive value is robust to change in 31 

pharmacological assay. We successfully validated 10 isoform-based biomarkers predictive of 32 

drug response in breast cancer, including TGFA-001 for the MEK tyrosine kinase inhibitor (TKI) 33 

AZD6244, DUOX-001 for the EGFR inhibitor erlotinib, and CPEB4-001 transcript expression 34 

associated with lack of sensitivity to paclitaxel. 35 
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 2 

Conclusion. The results of our meta-analysis of pharmacogenomic data suggest that isoforms 1 

represent a rich resource for biomarkers predictive of response to chemo- and targeted 2 

therapies. Our study also showed that the validation rate for this type of biomarkers is low 3 

(<50%) for most drugs, supporting the requirements for independent datasets to identify 4 

reproducible predictors of response to anticancer drugs. 5 

6 
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 3 

INTRODUCTION 1 
 2 

Cell lines are the most widely-used cancer models to study response of tumors to anticancer 3 

drugs. Not only have these cell lines recently been comprehensively profiled at the molecular 4 

level, but they have also been used in high-throughput drug screening studies, such as the 5 

Genomics of Drug Sensitivity in Cancer (GDSC) [1] and the Cancer Cell Line Encyclopedia [2]. 6 

The overarching goal of these seminal studies was to identify molecular features predictive of 7 

drug response (predictive biomarkers). Consequently, the GDSC and CCLE investigators were 8 

able to confirm a number of established gene-drug associations, including association of 9 

ERBB2 amplification with sensitivity to lapatinib and BCR/ABL fusion expression and nilotinib. 10 

They also found new associations such as SLFN11 expression and response to topoisomerase 11 

inhibitors, thereby supporting the potential relevance of cell-based high-throughput drug 12 

screening for biomarker discovery. However the biomarkers validated in preclinical settings are 13 

still largely dominated by genetic (mutation, copy number alteration or translocation) as opposed 14 

to transcriptomic (gene expression) features. Therefore, there is a need for further investigation 15 

of transcriptomic markers associated with drug response in cancer.  16 

The vast majority of pharmacogenomic studies investigated the association between 17 

gene-specific mRNA abundance and drug sensitivity [1–6]. However, it is well established that 18 

genes undergo alternative splicing in human tissues (61% of the genome; Ensembl version 37), 19 

and changes in splicing have been associated with all hallmarks of cancer [7]. Despite the major 20 

role of alternative splicing in cancer progression and metastasis [7], only a few small-scale 21 

studies have reported associations between these spliced transcripts (also referred to as 22 

isoforms) and drug response or resistance [8–10]. These limited, yet promising associations 23 

support the potential relevance of isoform expression as a new class of biomarkers predictive of 24 

drug response. Among the mRNA expression profiling technologies, high-throughput RNA 25 

sequencing (RNA-seq) enables quantification of both isoform and gene expression abundances 26 

at the genome-wide level. Recent studies have highlighted the advantages of RNA-seq over 27 

microarray-based gene expression assays [11–15]. In particular, microarray profiling platforms 28 

are limited to pre-designed cDNA probes [11] and they depend on background levels of 29 

hybridization. They also suffer from limited dynamic range probe hybridization. Since the 30 

detection of transcripts and genes using RNA-seq is based on high resolution short reads 31 

sequencing instead of probe design, they have the potential to overcome these limitations [13]. 32 

Recent initiatives have profiled hundreds of cancer cell lines using Illumina RNA-seq 33 

technology [3,16–18]. As part of CCLE, the Broad Institute of Harvard and MIT recently released 34 
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RNA--seq profiles of 935 cancer cell lines through the Cancer Genomics Hub (CGHub) [19]. 1 

Two other initiatives used RNA-seq to profile panels of 70 (GRAY [3]) and 84 (UHN [17]) breast 2 

cancer cell lines. The availability of these valuable datasets offers unprecedented opportunities 3 

to further explore the transcriptomic features of cancer cells and study their association  with 4 

drug response. Here, we explore the genome-wide transcriptomic landscape of large panels of 5 

cancer cell lines to identify isoform-level expression features predictive of drug response in vitro. 6 

Based on our new meta--analytical framework combining the GDSC and CCLE drug sensitivity 7 

data for biomarker discovery, we show that isoform-level expression measurements are more 8 

predictive of response to cytotoxic and targeted therapies than are gene-level expression 9 

values. We tested the accuracy of our most promising isoform biomarkers in two independent 10 

breast cancer pharmacogenomic datasets, GRAY and UHN. We validated ten isoform-based 11 

biomarkers predictive of response to lapatinib, erlotinib, AZD6244 (MEK inhibitor) and paclitaxel, 12 

indicating that isoforms constitute a promising new class of biomarkers for cytotoxic and 13 

targeted anticancer therapies. 14 

 15 

 16 

MATERIALS AND METHODS 17 

 18 

A schematic view of the design of our study is shown in Figure 1.  19 

 20 

Published Pharmacogenomics studies 21 

We used our PharmacoGx platform [20] to create curated, annotated and standardized 22 

pharmacogenomic datasets composed of CCLE [2], GDSC [1] and GRAY [3]. CCLE and GRAY 23 

pharmacological data were generated using the CellTiter-Glo assay (which quantitates ATP, 24 

Promega), while GDSC used the Syto60 assay (a nucleic acid stain, Invitrogen) [21]. We 25 

updated CCLE and GRAY PharmacoSets to include gene and isoform-level expression data 26 

processed from the raw RNA-seq profiles downloaded from CGHub [19] and NCBI GEO [22], 27 

respectively.  28 

 29 

RNA-seq data processing 30 

We used Tophat2 [24] using the EnsemblGenome Reference Consortium release GRCh37 [25]. 31 

Cufflinks [26] is used to annotate genes and isoforms and quantify their expression. Gencode 32 

version 12 [27] was used as the transcript model reference for the alignment as well as for all 33 

gene and isoform quantifications. Gencode annotated a total of 53,934 genes, which includes 34 
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20,110 protein coding genes, 11,790 long noncoding RNA’s (lncRNA’s), and 12,648 1 

pseudogenes. Expression values were computed as the log2(FPKM+1) where FPKM represents 2 

the number of fragments per kilobase per million mapped reads units which control for 3 

sequence length and sequencing depth [28]. 4 

 5 

Pharmacological data processing 6 

We developed a unified framework to process the raw pharmacological data of CCLE, GDSC 7 

and GRAY and to obtain the drug dose-response curves using a standard curve fitting algorithm 8 

