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Abstract

Decoding the spatial organizations of chromosomes has crucial implications for study-

ing eukaryotic gene regulation. Recently, Chromosomal conformation capture based tech-

nologies, such as Hi-C, have been widely used to uncover the interaction frequencies

of genomic loci in high-throughput and genome-wide manner and provide new insights

into the folding of three-dimensional (3D) genome structure. In this paper, we develop

a novel manifold learning framework, called GEM (Genomic organization reconstructor

based on conformational Energy and Manifold learning), to elucidate the underlying 3D

spatial organizations of chromosomes from Hi-C data. Unlike previous chromatin struc-

ture reconstruction methods, which explicitly assume specific relationships between Hi-C

interaction frequencies and spatial distances between distal genomic loci, GEM is able

to reconstruct an ensemble of chromatin conformations by directly embedding the neigh-

boring affinities from Hi-C space into 3D Euclidean space based on a manifold learning
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strategy that considers both the fitness of Hi-C data and the biophysical feasibility of the

modeled structures, which are measured by the conformational energy derived from our

current biophysical knowledge about the 3D polymer model. Extensive validation tests on

both simulated interaction frequency data and experimental Hi-C data of yeast and human

demonstrated that GEM not only greatly outperformed other state-of-art modeling meth-

ods but also reconstructed accurate chromatin structures that agreed well with the hold-out

or independent Hi-C data and sparse geometric restraints derived from the previous fluo-

rescence in situ hybridization (FISH) studies. In addition, as GEM can generate accurate

spatial organizations of chromosomes by integrating both experimentally-derived spatial

contacts and conformational energy, we for the first time extended our modeling method

to recover long-range genomic interactions that are missing from the original Hi-C data.

All these results indicated that GEM can provide a physically and physiologically valid

3D representations of the organizations of chromosomes and thus serve as an effective and

useful genome structure reconstructor.

Introduction

The three-dimensional (3D) organizations of chromosomes in nucleus are closely related to

diverse genomic functions, such as transcription regulation, DNA replication and genome in-

tegrity [1–4]. Therefore, decoding the 3D genomic architecture has important implications in

revealing the underlying mechanisms of gene activities. Unfortunately, our current understand-

ing on the 3D genome folding and the related cellular functions still remains largely limited. In

recent years, the proximity ligation based chromosome conformation capture (3C) [5, 6], and

its extended methods, such as Hi-C [7] and chromatin interaction analysis by paired-end tag se-

quencing (ChIA-PET) [8], have provided a revolutionary tool to study the 3D organizations of
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chromosomes at different resolutions in various cell types, organisms and species by measuring

the interaction frequencies between genomic loci nearby in space.

To gain better mechanistic insights into understanding the 3D folding of the genome, it is

necessary to reconstruct the 3D spatial arrangements of chromosomes based on the interaction

frequencies derived from 3C-based data. Indeed, the modeling results of 3D genome structure

can shed light on the relationship between complex chromatin structure and its regulatory func-

tions in controlling genomic activities[1–4]. However, the modeling of 3D chromatin structure

is not a trivial task, as it is often complicated by uncertainty and sparsity in experimental data,

as well as high dynamics and stochasticity of chromatin structure itself. Generally speaking, in

the 3D genome structure modeling problem, we are given Hi-C data, which can be represented

by a matrix where each element represents the interaction frequency of a pair of genomic loci,

and our goal is to reconstruct the 3D organization of genome structure and obtain the 3D spa-

tial coordinates of all genomic loci. In practice, in addition to Hi-C data, additional known

constraints, such as shape and size of nucleus, can also be integrated to achieve more reliable

modeling results and further enhance the physical and biological relevance of the reconstructed

genomic structure [9, 10].

In recent years, numerous computational methods have been developed to reconstruct the

3D organizations of chromosomes [5, 7, 11–28]. Most of these approaches, such as the multi-

dimensional scaling (MDS) based method [29], ChromSDE [17], ShRec3D [18] and miniMDS

