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0 Summary9

Artificial Intelligence presents an important paradigm shift for science. Science is tradition-10

ally founded on theories and models, most often formalized with mathematical formulas11

handcrafted by theoretical scientists and refined through experiments. Machine learning,12

an important branch of modern Artificial Intelligence, focuses on learning from data. This13

leads to a fundamentally different approach to model-building: we step back and focus on14

the design of algorithms capable of building models from data, but the models themselves15

are not designed by humans. This is even more true with deep learning, which requires16

little engineering by hand and is responsible for many of Artificial Intelligence’s spectacular17

successes [30]. In contrast to logic systems, knowledge from a deep learning model is diffi-18

cult to understand, reuse, and may involve up to a billion parameters [10]. On the other19

hand, probabilistic machine learning techniques such as deep learning offer an opportunity20

to tackle large complex problems that are out of the reach of traditional theory-making. It21

is possible that the more intuition-like [30] reasoning performed by deep learning systems22

is mostly incompatible with the logic formalism of mathematics. Yet recent studies have23

shown that deep learning can be useful to logic systems and vice versa. Success at unifying24

different paradigms of Artificial Intelligence from logic to probability theory offers unique25

opportunities to combine data-driven approaches with traditional theories. These advance-26

ments are susceptible to impact significantly biological sciences, where dimensionality is high27

and limit the investigation of traditional theories.28

1 A.I. and knowledge representation29

Science would greatly benefit from a unification of Artificial Intelligence with traditional30

mathematical theories. Modern research at the intersection of logic, probability theory, and31

fuzziness yielded rich representations increasingly capable of formalizing scientific knowledge.32

Such formal corpus could both include hand-crafted theories from Einstein’s e = mc2 to the33

Breeder’s equation [38], but also harness modern A.I. algorithms for testing and learning.34
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Figure 1: In his 1959’s “Programs with Common Sense”, McCarthy established the impor-
tance of separating knowledge and reasoning [34]. The knowledge base stores knowledge,
while the inference engine exploits it, along with evidence, to reach conclusions. McCarthy
believed the knowledge base should store rules in some form of predicate logic, but the idea
of separation of knowledge and reasoning holds with other representations as well (Bayesian
networks, detailed in figure 2, are probabilistic knowledge bases [11]). The dotted line rep-
resents automatic theory revision, where evidence is used not to a answer query but to
discover new knowledge or revise existing theories.

Comprehensive synthesis is difficult in fields like biology, which have not been reduced to35

a small set of formulas. For example, while we have a good idea of the underlying forces36

driving evolution, we struggle to build effective predictive models of molecular evolution37

[18]. This is likely because selection changes in time and space [4], which brings population,38

community, and ecosystem ecology into the mix. Ecology also has a porous frontier with39

evolution: speciation is a common theme in community ecology theory [12].40

From a theoretical perspective, work to formalize scientific theories would reveal much41

about the nature of our theories. Surely, scientific theories require more flexibility than42

mathematical corpora of knowledge, which are based on pure logic. From a practical stand-43

point, a formal representation both offers ways to test large corpora of knowledge and extend44

it with A.I. techniques. This is arguably the killer feature of a formal representation of sci-45

entific knowledge: allowing A.I. algorithms to search for revisions, extensions, and discover46

new rules. This is not a new ambition. Generic techniques for rule discovery were well-47

established in the 1990s [37]. Unfortunately, these techniques were based on pure logic, and48

purely probabilistic approaches to revision cannot handle mathematical theories. Recent49

experiences in linguistics has shown that building a knowledge base capable of handling50

several problems at the same time yielded better results than attacking the problem in iso-51

lation because of the problems’ interconnectedness [45]. Biology, as a complex field made52

of more-or-less arbitrary subfields, could gain important insights from unified approach to53

knowledge combining A.I. techniques with traditional mathematical theories.54

2 A quick tour of knowledge representations55

Deep learning is arguably the dominant approach in probabilistic machine learning, a branch56

of A.I. focused on learning models from data [17]. The idea of deep learning is to learn57

multiple levels of compositions. If we want to learn to classify images for instance, the first58
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layer of the deep learning network will read the input, the next layer will capture lines, the59

next layer will capture contours based on lines, and then more complex shapes based on60

contours, and so on [17]. In short, the layers of the network begin with simple concepts,61

and then compose more complicated concepts from simpler ones [5]. Deep learning has been62

used to solve complex computer science problems like playing Go at the expert level [41], but63

it is also used for more traditional scientific problems like finding good candidate molecules64

for drugs, predicting how changes in the genotype affect the phenotype [31], or just recently65

to solving the quantum many-body problem [9].66

In contrast, traditional scientific theories and models are mathematical, or logic-based.67