[20] (Supplementary Methods). To summarize the drug dose-response curves into a single 9 

sensitivity measure we computed the area under the curve (AUC) metric, which combines both 10 

potency and efficacy of drug responses [29] (Supplementary Figure 1; Supplementary 11 

Methods). Compared with IC50 and Emax metrics, which represent only one point on the drug 12 

dose-response curve, AUC values are computed by integrating all data points. Consequently, 13 

AUC has been shown to be more reproducible across pharmacogenomic studies [30,31]. In this 14 

study, we used the area above the drug dose-response curve (AAC=1-AUC; Supplementary 15 

Figure 1) so that higher AAC represent high drug sensitivity. 16 

 17 

Biomarker discovery 18 

To identify gene and isoform expression robustly associated with drug sensitivity, we developed 19 

a machine learning pipeline combining linear regression models with a bootstrapping procedure 20 

for stringent model selection. Our choice of model assumes a linear relationship between 21 

molecular features and drug responses. Although violation of this assumption may result in 22 

biased predictions, linear models are robust to variation or noise in the data, making them less 23 

prone to overfitting in a high-dimensional context such as pharmacogenomics. Therefore the 24 

association between each molecular feature and response to a given drug is assessed by fitting 25 

linear models using the gene or isoform expression across cell lines as predictor variables, 26 

adjusted for tissue of origin of cancer cell lines, and their sensitivity values to the given drug as 27 

dependent variables (Supplementary Figure 2). To assess the association of each gene and its 28 

isoforms to a given drug, three linear models were constructed for each dataset as following.  29 

(1) M0: Y=β0 + βTT 30 

(2) M1: Y=β0 + βTT + βGXG 31 

(3) M2: Y=β0 + βTT + βIIG ∀ IG ∈ GI 32 

 33 
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 6 

Where T represents the tissues of origin as a vector of size N × 1; N is the number of cell lines; Y 1 

denotes the drug sensitivity vector of size N × 1 containing the drug sensitivity values (AAC) of 2 

the cell lines treated by the drug of interest; XG represents a vector of size N × 1 of log2 3 

normalized FPKM values for the expression of gene G across all the cell lines; GI is all the 4 

isoforms of gene G; IG is a vector of size N × 1 of log2 normalized FPKM values for each isoform 5 

of G across all the cell lines. The effect size of each association is quantified by βG and βI, which 6 

indicate the strength of associations between drug response and the molecular feature of 7 

interest, adjusted for tissue type. To estimate standardized coefficients from the linear model, 8 

the variables  XG and IG are scaled (standard deviation equals to one, mean equals to zero). The 9 

null model (Equation (2)) estimates the association between drug response and tissue of 10 

origins. The models in Equations (3) and (4) estimate the strength and significance of the 11 

association between drug sensitivity and the gene-level and its best isoform expressions, 12 

respectively.  13 

To address the lack of reproducibility of drug sensitivity measurements across studies 14 

[30,32], we developed a meta-analytical pipeline to combine the pharmacological data from 15 

CCLE and GDSC. The June 2014 release of CCLE consists of 11,670 experiments in which 24 16 

drugs have been screened on 1,053 cancer cell lines from 24 tissue origins. GDSC release 5 17 

comprises of 79,903 experiments for 140 different drugs tested on a panel of up to 778 unique 18 

cell lines from 30 tissue types. The panel of drugs and cell lines screened in these two datasets 19 

overlapped for 15 compounds and 512 cell lines, respectively (Supplementary Files 1 and 2, 20 

Supplementary Figure 3). Univariate gene-drug associations were computed using the linear 21 

models described in above-mentioned equations with CCLE RNA-seq data as predictors and 22 

CCLE and GDSC drug sensitivity data separately. We recognize that using CCLE RNA-seq 23 

data in combination with GDSC is suboptimal as gene expression of cell lines are subject to 24 

biological and technical variations [33]. In the absence of RNA-seq data for GDSC, we could 25 

only address the variations observed in the drug sensitivity measurements, which we 26 

demonstrated to be significantly higher than variations in gene expression data [32]. To ensure 27 

that cell line identity was conserved across CCLE and GDSC, we performed SNP fingerprinting 28 

(Supplementary Methods) and filtered out the cell lines identified as different across studies 29 

using a cutoff of 80% concordance [32]. In addition we compared the microarray expression 30 

profiles of cell lines between microarray and RNA-seq profiles, which resulted in good 31 

concordance (Supplementary Figure 4) supporting that expression profiling are consistent. 32 
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 7 

The predictive value (R2) and significance (p-value) of the fitted models are estimated 1 

using the linear models described in Equations (2) and (3). To determine the most predictive 2 

isoform for each gene the predictive value of all of its isoforms is estimated using equation (3) 3 

and the most significant isoform (the one with the smallest bonferroni-corrected p-value) is 4 

selected for further analysis. Comparison of the predictive value of each model was performed 5 

using a bootstrapping procedure: 100 resampled datasets are generated where the cell lines 6 

are obtained by sampling with replacements from all the cell lines with sensitivity and 7 

expression profile available for a given drug. The linear regressions are solved for each 8 

bootstrap using the resampled set (~2/3) and unselected cell line set (~1/3) for training and 9 

testing, respectively. To evaluate the prediction performance of a gene or isoform model, its 10 

vector of R2 values is compared to a null model using a one-sided wilcoxon signed rank test. 11 

Bootstrapping procedure is applied on the gene and its most predictive isoform. To combine the 12 

fitted models obtained from CCLE and GDSC, their coefficients and p-values were averaged 13 

and weighted by the number of cell lines in those datasets (Supplementary Figure 2). To control 14 

for multiple testing, we corrected the p-values obtained for all genes and isoforms, separately, 15 

using the false discovery rate (FDR) method [34]. 16 

 17 

Pre-validation of isoform-based biomarkers (GRAY) 18 

We validated the accuracy of our biomarkers using a previously-published independent dataset, 19 

GRAY [3], which includes RNA-seq of a panel of 70 breast cancer cell lines screened with 90 20 