[27], heavily depended on the formula F ∝ 1/Dα to represent the conversion from interaction

frequencies F to spatial distances D (where α is a constant). Instead of using the above relation-

ship of inverse proportion, BACH [16] employed a Poisson distribution to define the relation

between Hi-C interaction frequencies, spatial distances and other genomic features (e.g., frag-

ment length, GC content and mappability score). After converting Hi-C interaction frequencies
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into distances, these previous modeling approaches applied various strategies to reconstruct

chromatin organizations that satisfy the derived distance constraints. Among them, the opti-

mization based methods, such as the MDS based model [29] and ChromSDE [17], formulated

the 3D chromatin structure modeling task into a multivariate optimization problem which aims

to maximize the agreement between the reconstructed structures and the distance constraints

derived from Hi-C interaction frequencies. More specifically, the MDS based method [29]

minimized a strain or stress functions [30] describing the level of violation in the input distance

constraints, while ChromSDE [17] used a semi-definite programming technique to elucidate

the 3D chromatin structures. In [19], an expectation-maximization based algorithm was pro-

posed to infer the 3D chromatin organizations under a Bayesian inference framework. Several

stochastic sampling based methods, such as Markov chain Monte Carlo (MCMC) and simulated

annealing [31], were also used in a probabilistic framework to compute chromatin structures

that satisfy the spatial distances derived from Hi-C data. In addition, a shortest-path algorithm

was used in ShRec3D [18] to interpolate the spatial distance matrix obtained from Hi-C data,

based on which the MDS algorithm was then applied to reconstruct the 3D coordinates of

genomic loci.

Despite the significant progress made in the methodology development of 3D chromatin

structure reconstruction, most of existing reconstruction methods still suffer from several lim-

itations. For example, few methods integrate the experimental Hi-C data with the previously

known biophysical energy model of 3D chromatin structure, raising potential concerns about

the biophysical feasibility and structural stability of the reconstructed 3D structures. More im-

portantly, as mentioned previously, most of existing chromatin structure modeling methods [5,

7, 11, 13, 15–24, 26, 27] heavily rely on the underlying assumptions about the explicit re-

lationships between interaction frequencies derived from 3C-based data and spatial distances

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2017. ; https://doi.org/10.1101/161208doi: bioRxiv preprint 

https://doi.org/10.1101/161208


between genomic loci, which may cause bias during the modeling process.

Recently, manifold learning, such as t-SNE [32], has been successfully applied as a general

framework for nonlinear dimensionality reduction in machine learning and pattern recogni-

tion [30, 33–35]. It aims to reconstruct the underlying low-dimensional manifolds from the

abstract representations in the high-dimensional space. In this work, to address the aforemen-

tioned issues in 3D chromatin structure reconstruction, we propose a novel manifold learning

based framework, called GEM (Genomic organization reconstructor based on conformational

Eenergy and Manifold learning), which directly embeds the neighboring affinities from Hi-C

space into 3D Euclidean space using an optimization process that considers both Hi-C data and

the conformational energy derived from our current biophysical knowledge about the polymer

model. From the perspective of manifold learning, the spatial organizations of chromosomes

can be interpreted as the geometry of manifolds in 3D Euclidean space. Here, the Hi-C inter-

action frequency data can be regarded as a specific representation of the neighboring affinities

reflecting the spatial arrangements of genomic loci, which is intrinsically determined by the

underlying manifolds embedded in Hi-C space. Based on this rationale, manifold learning can

be applied here to uncover the intrinsic 3D geometry of the underlying manifolds from Hi-C

data.

Our extensive tests on both simulated and experimental Hi-C data [7, 14] showed that GEM

greatly outperformed other state-of-start modeling methods, such as the MDS based model

[29], BACH [16], ChromSDE [17] and ShRec3D [18]. In addition, the 3D chromatin structures

generated by GEM were also consistent with the distance constrains driven from the previously

known fluorescence in situ hybridization (FISH) imaging studies [36, 37], which further vali-

dated the reliability of our method. More intriguingly, the GEM framework did not make any

explicit assumption on the relationship between interaction frequencies derived from Hi-C data

5

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2017. ; https://doi.org/10.1101/161208doi: bioRxiv preprint 

https://doi.org/10.1101/161208


and spatial distances between genomic loci, and instead it can accurately and objectively infer

the latent function between them by comparing the modeled structures with the original Hi-C

data.

Considering the dynamic nature of chromatin structures [2, 38, 39], we model the chro-

matin structures by an ensemble of conformations (i.e., multiple conformations with mixing

proportions) instead of a single conformation. Furthermore, as a novel extended application of

the GEM framework, we have introduced a structure-based approach to recover the long-range

genomic interactions missing in the original Hi-C data mainly due to experimental uncertainty.