Einstein’s e = mc2 established a logical relationship between energy e, massm, and the speed68

of light c. This mathematical knowledge can be reused: in any equation with energy, we could69

replace e with mc2. This ability of mathematical theories to establish precise relationships70

between concepts, which can then be used as foundations for other theories, is fundamental71

to how science grows and forms an interconnected corpus of knowledge. Furthermore, these72

theories are compact and follow science’s tradition of preferring theories as simple as possible.73

There are many different foundations for logic systems. Predicate logic is a good starting74

point: it is based on predicates, which are functions of terms to a truth value. For example,75

the predicate PreyOn could take two species, a location, and return true if the first species76

preys on the second at that location, like PreyOn(Wolverine, Squirrel,Quebec). Terms77

are either constants such as 1, π, or Wolverine, variables that range over constants, such78

as x or species, or functions that map terms to terms, such as additions, multiplication,79

integration, differentiation. In e = mc2, the equal sign = is the predicate, e and m are80

variables, c and 2 are constants, and there are two functions: the multiplication of m by c281

and the the exponentiation of c by 2. The key point is that such formalism lets us describe82

compact theories and understand precisely how different concepts are related. Complex83

logic formulas are built by combining predicates with connectives such as negation ¬, “and”84

∧, “or” ∨, “implication” ⇒. We could have a rule to say that predation is asymmetrical85

sx 6= sy ∧ PreyOn(sx, sy, l)⇒ ¬PreyOn(sy, sx, l), or define the classical Lotka-Volterra:86

dx

dt
= αx− βxy ∧ dy

dt
= δxy − γy, (1)

where x and y are the population sizes of the prey and the predator, respectively, α,87

β, δ, γ are constants, and the time differential d/dt, multiplication and subtraction are88

functions. Equality (=) is the sole predicate in this formula. Both predicates are connected89

via ∧ (“and”). Not all logic formulas have mathematical functions. Simple logic rules such90

as Smoking(p)⇒ Cancer(p) (“smoking causes cancer”) are common in expert systems.91

Artificial Intelligence researchers have long being interested in logic systems capable92

of scientific discoveries, or simply capable of storing scientific and medical knowledge in93

a single coherent system (Figure 1). DENDRAL, arguably the first expert system, could94

form hypotheses to help identify new molecules using its knowledge of chemistry [32]. In95

the 1980s, MYCIN was used to diagnose blood infections (and did so more accurately than96

professionals) [8]. Both systems were based on logic, with MYCIN adding a “confidence97

factor” to its rules to model uncertainty. Other expert systems were based on probabilistic98

graphical models [27], a field that unites graph theory with probability theory to model the99

conditional dependence structure of random variables [27, 2]. For example, Munin had a100

network of more than 1000 nodes to analyze electromyographic data [14], while PathFinder101

assisted medical professional for the diagnostic of lymph-node pathologies [22] (Figure 2).102

While these systems performed well, they are both too simple to store generic scientific103
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P(M | C) = 0.21
P(M | ¬C) = 0.27

P(C) = 0.65

P(+ | L, C, M) = 0.50
P(+ | L, C, ¬M) = 0.38
P(+ | L, ¬C, M) = 0.42
P(+ | L, ¬C, ¬M) = 0.12
P(+ | ¬L, C, M) = 0.50
P(+ | ¬L, C, ¬M) = 0.38
P(+ | ¬L, ¬C, M) = 0.42
P(+ | ¬L, ¬C, ¬M) = 0.12

Med Lymph Cells

LLC Num

MLC Num

LLC+MLC > 50%

P(L) = 0.81

Figure 2: A Bayesian network with four binary variables and possible conditional probability
tables. These four nodes were taken from PathFinder, a Bayesian network with more than
1000 nodes used to help diagnose blood infections [22]. The nodes represent four variables
related to blood cells and are denoted by a single character (in bold in the figure): C,M,L,+.
All variables are binary, and negation is denoted with ¬. Since P (¬x|y) = 1 − P (x|y),
we need only 2|Pa(x)| parameters per nodes, with |Pa(x)| being the number of parents of
node x. The structure of Bayesian networks both highlights the conditional independence
assumptions of the distribution and reduces the number of parameters for learning and
inference. Example query: P (L,¬C,M,¬+) = P (L)P (¬C)P (M |¬C)P (¬ + |L,¬C,M) =
0.81× (1− 0.65)× 0.27× (1− 0.42) = 0.044. See [11] for a detailed treatment of Bayesian
networks and [27] for a more general reference on probabilistic graphical models.