FDA-approved drugs (CellTiter-Glo pharmacological assay; Supplementary Table 1), with 8 21 

compounds in common with CCLE and GDSC (Supplementary Figure 5). To check the 22 

predictive value of our biomarkers in breast cancer, we fitted the linear models in Equations (1) 23 

to (3) using only breast cancer cell lines in our training sets. A biomarker is selected if its 24 

predictive value in breast cancer cell lines is greater than or equal to the predictive value across 25 

all tissue types. To validate the selected biomarkers in GRAY we computed the significance of 26 

the linear association between the biomarker expression and drug response (p-value < 0.05) 27 

with the same direction of association (sign of the coefficient β) as the training sets. To select 28 

the validated biomarkers whose isoform expression is significantly more predictive than the 29 

corresponding overall gene expression we estimated the R2 distribution of the isoform- and 30 

gene-based models using the bootstrap procedure and compared these distributions using a 31 

two-sided Wilcoxon signed rank test. 32 

 33 

Final validation of isoform-based biomarkers (UHN) 34 
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To test whether the predictive value of the isoform-based biomarkers validated in GRAY was 1 

robust to the use of a different pharmacological assay, we decided to leverage a collection of 84 2 

breast cancer cell lines recently used to investigate gene essentiality in breast cancer molecular 3 

subtypes [17]. We selected 14 cell lines in this collection that were readily available and showed 4 

extreme expressions of the biomarkers of interest (Supplementary Table 1). Selected cell lines 5 

were cultured and screened for their response to three targeted agents : lapatinib, AZD6244 6 

and erlotinib, and one chemotherapy, paclitaxel. We used the sulforhodamine B colorimetric 7 

(SRB) proliferation assay  [35] in 96--well plates to determine the drug dose--response curves. 8 

We subtracted the average phosphate buffer saline (PBS) wells value from all wells and 9 

computed the standard deviation and coefficient for each triplicate. Data points with coefficient 10 

or standard deviation greater than 0.2 were discarded. All the individual treated well values were 11 

normalized to the control well values. We used the PharmacoGx [20] package to fit the curves 12 

using a logarithmic logistic regression method to estimate the AUC sensitivity values. Raw and 13 

processed pharmacological data are available through our PharmacoGx platform under the 14 

UHNBC PharmacoSet. 15 

 16 

Comparison of isoform expression across patient tumors and healthy tissues 17 

To test whether isoform-based biomarkers are specific to cancerous tissue, we compared their 18 

expression distribution across patient tumors and healthy tissues. We downloaded the bam files 19 

from The Cancer Genome Atlas (TCGA) [19] and the Genotype-Tissue Expression (GTEx) [36] 20 

for patient tumor and healthy tissue RNA-seq profiles, respectively. We reprocessed the data 21 

using the Tuxedo protocol [14]. Distribution of isoform expression across sample types is 22 

compared using one-sided Wilcoxon rank sum test. The direction of the test was determined by 23 

the direction of the biomarker association: for biomarkers associated with drug sensitivity, higher 24 

expression in cancer was tested and vice versa. 25 

 26 

Research replicability 27 

The pharmacogenomics data used in this study are publicly available through our PharmacoGx 28 

platform [20]. Our code and documentation are open-source and publicly available through the 29 

RNAseqDrug GitHub repository (github.com/bhklab/RNASeqDrug). A detailed tutorial describing 30 

how to run our pipeline and reproduce our analysis results is available the GitHub repository. 31 

Our study complies with the guidelines outlined in [37,38]. 32 

 33 

 34 
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 9 

RESULTS 1 

We developed a meta-analysis pipeline enabling identification of gene- and isoform-level 2 

expression-based biomarkers predictive of sensitivity to 15 drugs (Supplementary Table 1; 3 

Supplementary Figure 3) across two large pharmacogenomics studies, namely CCLE and 4 

GDSC (Figure 1). CCLE used the CellTiter-Glo (Promega) pharmacological assay, while GDSC 5 

used Syto60 (Invitrogen) [21], providing us with the opportunity to discover biomarkers 6 

generalizable to multiple measures of drug sensitivities. We identified a large set of statistically 7 

significant biomarkers for each drug (14 to 3,480 biomarkers with FDR < 5%; Figure 2A). We 8 

observed a significantly larger proportion of isoform-based biomarkers are predictive of drug 9 

response (Wilcoxon signed rank test p-value < 10-5; Figure 2A). For the majority of genes 10 

identified as biomarkers, the highest ranking isoform, but not the overall gene expression, is 11 

significantly predictive of drug response (Figure 2B).  12 

 13 

Pre-validation in an independent breast cancer dataset 14 

In vitro validation of drug response biomarkers in fully independent datasets has been shown to 15 

be challenging [31,39–41]. We therefore sought to assess the predictive value of our most 16 

promising isoform biomarkers for eight drugs screened both in our training sets and in the 17 

independent breast cancer dataset published by Daemen et al. [3] (referred to as GRAY; 18 

Supplementary Figure 5), which used the same pharmacological assay as CCLE. We first 19 

selected the significant isoform-based biomarkers in our training set that were predictive in 20 

breast cancer cell lines (see Methods). We assessed the predictive value of these biomarker 21 

candidates in GRAY and tested whether these isoform biomarkers were significantly more 22 

predictive than their corresponding gene expression (Figure 3). The validation success rate 23 

ranged from 0% (no validated biomarkers for sorafenib and crizotinib) to 41% validated 24 

biomarkers for AZD6244 (Supplementary Table 2). We found that the poor validation rate for 25 

crizotinib and sorafenib stems from inconsistency in their pharmacological profiles 26 

(Supplementary Figure 6). Based on the number and effect size of biomarker candidates that 27 

were significant in GRAY, we selected AZD6244, lapatinib, erlotinib and paclitaxel for further 28 

validation. 29 

 30 

Final validation using a different pharmacological assay 31 

To test the robustness of our pre-validated biomarkers we generated a new set of drug 32 

sensitivity data combined with the RNA-seq profiles of breast cancer cell lines published by 33 