We demonstrated this new application of our chromatin structure reconstruction method on both

Hi-C and capture Hi-C data, and showed that the recovered distal genomic contacts can be well

validated through different interaction frequency datasets or epigenetic features. The compe-

tence to recover the missing long-range genomic interactions not only offers a novel application

of GEM but also provides a strong evidence indicating that GEM can yield a physically and

physiologically reasonable representation of the 3D organizations of chromosomes.

Results

Overview of the GEM framework

We introduced a novel modeling method, called GEM (Genomic organization reconstructor

based on conformational Energy and Manifold learning), to reconstruct the three-dimensional

(3D) spatial organizations of chromosomes from the 3C-based interaction frequency data. In

our modeling framework, each chromatin structure is considered a linear polymer model, i.e., a

consecutive line consisting of individual genomic segments. In particular, each restriction site

cleaved by the restriction enzyme is abstracted as an end point (which we will also refer to as
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a node or genomic locus) of a genomic segment and the line connecting every two consecutive

end points represents the corresponding chromatin segment between two restriction sites. This

model has been widely used as an efficient and reasonably accurate model given the current

resolution of Hi-C data [15–19].

In the GEM pipeline (Fig. 1), we first model the input Hi-C interaction frequency data as

a representation of neighboring affinities between genomic loci in Hi-C space, and then con-

struct an interaction network (in which each edge indicates an interaction frequency between

two genomic loci) to reflect the organizations of chromosomes in Hi-C space. Our goal is to

embed the organizations of chromosomes from Hi-C space into 3D Euclidean space such that

the embedded structures preserve the neighborhood information of genomic loci, while also

maintaining the stable structures as possible (i.e., with the minimum conformational energy).

The meaningful spatial organizations of chromosomes can be interpreted as the geometry of

manifolds in 3D Euclidean space, while the Hi-C interaction frequency data, i.e., a specific

representation of the neighboring affinities reflecting the spatial arrangements of genomic loci,

which is intrinsically determined by the underlying manifolds embedded in Hi-C space. In-

spired by manifold learning (see “Methods” and Supplementary Fig. 1), GEM reconstructs

the chromatin structures by directly embedding the neighboring affinities from Hi-C space into

3D Euclidean space using an optimization process that considers both the fitness of Hi-C data

and the biophysical feasibility of the modeled structures measured in terms of conformational

energy (which is derived mainly based on our current biophysical knowledge about the 3D

polymer model). Unlike most of existing methods for modeling chromatin structures from Hi-

C data, GEM does not assume any specific relationship between Hi-C interaction frequencies

and spatial distances between genomic loci. On the other hand, such a latent relationship can

be inferred based on the input Hi-C data and the final structures modeled by GEM.
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We use ψi to represent the i-th genomic locus of the chromatin structure Ψ in Hi-C space.

Given two genomic loci ψi and ψ j, their neighboring affinity, denoted by pi j, is defined as

pi j =
fi j∑

i 6= j fi j
, (1)

where fi j stands for the interaction frequency between ψi and ψ j. Here, the neighboring affinity

represents the probability that two genomic loci are neighbor. The neighborhood of a genomic

locus thus can be featured by its neighboring affinities of this genomic locus. Here, we use the

normalized interaction frequencies instead of the raw count information, which is more robust

and happens to be the same as in t-SNE [32]. Inspired by the idea of t-SNE, we map the Hi-C

space representation of a chromosome, denoted by Ψ = {ψ1, ψ2, · · · , ψn} (where n is the total

number of genomic loci) into 3D Euclidean space to derive the final 3D chromatin structure,

denoted by S = {s1, s2, · · · , sn}, where si represents the coordinates of the i-th genomic locus in

3D Euclidean space, based on a neighboring affinity embedding process, which preserves the

neighborhood information of genomic loci in Hi-C space as much as possible. That is, if two

genomic loci are neighbor in Hi-C space, they would have a large probability of being neighbor

in 3D Euclidean space.

In the t-SNE framework, which is a typical model of manifold learning, a Student t-distribution

which generally has much heavier tails than Gaussian distribution is used to alleviate the

“crowding problem” (i.e., many close-by neighbors would be placed far off because of limited

room when arranging high-dimensional data into low-dimensional space) in the embedding

from high-dimensional to low-dimensional space [32]. In our chromatin structure modeling

problem, we use qi j to denote the probability that genomic loci si and s j pick each other as
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neighbors in 3D Euclidean space after embedding, which is defined as

qi j =
(1 + ‖si − s j‖

2)−1∑
k 6=l(1 + ‖sk − sl‖

2)−1
. (2)

where ‖·‖ stands for the Euclidean distance.