knowledge and too static to truly unify Artificial Intelligence with scientific research. The104

ultimate goal is to have a representation rich enough to encode both logic-mathematical and105

probabilistic scientific knowledge.106

3 Beyond monolithic systems107

In terms of representation, expert systems generally used a simple logic system, not powerful108

enough to handle uncertainty, or purely probabilistic approaches unable to handle complex109

mathematical formulas. In terms of flexibility, the expert systems were hand-crafted by110

human experts. After the experts established either the logic formulas (for logic systems111

like DENDRAL) or probabilistic links (in the case of systems like Munin), the expert systems112

act as static knowledge bases, capable of answering queries but unable of discovering new113

rules and relationships. While no system has completely solved these problems yet, much114

energy has been put in unifying logic-based systems with probabilistic approaches [16]. Also,115

several algorithms have been developed to learn new logic rules [37], find the probabilistic116

structure in a domain with several variables [46], and even transfer knowledge between tasks117

[36]. Together, these discoveries bring us closer to the possibility of flexible knowledge bases118

contributed both by human experts and Artificial Intelligence algorithms. This has been119
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made possible in great part by efforts to unify three distinct languages: probability theory,120

predicate logic, and fuzzy logic (Fig 3).121

The core idea behind unified logic/probabilistic languages is that formulas can be weigh-122

ted, with higher values meaning we have greater certainty in the formula. In pure logic, it is123

impossible to violate a single formula. With weighted formulas, an assignment of concrete124

values to variables is only less likely if it violates formulas. The higher the weight of the125

formula violated, the less likely the assignment is. It is conjectured that all perfect numbers126

are even (∀x : Perfect(x) ⇒ Even(x)), if we were to find a single odd perfect number,127

that formula would be refuted. It makes sense for mathematics but for many disciplines,128

such as biology, important principles are only expected to be true most of the times. To129

illustrate, in ecology, predators generally have a larger body weight than their preys, which130

can expressed in predicate logic as PreyOn(predator, prey) ⇒ M(predator) > M(prey),131

with M(x) being the body mass of x. This is obviously false for some assignments, for132

example predator : greywolf and prey : moose. However, it is useful knowledge that133

underpins many ecological theories [44]. When our domain involves a great number of134

variables, we should expect useful rules and formulas that are not always true.135

The idea of weighted formulas is not new. Markov logic, invented a decade ago, allows136

for logic formulas to be weighted [39, 13]. It supports algorithms to add weights to existing137

formulas given a data-set, learn new formulas or revise existing ones, and answer probabilistic138

queries. For example, Yoshikawa et al. used Markov logic to understand how events in a139

document were time-related [45]. Their research is a good case study of interaction between140

traditional theory-making and artificial intelligence. The formulas they used as a starting141

point were well-established logic rules to understand temporal expressions. From there,142

they used Markov logic to weight the rules, adding enough flexibility to their system to beat143

the best approach of the time. Brouard et al. [7] used Markov logic to understand gene144

regulatory network, noting how the resulting model provided clear insights, in contrast to145

more traditional machine learning techniques. Expert systems can afford to make important146

sacrifices to flexibility in exchange for a simple representation. Yet, a system capable of147

representing a large body of scientific knowledge will require a great deal of flexibility to148

accommodate various theories. While a step in the right direction, even Markov logic may149

not be powerful enough.150

4 Case study: The niche model151

To show some of the difficulties of representing scientific knowledge, we will build a small152

knowledge base for an established ecological theory: the niche model of trophic interactions153

[44]. The first iteration of the niche model posits that all species are described by a niche154

position N (their body size for instance) in the [0, 1] interval, a diet D in the [0, N ] interval,155

and a range R such that a species preys on all species with a niche in the [D−R/2, D+R/2]156

interval. We can represent these ideas with three formulas:157

∀x, y : ¬PreyOn(x, y), (2a)
158

∀x : D(x) < N(x), (2b)
159

∀x, y : PreyOn(x, y)⇔ D(x)−R(x)/2 < N(y) ∧N(y) < D(x) +R(x)/2, (2c)

where ∀ reads for all and ⇔ is logical equivalence (it is true if and only if both sides160

of the operator have the same truth value, so for example False ⇔ False is true and161
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True ⇔ False is false). As pure logic, this knowledge base makes little sense. Formula162