Marcotte et al. [17]. This new pharmacogenomic dataset is referred to as UHN. We screened 34 
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 10 

cell lines with a different pharmacological assay (sulforhodamine B assay; SRB) from those 1 

used in the training and pre-validation sets. We first cultured cell lines to check their doubling 2 

time in a course of 120 hours (Supplementary Table 3). Only cell lines with a growth 3 

rate/doubling time that was amenable to the the 5-day SRB assay as a readout for cytotoxicity 4 

were considered for testing in the full 9-dose assay. We then assessed the anti-proliferative 5 

effect of cell lines to drugs using SRB assay in 96 well plates in triplicates. All the drug dose-6 

response curves passed our quality controls (see Methods). 7 

Similar to the pre-validation performed in GRAY, we considered an isoformic biomarker 8 

to be validated if the linear association between its expression and drug sensitivity is both 9 

significant and in the same direction (same coefficient sign in the regression model). This 10 

resulted in validation of 3 out of 26, 11 out of 23, 1 out of 4 and 10 out of 31 biomarkers for 11 

AZD6244, lapatinib, erlotinib and paclitaxel, respectively (Supplementary Table 2). We selected 12 

the most significant isoform for each drug and investigated its exon occupancy and correlation 13 

compared with the other isoforms of the same gene (Figure 4; Supplementary Figure 7). The 14 

selected TGF-α (ENST00000295400), TNKS1BP1 (ENST00000527207) and DUOX1 15 

(ENST00000389037) isoforms were associated with sensitivity to AZD6244, erlotinib and 16 

lapatinib, respectively (Figure 4A-C), while the CPEB4 (ENST00000265085) isoform is 17 

associated with lack of sensitivity to paclitaxel (Figure 4D). For TGF-α and DUOX1, the 18 

predictive isoform was highly correlated with another isoform of the same gene, sharing similar 19 

exon occupancy (Figure 4E,G), while predictive isoform for TNKS1BP1 and CPEB4 present a 20 

more specific expression pattern (Figure 4F,H). We compared the expression of the selected 21 

isoform biomarkers across patient breast tumors and healthy tissue samples to test whether the 22 

biomarkers are tumor-specific (Figure 4I-L), which would facilitate their quantification in future in 23 

vivo and clinical studies. The TNKS1BP1 isoform was significantly more expressed in tumors 24 

compared to healthy tissues (p<0.001; Figure 4J), while TGFA and DUOX1 isoforms were not 25 

(Figure 4I,K). However, for the latter isoform we observed a large tail of tumors yielding higher 26 

expression of DUOX1 isoform than any of the healthy breast tissues (Figure 4K), suggesting 27 

that these patients may respond to the corresponding therapies. As a biomarker associated with 28 

lack of sensitivity, low expression in tumors compared to healthy tissue would favor response, 29 

which was actually the case for CEBP4 (p<0.001; Figure 4L). 30 

 31 

 32 

 33 

 34 
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DISCUSSION 1 

Although gene expression represents an important class of biomarkers for prediction of drug 2 

response in vitro [1–6,18], association between gene isoforms and drug sensitivity has not been 3 

well studied despite the critical role of alternative splicing in cancer [7]. Our study is the first to 4 

describe a genome-wide meta-analysis of isoform-based biomarker predictive of drug response 5 

in vitro (Figure 1; Supplementary Table 1). Controlling for the large number of isoforms, we 6 

found that significantly more genes had one of their isoforms predictive of response compared 7 

to overall gene expression for the vast majority of the drugs (Figure 2A). Importantly only a 8 

minority of biomarkers were solely predictive based on their overall gene expression and would 9 

have been missed by focusing on isoform expressions (Figure 2B), supporting isoforms as a 10 

promising, untapped resource for drug response biomarkers. 11 

 Recognizing the challenges involved in biomarker discovery and validation from in vitro 12 

drug screening data [18,21,30,31,33,39,41–43], we further assessed the predictive value of our 13 

newly discovered isoform-based biomarkers for four drugs (AZD6244, lapatinib, erlotinib and 14 

paclitaxel) in GRAY, a large independent breast cancer pharmacogenomic dataset (Figure 1 15 

and Supplementary Table 1). As expected given the recognized discrepancies in drug sensitivity 16 

profiles between large datasets, we obtained a low validation rate (33-51%; Supplementary 17 

Table 2) in our first validation phase, despite the fact that this study used the same 18 

pharmacological assay as CCLE to generate their drug sensitivity data (CellTiter Glo; 19 

Supplementary Table 1). We found that many of the strongest biomarkers were significantly 20 

more predictive of drug sensitivity at the isoform level compared to the overall gene expression 21 

level (Wilcoxon signed rank test p<0.05; Figure 3). 22 

 Given that we and others have shown that the choice of pharmacological assay strongly 23 

influences drug sensitivity measurements [18,21,30], we sought to validate our candidate 24 

isoform biomarkers using the sulforhodamine B assay (SRB), which differs from the assays 25 

used in the training and pre-validation datasets (Figure 1). We selected 14 breast cancer cell 26 

lines and screened them with the set of four drugs. Despite the small sample size, we validated 27 

10 isoform biomarkers (p<0.05; Supplementary Table 2). We selected the most predictive 28 

isoform for each drug to investigate its correlation with the other isoforms of the same gene and 29 

its distribution across patient tumor and healthy tissue samples (Figure 4). As a biomarker 30 

predictive of response to the MEK inhibitor AZD6244 in breast cancer, we identified 31 

ENST00000295400, one of the longest isoforms of the transforming growth factor alpha (TGF-32 

α), which codes a protein with 160 amino acids. The expression of this isoform is highly 33 

correlated with ENST0000041833 which has a very similar transcriptomic structure (Figure 4E) 34 
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and codes for a protein with just 4 less amino acids. However the other seven isoforms of TGF-1 

α are poorly correlated with ENST00000295400 (ρ<0.8) and the inclusion of the extra exons 2 

resulted in the loss of predictive value for TGF-α overall expression. TGF-α is a member of the 3 

epidermal growth factor (EGF) family, which binds to the EGF receptors (EGFR) on cell surface 4 

and activate a signalling pathway for multiple cell proliferation events including the MAPK/ERK 5 

pathway involved in cell proliferation [44,45]. It has been shown that increased TGF-α 6 

expression causes persistent stimulation of the EGFR by creating an autocrine feedback loop 7 

[45]. The association between ENST00000295400 expression and response to MEK inhibition 8 

suggests that this feedback loop may make the breast cancer cells reliant on activated 9 