Chromatin can change dynamically in the nucleus especially during interphase. Thus un-

likely its structure can be accurately described by one single consensus conformation. In our

framework, we develop a multi-conformation version of the embedding approach to model an

ensemble of chromatin conformations. In particular, we use multiple 3D conformations with

mixing proportions instead of a single conformation to interpret the Hi-C data. Here, we rede-

fine the joint probability qi j as

qi j =

∑
m π

(m)(1 + ‖s(m)
i − s(m)

j ‖
2
)−1∑

k
∑

l 6=k
∑

m′ π
(m′)(1 + ‖s(m′)

k − s(m′)
l ‖

2
)−1
, (3)

where π(m) stands for the mixing proportion of the m-th conformation, and s(m) =
{
s(m)

1 , s(m)
2 , · · · , s(m)

n

}
represents the coordinates of the m-th conformation.

From the perspective of neighbor embedding [32, 40], if an ensemble of chromatin con-

formations in 3D Euclidean space, denoted by
{
(s(1), π(1)), (s(2), π(2)), · · · , (s(m), π(m))

}
, correctly

models the neighborhood system of Ψ in Hi-C space, the joint probabilities pi j and qi j should

match to each other. As in other t-SNE based learning tasks [41, 42], we minimize the

Kullback-Leibler divergence (KL divergence) to find a low-dimensional (3D Euclidean space

in our case) data representation that has the lowest degree of mismatch to the original Hi-C data

(which can be considered in high-dimensional space). We use Pi to denote the neighborhood

system of ψi in Hi-C space and Qi to denote the neighborhood system of si in 3D Euclidean

space. Moreover, we add a conformational energy term C2 (see “Methods”) to ensure that the
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modeled structures have high energy stability. That is, the overall cost function C is defined as

C = C1 + λEC2, (4)

C1 =
∑

i

KL(Pi‖Qi) =
∑

i

∑
j

pi j log
pi j

qi j
, (5)

C2 =
∑

m

π(m)E(m), (6)

where E(m) stands for the conformational energy of the m-th conformation in the ensemble

and λE stands for the coefficient that weighs the relative importance between the data term

representing the fitness of Hi-C data and the energy term. More details about the optimization

of the above cost function C can be found in “Methods”.

Taking a deeper look at C1, it is obvious that KL divergence is not symmetric [42]. From a

different perspective, log pi j

qi j
represents a mismatch term and pi j can be regarded as the weight-

ing factor of such a mismatch term. This observation means that, there is of relatively large

cost to use points far from each other (i.e., with small qi j) in 3D Euclidean space to represent

nearby genomic loci (i.e., with large pi j) in Hi-C space, while it is of relatively small cost to

use nearby points to represent two genomic loci far away in Hi-C space. In other words, GEM

aims to preserve local structure when mapping from Hi-C space into 3D Euclidean space. This

merit of retaining local structure particularly meets the requirement of 3D chromatin structure

modeling, as Hi-C data exactly reflect the topological properties of local structures of chromo-

somes. In addition, it is reasonable to associate pairs of genomic loci with higher interaction

frequencies with more confidence during the modeling process.
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Validation on simulated Hi-C data

We first validated the modeling performance of GEM on the simulated Hi-C data (see “Meth-

ods”). The simulated Hi-C data were then fed into GEM to reconstruct the chromatin structures.

We tested GEM on different simulated Hi-C maps which were generated by varying a wide

ranges of parameter settings during the simulation process (Fig. 2, Supplementary Figs 2-4).

Here, we evaluated the Pearson correlations between the distance matrices of our reconstructed

models and the original conformations that were used to generate the simulated data. We also

compared the modeling performance of GEM to that of three other reconstruction methods,

including the MDS based model [29], ChromSDE [17] and ShRec3D [18]. As our simula-

tion process did not consider the sequence content (e.g., GC content) of chromatin structures,

here we did not include BACH [16] in the comparison tests on simulated Hi-C data. All the

validation tests on synthetic Hi-C data generated by a variety of conditions showed that GEM

achieve the best modeling performance in terms of the closeness to the original structures that

were used to generate the simulated data (Fig. 2a, Supplementary Figs 2a, 3a and 4a).