2a is obviously not true all the time. It is mostly true, since most pairs of species do163

not interact. We could also add that cannibalism is rare ∀x : ¬PreyOn(x, y) and that164

predator-prey are generally asymmetrical ∀x, y : PreyOn(x, y)⇒ ¬PreyOn(y, x). In hybrid165

probabilistic/logic approaches like Markov logic, these formulas would have a weight that166

essentially defines a marginal probability [13, 25]. Formulas that are often wrong are assigned167

a lower weight but can still provide useful information about the system. The second formula168

says that the diet is smaller than the niche value. The last formula is the niche model: species169

x preys on y if and only if species y’s niche is within the diet interval of x.170

So far so good! Using Markov logic networks and a data-set, we could learn a weight171

for each formula in the knowledge base. This step alone is useful and provide insights into172

which formulas hold best. With the resulting weighted knowledge base, we could make173

probabilistic queries and even attempt to revise the theory automatically. We could find,174

for example, that the second rule does not apply to parasites or some group and get a revised175

rule such as ∀x : ¬Parasite(x) ⇒ D(x) < N(x). However, Markov logic networks struggle176

when the predicates cannot easily return a simple true-or-false truth values. For example,177

let’s say we wanted to express the idea that when populations are small and have plenty of178

resources, they grow exponentially [29].179

∀x, l, t : SmallP (x, l, t) and Resources(x, l, t)⇒ P (x, l, t+ 1) = G(x)× P (x, l, t), (3)

where P (x, l, t) is the population size of species x in location l at time t, G is the rate of180

growth, SmallP is whether the species has a small population and Resources whether it has181

resources available. The problem with hybrid probabilistic/logic approach is that predicates182

do not capture the inherent vagueness well. We can establish an arbitrary cutoff for what a183

small population is, for example by saying that if it is less than 10% the average population184

size for the species, it is small. Similarly, resource availability is not a binary thing, there185

is a world of grey between starvation and satiety. Perhaps worst of all, the prediction that186

P (x, l, t + 1) = G(x) × P (x, l, t) is almost certainly never be exactly true. If we predict 94187

rabbits and observe 93, the formula is false. Weighted formulas help us understand how188

often a rule is true, but in the end the formula has to give a binary truth value: true or189

false, there is no place for vagueness.190

Fuzzy sets and many-valued (“fuzzy”) logics were invented to handle vagueness [47, 24,191

6, 3]. In practice, it simply means that predicates can return any value in the [0, 1] closed192

interval instead of only true and false. It is used in both probabilistic soft logic [26, 1]193

and deep learning approaches to predicate logic [48, 23]. For our formula 3, SmallP could194

be defined as 1− P (x, l, t)/Pmax(x), where Pmax(x) is the largest observed population size195

for the species. Resources could take into account how many preys are available, and196

P (x, l, t+ 1) = G(x)×P (x, l, t) would return a truth value based on how close the observed197

population size is the predicted population size. Fuzzy logic then defines how operators such198

as and and ⇒ behave with fuzzy values.199

Both Markov logic networks and probabilistic soft logic define a probability distribution200

over logic formulas, but what about the large number of probabilistic models? For example,201

the niche model has a probabilistic counter-part defined as [43]:202

∀x, y : PPreyOn(x, y) = α× exp

[
−
(
N(y)−D(x)

R(x)/2

)2
]
, (4)
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where PPreyOn(x, y) is the probability that x preys on y. Again, this formula is prob-203

lematic in Markov logic because we cannot easily force the equality into a binary true-or-false,204

but fuzziness can help model the nuance of probabilistic predictions.205

5 Where’s our unreasonably effective paradigm?206

Wigner’s Unreasonable Effectiveness of Mathematics in the Natural Sciences led to impor-207

tant discussions about the relationship between physics and its main representation [42, 21].208