MAPK/ERK pathway and consequently increase their sensitivity to AZD6244. 10 

 We investigated the association between isoform expressions and sensitivity to lapatinib, 11 

a dual tyrosine kinase inhibitor which interrupts the HER2/neu and epidermal growth factor 12 

receptor (EGFR) pathways. Concurring with the literature [46], we found that breast cancer cell 13 

lines overexpressing ERBB2 were highly sensitive to lapatinib (Figure 3B). However, this 14 

biomarker is not isoform-specific as overall ERBB2 expression is similarly predictive of drug 15 

response (Supplementary Figure 8). We further identified ENST00000527207, the shortest 16 

protein-coding isoform for TNKS1BP1 as the strongest isoform-specific biomarker (Figure 4B). 17 

No other TNKS1BP1 isoforms are strongly correlated with ENST00000527207 (ρ<0.8), 18 

supporting its unique predictive value compared to overall expression (Figure 4F). TNKS1BP1 19 

was originally identified as an interaction protein of tankyrase 1, which belongs to the poly(ADP-20 

ribose) polymerase (PARP) superfamily; however its function is poorly characterized. Although 21 

TNKS1BP1 association with drug response is intriguing, the dominent predictor of response will 22 

remain ERBB2 expression in clinical setting. 23 

 Our results indicate that sensitivity to the EGFR inhibitor, erlotinib, can be predicted by 24 

the expression of the ENST00000389037 isoform of DUOX1 (Figure 4C). This isoform was 25 

highly correlated with ENST00000321429, which differs only by a single splicing event, but was 26 

not strongly correlated with the other 10 isoforms (ρ<0.8; Figure 4G). DUOX1 has been shown 27 

to induce ATP-mediated EGFR transactivation in airway epithelial cells [49] and more recently in 28 

squamous-cell cancer [50]. Although there is no evidence yet for EGFR transactivation in breast 29 

cancer, the association between DUOX1 and erlotinib sensitivity suggests that breast cancer 30 

cell lines overexpressing DUOX1 may be reliant on activated EGFR signaling for survival, 31 

making them more vulnerable to EGFR inhibition. Given evidence for some clinical activity of 32 

EGFR inhibitors in breast cancer, our result uncovers new opportunities to characterize this 33 
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pathway towards the development of biomarker driven treatment strategies for this class of 1 

drugs. 2 

Lack of sensitivity or innate resistance to chemotherapies is a major issue in current 3 

breast cancer management [51]. Our results indicate that the expression of the 4 

ENST00000265085 isoform of the cytoplasmic polyadenylation element binding protein 4 5 

(CPEB4) genes is associated with lack of sensitivity to paclitaxel in breast cancer cell lines 6 

(Figure 4D). None of the remaining nine CPEB4 isoforms is highly correlated with 7 

ENST00000265085 (ρ<0.8; Figure 4H). The cytoplasmic polyadenylation element binding 8 

proteins combine a sequence-specific RNA-binding protein with a RNA-recognition motif and a 9 

zinc-finger [52,53] and associate with specific sequences in mRNA 3ʹ untranslated regions to 10 

promote translation [54]. Elevated CPEB4 expression have been associated with tumor growth, 11 

vascularization, migration, invasion, and metastasis in multiple cancer types [55–58]. Xu and Liu 12 

found that the CPEB4 targeted genes, such as BIRC5 [59] and IGF2 [60], are related to 13 

chemotherapy resistance and suggested CPEB4 as a marker of resistance to paclitaxel and 14 

cisplatin [56]. These mechanistic studies are consistent with our finding that the expression of 15 

the first isoform of CEBP4 correlates with lack of sensitivity to paclitaxel; additional 16 

characterization of the biology underlying the isoform specificity of this association would be of 17 

substantial interest (Figure 4D). 18 

This study has several potential limitations. First, our biomarker discovery pipeline is 19 

restricted to univariate linear association between gene and isoform expression and drug 20 

sensitivity. These two restrictions have been imposed to mitigate the risk of overfitting as the 21 

development of multivariate, potentially nonlinear predictors of in vitro drug sensitivity has been 22 

proven to be challenging [31,39]. Larger sample size of compendia of pharmacogenomic 23 

datasets will be necessary to overcome this. A second limitation lies in the use of a single 24 

processing pipeline to quantify expression of each individual transcripts from Illumina RNA-seq 25 

data. We choose to use the Tuxedo protocol for RNA-seq [14] because it is one of the most 26 

widely-used suite of tools for transcript expression analysis. We recognize that many 27 

alternatives exist [61–63] but their comparison is out of the scope of the present study. Third, 28 

the validation of our biomarkers is limited to breast cancer cell lines, the only tissue type for 29 

which we had independent pharmacological and molecular data. The release of additional large-30 

scale pharmacogenomic datasets will enable validation in more tissue types, to which our 31 

computational approach can readily be applied. Lastly, we are aware that our comparison of the 32 

tumour and healthy tissue expression profiles extracted from the TCGA and GTEx projects, 33 

respectively, might be biased due to the inevitable batch effects and other technical variations 34 
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across laboratories. To alleviate this issue, the TCGA and GTEx RNA-seq raw data have been 1 

downloaded and reprocessed using the same analysis pipeline to ensure that the transcript 2 

expression values are comparable. 3 

 4 

 5 

CONCLUSION 6 

The advent of RNA-sequencing technology enables efficient quantification of alternatively-7 

spliced transcripts in cancer cells. Our genome-wide search for biomarkers demonstrates that 8 

gene isoforms consitute a rich resouce of transcriptomic features associated with response to 9 

targeted and chemotherapies in vitro. Our results suggest that isoform-based biomarkers are 10 

more frequent and more significantly associated with drug sensitivity than overall gene 11 

expression, opening new avenues for future biomarker discovery for in vitro and in vivo drug 12 

screening. 13 

 14 

 15 

ACKNOWLEDGEMENTS 16 

The authors would like to thank the investigators of the Genomics of Drug Sensitivity in Cancer 17 

(GDSC), the Cancer Cell Line Encyclopedia (CCLE), Drs. Joe W. Gray and Benjamin G. Neel 18 

who have made their invaluable data available to the scientific community.  19 

 20 

 21 

FUNDING 22 

Z Safikhani was supported by the Cancer Research Society (Canada; grant #19271) and the 23 