Validation on experimental Hi-C data

We then evaluated the modeling performance of GEM on experimental Hi-C data [7, 14]. We

first used Pymol [43] to visualize the overall ensemble of the chromatin conformations recon-

structed by GEM, taking human chromosome 14 at a resolution of 1 Mb as an example (Fig.

3a). The modeled 3D organizations of chromosomes can provide a direct and vivid visualiza-

tion about the 3D spatial arrangements of chromosomes, which may offer useful mechanistic

insights about the 3D folding of chromatin structure and its functional roles in gene regu-

lation. Through simple visual inspection of the ensemble of four chromatin conformations

reconstructed by GEM (Fig. 3a), we observed that they displayed similar but not identical
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3D spatial organizations. In addition, we found that they are all organized into alike obvious

isolated regions that agreed well with those identified from the Hi-C map. Such consistency

of domain partition also suggested the reasonableness of the chromatin conformations recon-

structed by GEM. Also, the similar domain partitions of different conformations were consis-

tent with the previous studies [28, 44] that topological domains are hallmarks of chromosomal

conformations in despite of their dynamic structrual variability.

Next, we performed a 10-fold cross-validation procedure to assess the modeling perfor-

mance of GEM on experimental Hi-C data (see “Methods”). Our 10-fold cross-validation on

human Hi-C data demonstrated that GEM was able to reconstruct accurate 3D chromatin struc-

tures that agreed well with the hold-out test data. For example, the predicted Hi-C data of

human chromosome 14 inferred from the reconstructed conformations were consistent with the

original experimental Hi-C data, with the Pearson correlation above 0.93 (Fig. 3b-d).

We also conducted a mutual validation based on different Hi-C datasets collected from dis-

tinct experimental platforms. In particular, we chose two Hi-C datasets [7] that were collected

using two different restriction enzymes (i.e., HindIII vs. NcoI). These two datasets were fed

into GEM separately and their modeling results were then evaluated by cross examining the

correlations between the chromatin structures reconstructed from individual datasets. Such a

mutual validation indicated that GEM was able to elucidate accurate chromatin structures that

were consistent with the other independent dataset, achieving the Pearson correlations of dis-

tance matrices close or above 0.8 (Fig. 3e).

In the above cross-validation tests, we also compared the modeling results of GEM to those

of other existing methods, including the the MDS based model [29], BACH [16], ChromSDE

[17] and ShRec3D [18]. The comparisons demonstrated that GEM outperformed other four

modeling methods, in terms of the Pearson correlation between the reconstructed interaction
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frequency data and the original experimental Hi-C data (Fig. 3f). Here, the reconstructed Hi-C

maps for the other modeling methods were computed according to their hypothesis functions

(MDS based model, ChromSDE and ShRec3D) or distributions (BACH) on the relationships

between interaction frequencies and spatial distances between genomic loci. In addition, since

our method also considered the conformational energy term during the modeling process, its

reconstructed structures had significantly lower energy than those modeled by other four ap-

proaches (Fig. 3g), which implied that GEM can yield biophysically more reasonable spatial

representations of the observed Hi-C data.

Taking together, the above validation tests on experimental Hi-C data demonstrated that

GEM can outperform other existing modeling methods, and reconstruct an ensemble of more

accurate and biophysically more reasonable 3D organizations of chromosomes.

Validation on FISH data

In addition to the cross-validation tests on experimental Hi-C data, we also verified the mod-

eled chromatin structures using a sparse set of known pairwise distance constraints between

genomic loci driven by the FISH imaging technique (Fig. 4). In particular, we examined

the agreement between the chromatin structures reconstructed by GEM and the sparse FISH

distance constraints obtained from the previously known studies [7, 36, 37], which included

ARS603-ARS606, ARS606-ARS607, ARS607-ARS609 on yeast chromosome 6 and L1-L3,

L2-L3, L2-L4 on human chromosome 14 (Fig. 4). We compared the average distances between

genomic loci driven from the FISH imaging data and our reconstructed models. In addition,

we also analyzed the reasonableness of the pairwise spatial distances between genomic loci

predicted by GEM based on the relative sequence distances and corresponding compartmental-

ization information [7]. On yeast chromosome 6 (Fig. 4a), the reconstructed distance between
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ARS603 and ARS606 was relatively larger than those of other pairs, which was consistent with

the fact that the pair ARS603-ARS606 crosses two different compartments (A and B), while

the other two pairs (i.e., ARS606-ARS607 and ARS607-ARS609) are located within the same

compartment (B). In the same compartment (B), the reconstructed distance between ARS606

and ARS607 was less than that between genomic loci ARS607 and ARS609, suggesting that

a pair of genomic loci with small sequence distance preferentially stay close in space, which

was also consistent with the previous studies [5, 36]. On human chromosome 14 (Fig. 4b), the

reconstructed distance between genomic loci L1 and L3 was notably smaller than that between