The Mizar Mathematical Library and the Coq library [33] host tens of thousands of math-209

ematical propositions to help build and test new proofs. In complex domains with many210

variables, Halevy et al. argued for the Unreasonable Effectiveness of Data [19], noting that211

simple algorithms, when fed large amount of data, would do wonder. High-dimensional212

problems like image imputation, where an algorithm has to fill missing parts from an image,213

require hundred of thousands of training images to be effective. Goodfellow et al. noted that214

roughly 10 000 data-points per possible labels were necessary to train deep neural networks215

[17]. These approaches are unsatisfactory for fields like biology where theories and prin-216

ciples are seldom exact. We cannot afford the pure logic-based knowledge representations217

favoured by mathematicians and physicists, and fitting a model to data is a different task218

than building a corpus of interconnected knowledge.219

Fortunately, we do not need to choose between mathematical theories, probabilistic mod-220

els, and learning. New inventions such as Markov logic networks and probabilistic soft logic221

are moving Artificial Intelligence toward rich representations capable of formalizing and222

even extending scientific theories. This is a great opportunity for synthesis. There are still223

problems: inference is often difficult in those rich representations. Recently, Garnelo et al.224

[15] designed a prototype to extract logic formulas from a deep learning system, while Hu225

et al. [23] created a framework to learn predicate logic rules using deep learning. Both226

studies used flexible fuzzy predicates and weighted formulas while exploiting deep learning’227

ability to model complex distributions via composition. The end result is a set of clear and228

concise weighted formulas supported by deep learning for scalable inference. The potential229

for science is important. Not only these new researches allow for deep learning to interact230

with traditional theories, but it opens many exciting possibilities, like the creation of large231

databases of scientific knowledge. The only thing stopping us from building a unified corpus232

of, say, ecological knowledge, is that normal pure-logic systems are too inflexible. They do233

not allow imperfect, partially-true theories, which are fundamental to many sciences. Recent234

developments in Artificial Intelligence make these corpora of scientific knowledge possible for235

complex domains, allowing us to combine a traditional approach to theory with the power236

of Artificial Intelligence.237

It is tempting to present deep learning as a threat to traditional theories. Yet, there is a238

real possibility that the union of Artificial Intelligence techniques with mathematical theories239

is not only possible, but would help the integration of knowledge across various disciplines.240

Otherwise, short of discovering a small set of elegant theories, what is our plan to combine241

ideas from ecosystem ecology, community ecology, population ecology, and evolution?242
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Uncertainty

probabilistic graphical models
(e.g. bayesian networks)

deep learning

Relations

Vagueness

many-valued ("fuzzy") logics

fuzzy probabilities
type-2 fuzzy logic

type-2 fuzzy markov networks

markov logic networks

predicate logic
(e.g first-order logic)

type theory

probabilistic soft logic fuzzy predicate logic
fuzzy type theory

Figure 3: Various reasoning languages and their ability to model uncertainty, vagueness, and
relations. The size of the rectangles has no meaning. In the blue rectangle: languages
capable of handling uncertainty. Probabilistic graphical models combine probability theory
with graph theory to represent complex distributions [27]. Deep learning is, strictly speak-
ing, more general than its usual probabilistic interpretation, but it is arguably the most
popular probabilistic Artificial Intelligence approach at the moment [17]. Alternatives to
probability theory for reasoning about uncertainty include possibility theory and Dempster-
Shafer belief functions, see [20] for an extended discussion. In the green rectangle: Fuzzy
logic extends standard logic by allowing truth values to be anywhere in the [0, 1] interval.
Fuzziness models vagueness and is particularly popular in linguistics, engineering, and bioin-
formatics, where complex concepts and measures tend to be vague by nature. See [28] for
a detailed comparison of probability and fuzziness. In the purple rectangle: relations,
as in: mathematical relations between objects. Even simple mathematical ideas, such as
the notion that all natural numbers have a successor (∀x∃y : y = x+ 1), requires relations.
Predicate and Relation are synonymous in this context. Alone, these reasoning languages
are not powerful enough to express scientific ideas. We must thus focus on what lies at their
intersection. Type-2 Fuzzy Logic is a fast-expanding [40] extension to fuzzy logic, which,
in a nutshell, models uncertainty by considering the truth value itself to be fuzzy [35, 49].
Markov logic networks [39, 13] extends predicate logic with weights to unify probability
theory with logic. Probabilistic soft logic [26, 1] also has formulas with weights, but allow
the predicates to be fuzzy, i.e. have truth values in the [0, 1] interval. Some recent deep
learning studies also combine all three aspects [15, 23].
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