Ontario Institute for Cancer Research through funding provided by the Government of Ontario. 24 

P Smirnov was supported by the Canadian Cancer Society Research Institute. B Haibe-Kains 25 

was supported by the Gattuso Slaight Personalized Cancer Medicine Fund at Princess Margaret 26 

Cancer Centre, the Canadian Institute of Health Research (grant #340176) and Natural 27 

Sciences and Engineering Research Council (grant #357163).  28 

 29 

REFERENCES 30 

1.  Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, et al. Systematic 31 
identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483: 570–32 
575. 33 

2.  Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The 34 
Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. 35 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2017. ; https://doi.org/10.1101/160937doi: bioRxiv preprint 

https://doi.org/10.1101/160937
http://creativecommons.org/licenses/by-nc/4.0/


 15 

Nature. 2012;483: 603–607. 1 
3.  Daemen A, Griffith OL, Heiser LM, Wang NJ, Enache OM, Sanborn Z, et al. Modeling 2 

precision treatment of breast cancer. Genome Biol. 2013;14: R110. 3 
4.  Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev 4 

Cancer. 2006;6: 813–823. 5 
5.  Greshock J, Cheng J, Rusnak D, Martin AM, Wooster R, Gilmer T, et al. Genome-wide 6 

DNA copy number predictors of lapatinib sensitivity in tumor-derived cell lines. Mol Cancer 7 
Ther. 2008;7: 935–943. 8 

6.  Costello JC, Heiser LM, Georgii E, Gönen M, Menden MP, Wang NJ, et al. A community 9 
effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32: 10 
1202–1212. 11 

7.  Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. Oncogene. 2014;33: 5311–12 
5318. 13 

8.  Chacko AD, McDade SS, Chanduloy S, Church SW, Kennedy R, Price J, et al. Expression 14 
of the SEPT9_i4 isoform confers resistance to microtubule-interacting drugs. Cell Oncol . 15 
2012;35: 85–93. 16 

9.  Zhang F, Wang M, Michael T, Drabier R. Novel alternative splicing isoform biomarkers 17 
identification from high-throughput plasma proteomics profiling of breast cancer. BMC Syst 18 
Biol. 2013;7 Suppl 5: S8. 19 

10.  Barrie ES, Smith RM, Sanford JC, Sadee W. mRNA transcript diversity creates new 20 
opportunities for pharmacological intervention. Mol Pharmacol. 2012;81: 620–630. 21 

11.  Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of 22 
technical reproducibility and comparison with gene expression arrays. Genome Res. 23 
2008;18: 1509–1517. 24 

12.  Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, et al. Estimating accuracy of RNA-Seq and 25 
microarrays with proteomics. BMC Genomics. 2009;10: 161. 26 

13.  Xu X, Zhang Y, Williams J, Antoniou E, McCombie W, Wu S, et al. Parallel comparison of 27 
Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated 28 
from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets. BMC 29 
Bioinformatics. 2013;14: S1. 30 

14.  Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and 31 
transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat 32 
Protoc. 2012;7: 562–578. 33 

15.  Iorio F, Rittman T, Ge H, Menden M, Saez-Rodriguez J. Transcriptional data: a new 34 
gateway to drug repositioning? Drug Discov Today. 2013;18: 350–357. 35 

16.  Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, et al. A comprehensive 36 
transcriptional portrait of human cancer cell lines. Nat Biotechnol. 2015;33: 306–312. 37 

17.  Marcotte R, Sayad A, Brown KR, Sanchez-Garcia F, Reimand J, Haider M, et al. Functional 38 
Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance. 39 
Cell. 2016;164: 293–309. 40 

18.  Haverty PM, Lin E, Tan J, Yu Y, Lam B, Lianoglou S, et al. Reproducible pharmacogenomic 41 
profiling of cancer cell line panels. Nature. 2016;533: 333–337. 42 

19.  Wilks C, Cline MS, Weiler E, Diehkans M, Craft B, Martin C, et al. The Cancer Genomics 43 
Hub (CGHub): overcoming cancer through the power of torrential data. Database . 44 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2017. ; https://doi.org/10.1101/160937doi: bioRxiv preprint 

https://doi.org/10.1101/160937
http://creativecommons.org/licenses/by-nc/4.0/


 16 

2014;2014. doi:10.1093/database/bau093 1 
20.  Smirnov P, Safikhani Z, El-Hachem N, Wang D, She A, Olsen C, et al. PharmacoGx: An R 2 

package for analysis of large pharmacogenomic datasets. Bioinformatics. 2015; 3 
doi:10.1093/bioinformatics/btv723 4 

21.  Hatzis C, Bedard PL, Juul Birkbak N, Beck AH, Aerts HJWL, Stern DF, et al. Enhancing 5 
Reproducibility in Cancer Drug Screening: How Do We Move Forward? Cancer Res. 2014; 6 
doi:10.1158/0008-5472.CAN-14-0725 7 

22.  Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and 8 
hybridization array data repository. Nucleic Acids Res. 2002;30: 207–210. 9 

23.  Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 10 
2012;28: 2184–2185. 11 

24.  Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. 12 
Bioinformatics. 2009;25: 1105–1111. 13 

25.  Birney E, Andrews TD, Bevan P, Caccamo M, Chen Y, Clarke L, et al. An overview of 14 
Ensembl. Genome Res. 2004;14: 925–928. 15 

26.  Pollier J, Rombauts S, Goossens A. Analysis of RNA-Seq data with TopHat and Cufflinks 16 
for genome-wide expression analysis of jasmonate-treated plants and plant cultures. 17 
Methods Mol Biol. 2013;1011: 305–315. 18 

27.  Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. 19 
GENCODE: the reference human genome annotation for The ENCODE Project. Genome 20 
Res. 2012;22: 1760–1774. 21 

28.  Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying 22 
mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5: 621–628. 23 

29.  Fallahi-Sichani M, Honarnejad S, Heiser LM, Gray JW, Sorger PK. Metrics other than 24 
potency reveal systematic variation in responses to cancer drugs. Nat Chem Biol. 2013;9: 25 
708–714. 26 