L2 and L3, which agreed with the fact that, L2 and L3 are closer along the sequence but be-

long to different compartments (L2 in B and L3 in A), while L1 and L3 are further far away

along the sequence but belong to the same compartment (A). These validation results showed

that the chromatin structures modeled by GEM were in good agreement with the known pair-

wise distance constraints derived from FISH data in terms of both average spatial distances and

compartment partition, which further verified the modeling power of our method.

Analysis of the relationships between Hi-C interaction frequencies and

spatial distances

Most of existing chromatin structure modeling approaches assumed that there exists a specific

relationship between Hi-C interaction frequencies F and the corresponding spatial distances D

between genomic loci [5, 7, 11, 13, 15–24, 26, 27]. Many prevalent frameworks, such as the

MDS based method [29], ChromSDE [17], ShRec3D [18] and miniMDS [27], used the inverse

proportion formula F ∝ 1/Dα. The probability based method such as BACH [16] employed

Poisson distribution to represent the relationship between Hi-C interaction frequencies, dis-

tances and other genomic features (e.g., fragment length, GC content and mappability score).

14
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The modeling process of these approaches can be basically divided into two stages: First, the

Hi-C interaction frequencies were converted into spatial distances based on the specific as-

sumption on their relationships. Second, the 3D chromatin structures were modeled according

to the converted spatial distance constraints. If the specific forms of hypothetical functions or

distributions between interaction frequencies and spatial distances are not sufficiently accurate,

they will mislead the optimization process and cause bias during the modeling process. Thus,

the accuracy of the chromatin structures reconstructed by these methods heavily relied on the

assumed relationships between interaction frequencies and spatial distances.

Here, we argued that the specific assumptions about the relationships between Hi-C in-

teraction frequencies and spatial distances in most of previous chromatin structure modeling

approaches are not advisable, based on our tests on the simulated Hi-C data, in which the true

relationships between interaction frequencies and spatial distances were considered known and

thus can be used to examine all possible hypothetical functions defining their relationships.

First, the latent relationships between interaction frequencies and spatial distances can be af-

fected by various factors and tend to display different concrete forms despite their similar in-

verse proportion forms. In addition, the relationships are generally complex and it is usually

difficult to describe them by a consensus expression. As validated by the simulated Hi-C data

(Fig. 5), the latent functions between Hi-C interaction frequencies and spatial distances varied

on the simulated Hi-C data generated according to different conditions. Moreover, many pre-

vious modeling approaches [14–18] mainly focused on the reciprocal forms (e.g., F ∝ 1/Dα)

between interaction frequencies and spatial distances and ignored the proportional factor. Thus,

the final modeled structures were merely the scaled models of the true conformation conforma-

tions. To obtain the exact true structures, knowledge about the scaling factors was also required

in these modeling methods.
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To overcome the aforementioned drawbacks in the previous chromatin structure modeling

methods, we developed a novel manifold learning based framework to reconstruct the 3D spa-

tial organizations of chromatin that does not require any pre-assumed relationship or function

between Hi-C interaction frequencies and spatial distances (Fig. 1). In particular, we directly

obtained the 3D chromatin structures by embedding the neighboring affinities from Hi-C space

into 3D Euclidean space through a manifold learning based strategy (see “Methods”). In ad-

dition, by taking both the fitness of Hi-C data and the structure stability measured in terms

of conformational energy into consideration during the embedding process, the reconstructed

chromatin structures can also hold the true scale.

By comparing the modeled structures with the original Hi-C data (as shown in the dashed

box in Fig. 1), GEM can also infer the latent relationships between interaction frequencies and

spatial distances. We used the tests on simulated Hi-C data to demonstrate this point. Specif-

ically, the plotted scatters between the simulated Hi-C interaction frequencies and the spatial

distances derived from our modeled structures showed that there existed a certain function

between them, which was roughly in a reciprocal form that had been widely accepted in the

literature of chromatin structure modeling [7, 15, 45]. We further estimated the latent functions

in more detail by curve fitting into the scatter plots (which is implemented by finding the proper

function forms and parameters with the lowest RMSEs to interpret the scatters; Fig. 5). The

comparisons showed that our derived expressions were much closer to the real functions (which

can be obtained from the simulated Hi-C data) between Hi-C interaction frequencies and spa-

tial distances than the specific inverse proportion formulas assumed in the previous modeling

approaches, including the MDS based model [29], ShRec3D [18] and ChromSDE [17] (Fig. 5).

These results suggested that GEM can accurately capture the latent relationships between Hi-C

interaction frequencies and spatial distances without making any specific assumption on the
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specific forms of their inverse proportion relationships during the structure modeling process.

Next, we analyzed the derived relationships between Hi-C interaction frequencies and spa-

tial distances reconstructed by GEM on experimental Hi-C data (Fig. 6). Indeed, there existed a

certain inverse proportion function between the experimental Hi-C interaction frequencies and

the reconstructed spatial distances, which can be confirmed by the goodness of the fitting re-

sults measured by the root-mean-square errors (RMSEs). In addition, our investigation showed

that chromatin structures from different chromosomes, at different resolutions or from different

species can display distinct inverse proportion forms defining the relationships between Hi-C

interaction frequencies and reconstructed spatial distances. This result further implied that it

would be generally unadvisable to assume the existence of a single consensus expression for

the relationships between Hi-C interaction frequencies and spatial distances between genomic

loci.

Application of the modeled chromatin structures to recover missing long-

range genomic interactions

Most of previous studies mainly used the 3D chromatin structures reconstructed from Hi-C

data to visualize and inspect the topological and spatial arrangements among different genomic

regions [5, 7, 11–28]. The modeled chromatin structures were rarely applied to expand the

geometric constraints derived from the original experimental Hi-C data. On the other hand,

due to experimental uncertainty, Hi-C data may miss a certain number of long-range genomic

interactions or contain extra noisy spatial contacts between distal genomic loci. Nevertheless,

the long-range spatial contacts derived from current Hi-C data are generally able to provide

a sufficient number of geometric restraints to reconstruct accurate 3D scaffolds of chromo-

somes. In addition, the conformational energy incorporated in our modeling framework can
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provide an extra type of restraints to infer biophysically stable and reasonable chromatin struc-

tures. For example, conformational energy can provide useful information about the stretching

and bending conditions of the chromatin fibres. Thus, the 3D chromatin scaffolds derived by

GEM can provide accurate chromatin structure templates to recover those long-range genomic

interactions that were missing in the original Hi-C map. This potential application can also

be supported by the previous excellent validation results of GEM (Fig. 3). For example, the

10-fold cross-validation results showed that the reconstructed Hi-C map inferred from the re-

constructed conformations derived by GEM was consistent with the hold-out dataset in the

original experimental data (Fig. 3b-d), which basically indicated that the reconstructed struc-

tures can also be used to restore the missing long-range genomic interactions from the original

input Hi-C data. Also, the additional validation tests on cross-platform Hi-C data demonstrated

that the 3D chromatin conformations reconstructed by GEM from one Hi-C dataset can fit well

into another independent dataset (Fig. 3e).

We further used the tests on the Hi-C data [46] collected from different replicates or plat-

forms to demonstrate the potential application of GEM in the recovery of the missing long-

range genomic interactions in the original Hi-C map. We first fed the Hi-C data of one replicate

into GEM and then used the Hi-C map from the other replicate to validate the missing loops

indicated by the modeled chromatin structures. In particular, we looked into the fraction of

missing distal chromatin loops that can be validated through another independent dataset. We

found that the missing chromatin loops detected by GEM exhibited much closer spatial con-

tacts than the background (i.e., all the reconstructed distances; rank sum test, P < 1 × 10−23;

Fig. 7a,b). In addition, the distributions of the reconstructed distances of missing and known

loops (which were present in the Hi-C data of current replicate) were actually close to each

other, with the probability plot correlation coefficients above 0.97 (Fig. 7a,b). These observa-
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tions implies that the missing chromatin loops in Hi-C maps can be potentially restored by the

chromatin structures modeled by GEM.