30.  Haibe-Kains B, El-Hachem N, Birkbak NJ, Jin AC, Beck AH, Aerts HJWL, et al. 27 
Inconsistency in large pharmacogenomic studies. Nature. 2013;504: 389–393. 28 

31.  Jang IS, Neto EC, Guinney J, Friend SH, Margolin AA. Systematic assessment of analytical 29 
methods for drug sensitivity prediction from cancer cell line data. Pac Symp Biocomput. 30 
2014; 63–74. 31 

32.  Safikhani Z, Freeman M, Smirnov P, El-Hachem N, She A, Quevedo R, et al. Revisiting 32 
inconsistency in large pharmacogenomic studies [Internet]. 2015 Sep. doi:10.1101/026153 33 

33.  Safikhani Z, El-Hachem N, Quevedo R, Smirnov P, Goldenberg A, Juul Birkbak N, et al. 34 
Assessment of pharmacogenomic agreement. F1000Res. 2016;5. 35 
doi:10.12688/f1000research.8705.1 36 

34.  Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful 37 
Approach to Multiple Testing. J R Stat Soc Series B Stat Methodol. [Royal Statistical 38 
Society, Wiley]; 1995;57: 289–300. 39 

35.  Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat 40 
Protoc. 2006;1: 1112–1116. 41 

36.  Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-Tissue 42 
Expression (GTEx) project. Nat Genet. Nature Publishing Group; 2013;45: 580–585. 43 

37.  Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten simple rules for reproducible 44 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2017. ; https://doi.org/10.1101/160937doi: bioRxiv preprint 

https://doi.org/10.1101/160937
http://creativecommons.org/licenses/by-nc/4.0/


 17 

computational research. PLoS Comput Biol. 2013;9: e1003285. 1 
38.  Gentleman R. Reproducible research: a bioinformatics case study. Stat Appl Genet Mol 2 

Biol. 2005;4: Article2. 3 
39.  Papillon-Cavanagh S, De Jay N, Hachem N, Olsen C, Bontempi G, Aerts HJWL, et al. 4 

Comparison and validation of genomic predictors for anticancer drug sensitivity. J Am Med 5 
Inform Assoc. 2013;20: 597–602. 6 

40.  Dong S, Kong J, Kong F, Kong J, Gao J, Ji L, et al. Sorafenib suppresses the epithelial-7 
mesenchymal transition of hepatocellular carcinoma cells after insufficient radiofrequency 8 
ablation. BMC Cancer. 2015;15: 939. 9 

41.  Cortes-Ciriano I, van Westen GJP, Murrell DS, Lenselink EB, Bender A, Malliavin TE. 10 
Applications of proteochemometrics - from species extrapolation to cell line sensitivity 11 
modelling. BMC Bioinformatics. 2015;16: 1–2. 12 

42.  Cancer Cell Line Encyclopedia Consortium, Genomics of Drug Sensitivity in Cancer 13 
Consortium. Pharmacogenomic agreement between two cancer cell line data sets. Nature. 14 
2015;528: 84–87. 15 

43.  Dong Z, Zhang N, Li C, Wang H, Fang Y, Wang J, et al. Anticancer drug sensitivity 16 
prediction in cell lines from baseline gene expression through recursive feature selection. 17 
BMC Cancer. 2015;15: 489. 18 

44.  Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. 19 
Oncogene. 2007;26: 3279–3290. 20 

45.  Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade 21 
for the treatment of cancer. Oncogene. 2007;26: 3291–3310. 22 

46.  de Gramont A, Watson S, Ellis LM, Rodón J, Tabernero J, de Gramont A, et al. Pragmatic 23 
issues in biomarker evaluation for targeted therapies in cancer. Nat Rev Clin Oncol. 24 
2015;12: 197–212. 25 

47.  Zou L-H, Shang Z-F, Tan W, Liu X-D, Xu Q-Z, Song M, et al. TNKS1BP1 functions in DNA 26 
double-strand break repair though facilitating DNA-PKcs autophosphorylation dependent on 27 
PARP-1. Oncotarget. 2015;6: 7011–7022. 28 

48.  Verghese ET, Drury R, Green CA, Holliday DL, Lu X, Nash C, et al. MiR-26b is down-29 
regulated in carcinoma-associated fibroblasts from ER-positive breast cancers leading to 30 
enhanced cell migration and invasion. J Pathol. 2013;231: 388–399. 31 

49.  Sham D, Wesley UV, Hristova M, van der Vliet A. ATP-mediated transactivation of the 32 
epidermal growth factor receptor in airway epithelial cells involves DUOX1-dependent 33 
oxidation of Src and ADAM17. PLoS One. 2013;8: e54391. 34 

50.  Sirokmány G, Pató A, Zana M, Donkó Á, Bíró A, Nagy P, et al. Epidermal growth factor-35 
induced hydrogen peroxide production is mediated by dual oxidase 1. Free Radic Biol Med. 36 
2016; doi:10.1016/j.freeradbiomed.2016.05.028 37 

51.  Niravath P, Nangia J. Chemotherapy Resistance in Breast Cancer. Current Cancer 38 
Therapy Reviews. 2015;11: 260–268. 39 

52.  Hake LE, Richter JD. CPEB is a specificity factor that mediates cytoplasmic 40 
polyadenylation during Xenopus oocyte maturation. Cell. 1994;79: 617–627. 41 

53.  Stebbins-Boaz B, Hake LE, Richter JD. CPEB controls the cytoplasmic polyadenylation of 42 
cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO 43 
J. 1996;15: 2582–2592. 44 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2017. ; https://doi.org/10.1101/160937doi: bioRxiv preprint 

https://doi.org/10.1101/160937
http://creativecommons.org/licenses/by-nc/4.0/


 18 

54.  D’Ambrogio A, Nagaoka K, Richter JD. Translational control of cell growth and malignancy 1 
by the CPEBs. Nat Rev Cancer. 2013;13: 283–290. 2 

55.  Ortiz-Zapater E, Pineda D, Martínez-Bosch N, Fernández-Miranda G, Iglesias M, Alameda 3 
F, et al. Key contribution of CPEB4-mediated translational control to cancer progression. 4 
Nat Med. 2012;18: 83–90. 5 

56.  Xu H, Liu B. CPEB4 is a candidate biomarker for defining metastatic cancers and directing 6 
personalized therapies. Med Hypotheses. 2013;81: 875–877. 7 

57.  Tian Q, Liang L, Ding J, Zha R, Shi H, Wang Q, et al. MicroRNA-550a acts as a pro-8 
metastatic gene and directly targets cytoplasmic polyadenylation element-binding protein 4 9 
in hepatocellular carcinoma. PLoS One. 2012;7: e48958. 10 

58.  Sun H-T, Wen X, Han T, Liu Z-H, Li S-B, Wang J-G, et al. Expression of CPEB4 in invasive 11 
ductal breast carcinoma and its prognostic significance. Onco Targets Ther. 2015;8: 3499–12 
3506. 13 

59.  Hagenbuchner J, Kuznetsov AV, Obexer P, Ausserlechner MJ. BIRC5/Survivin enhances 14 
aerobic glycolysis and drug resistance by altered regulation of the mitochondrial 15 
fusion/fission machinery. Oncogene. 2013;32: 4748–4757. 16 

60.  Huang GS, Brouwer-Visser J, Ramirez MJ, Kim CH, Hebert TM, Lin J, et al. Insulin-like 17 
growth factor 2 expression modulates Taxol resistance and is a candidate biomarker for 18 
reduced disease-free survival in ovarian cancer. Clin Cancer Res. 2010;16: 2999–3010. 19 

61.  Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq 20 
quantification. Nat Biotechnol. 2016;34: 525–527. 21 

62.  Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform quantification from 22 
RNA-seq reads using lightweight algorithms. Nat Biotechnol. 2014;32: 462–464. 23 

63.  Bernard E, Jacob L, Mairal J, Vert J-P. Efficient RNA isoform identification and 24 
quantification from RNA-Seq data with network flows. Bioinformatics. 2014;30: 2447–2455. 25 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2017. ; https://doi.org/10.1101/160937doi: bioRxiv preprint 

https://doi.org/10.1101/160937
http://creativecommons.org/licenses/by-nc/4.0/


Figures

RNA-seq profiles Drug dose-
response curves

Drug dose-
response curves

GDSCCCLE

Fit linear regression 
per gene

Select best isoform

Breast cancer 
biomarkers

RNA-seq profiles

Drug dose-
response curves

GRAY

RNA-seq profiles

Drug dose-
response curves

UHN

Final validation
New dataset

Pre-validation
Published dataset

significant  biomarkers
(gene + isoforms)

pre-validated  biomarkers

Validated
biomarkers

RNA-seq profiles
for healthy/tumor tissues

GTEx/TCGA

Figure 1: Analysis design of the study. CCLE (in blue) and GDSC (in red) are used to identify a set of biomarkers
significantly associated with response to each of the 15 drugs screened in both training sets. The biomarkers
predictive in breast cancer cell lines are selected and further validated in an independent, in vitro breast cancer
dataset (GRAY). This step, referred to as pre-validation, enables the selection of generalizable, isoform-based
biomarkers for breast cancer (represented in orange). The newly generated UHN dataset is then used to test
whether the selected isoform-based biomarkers are robust to the use of a different pharmacological assay (final
validation represented in green). The expression distribution of the final set of biomarkers is compared between
patient tumors (TCGA) and healthy tissues (GTEx).

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2017. ; https://doi.org/10.1101/160937doi: bioRxiv preprint 

https://doi.org/10.1101/160937
http://creativecommons.org/licenses/by-nc/4.0/


Isoform-specific

Gene-specific

Common

Pe
rc
en
ta
ge

0
20

40
60

80
10
0

So
raf
eni
b

PH
A−
665

752

Nu
tlin
−3

PL
X4
720

Nil
otin
ib

Cri
zot
inib

Erl
otin
ib

lap
atin
ib

PD
−0
332

991

AZ
D0
530

TA
E6
84

AZ
D6
244

PD
−0
325

901

17−
AA
G

pac
lita
xel

Pe
rc

en
ta

ge
N

um
be

r o
f A

ss
oc

ia
te

d 
G

en
es

Sora
fen

ib

PHA−
66

57
52

Nutl
in−

3

PLX
47

20

Nilot
inib

Criz
oti

nib

Erlo
tin

ib

lap
ati

nib

PD−
03

32
99

1

AZD05
30

TA
E68

4

AZD62
44

PD−
03

25
90

1

17
−A

AG

pa
clit

ax
el

1
10

10
0

10
00

10
00
0

Isoforms
Genes

Isoforms

Genes

N
um

be
r o

f a
ss

oc
ia

te
d 

ge
ne

s
A

B

Figure 2: Comparison of number of statistically significant predictive biomarkers for each of the 15 drugs in
common between CCLE and GDSC. (A) Number of significant biomarkers at the levels of gene and isoform
expression. (B) Proportion of biomarkers that are significant at the gene level, isoform levels or both.
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Figure 3: Isoform-based biomarkers successfully pre-validated in the independent GRAY dataset for (A)
AZD6244, (B) lapatinib (C) erlotinib, and (D) paclitaxel. Cell lines are ordered by their sensitivity to the drug
of interest and their isoform expression is shown in the heatmap, with the drug sensitivity (AUC) plotted below.
The left side bar plot shows the significance of the association between isoform expression and drug sensitivity
as the -log10(p-value) multiplied by the sign of the coefficient in the corresponding regression model. Genes for
which the candidate isoform is significantly more predictive than its corresponding overall gene expression values
are represented in green.
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Figure 4: Validation of the candidate isoforms predictive of response to (A,E,I) AZD6244, (B,F,J) lapatinib (C,G,K)
erlotinib, and (D,H,L) paclitaxel in the independent UHN dataset generated where a different pharmacological as-
say (sulforhodamine B assay) was used to measure drug sensitivity. In panels A-D, cell lines are ordered by their
sensitivity to the drug of interest and their isoform expression is shown in the heatmap, with the drug sensitivity
(AUC) plotted below. In panels E-H, exon occupancy of each candidate isoform (*) is visualized using the USCS
Genome Browser, with a barplot on the right side representing the correlation (⇢) of expression between each
isoform and the candidate isoform (red bar). A vertical dashed line represents ⇢ = 0.8 to identify highly corre-
lated isoforms of the same gene. Panels I-L enables statistical comparison of the candidate isoform expression
distribution across breast patient tumors and heathly tissues.
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