We also applied the chromatin structures reconstructed by GEM to detect the missing

promoter-promoter or promoter-enhancer contacts based on the promoter-other contact map

derived from the capture Hi-C technique, a recently developed experimental method to identify

promoter-containing chromosome interactions at the restriction fragment level [47]. In capture

Hi-C experiments, typically two types of long-range genomic interactions can be observed,

i.e., promoter-promoter contacts and promoter-other contacts, depending on whether both ends

of the DNA fragments are captured by the promoter regions in the genome. In general, the

promoter-other contacts dominate the total number of the interaction frequencies detected by

capture Hi-C. Here, we fed all the promoter-other contacts derived from the capture Hi-C data

[47] into GEM, and then used the independent Hi-C datasets including conventional Hi-C data

[46] and promoter-promoter contacts which were also derived from capture Hi-C experiments

[47], to validate those missing long-range genomic contacts recovered by the reconstructed

structures. Considering that the distal genomic contacts with more interaction frequencies in

Hi-C maps tend to reflect the topological properties of genomic structures with more confi-

dence, here we mainly examined the top 5, 25 and 50 missing promoter-promoter contacts with

the highest interaction frequencies in the validation Hi-C data (Fig. 7c,d). In addition, we used

the promoter-enhancer contacts identified by PSYCHIC [48] from the conventional Hi-C data

[46] to verify the missing distal contacts indicated from the reconstructed structures(Fig. 3e).

Our analysis results showed that these recovered promoter-promoter interactions displayed sig-

nificantly shorter spatial distances than the background of all reconstructed spatial distances

(Fig. 7c-e; rank sum test, P < 5 × 10−4). These results indicated that GEM can be potentially

applied to recover the missing long-range genomic interactions caused by the sparsity of the
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capture Hi-C data.

Careful examination of these missing loops indicated that they were of comparable biolog-

ical importance to those known chromatin loops, and can also be well supported by the known

evidence derived from available chromatin features. For example, the two missing chromatin

loops involving promoter-enhancer and promoter-promoter interactions were also consistent

with different epigenetic profiles, including chromatin accessibility and histone modification

markers H3k27ac, H3k4me3 and H3k4me1 (Fig. 7f,g). In addition, we observed a similar

level of the enrichment of functional elements (e.g., H3K27ac, H3k4me3 and H3k4me1 sig-

nals, DNA accessible regions, annotated promoter and enhancer regions) in both missing and

known chromatin loops (Supplementary Table 1). All these results also demonstrated that the

chromatin conformations reconstructed by GEM can provide useful structural templates to re-

cover those missing long-range genomic interactions from the original Hi-C data.

Discussion and Conclusions

In this work, we have developed a novel manifold learning based framework, called GEM, to

reconstruct the 3D spatial organizations of chromosomes from Hi-C interaction frequency data.

Under our framework, the 3D chromatin structures can be obtained by directly embedding the

neighboring affinities from Hi-C space into 3D Euclidean space, and integrating both Hi-C data

and conformational energy. Extensive validations on both simulated and experimental Hi-C

data of yeast and human demonstrated that GEM can provide an accurate and robust modeling

tool to derive a physically and physiologically reasonable 3D representations of chromosomes.

To our best knowledge, our work is the first attempt to exploit the chromatin structure mod-

eling methods to recover long-range genomic interactions that are missing from original Hi-C

data. Here, The ability to recover the missing long-range genomic interactions not only demon-

20

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2017. ; https://doi.org/10.1101/161208doi: bioRxiv preprint 

https://doi.org/10.1101/161208


strated a novel extended application of GEM but also provided a strong evidence corroborating

the superiority of GEM in terms of physical and physiological reasonability.

Similar to many other computational methods for modeling 3D chromatin structures from

interaction frequency data, GEM also faces several technical challenges, e.g., parameter se-

lection and computational efficiency. In GEM, only one parameter (i.e., the coefficient of the

energy term λE) need to be chosen for an input Hi-C dataset. It can be determined by an au-

tomatic parameter tuning method employed in our framework (see “Methods”). In practise,

due to the robustness of GEM, the default setting for this parameter often works well for most

occasions, which can save the running time required in parameter selection. Considering that

GEM takes a multi-conformation optimization strategy which is usually a time-consuming pro-

cess, we suggest using a small number of conformations in the ensemble for those tasks with

relatively large datasets (e.g., high-resolution Hi-C data) or applications that pay less attention

to structural diversity of chromatin structures (e.g., recovery of missing long-range genomic in-

teractions). In principle, more parallel computational schemes can also be employed to further

accelerate the optimization process.

Methods

Manifold learning framework

Recently, manifold learning, such as t-SNE [32], has been successfully applied as a general

framework for nonlinear dimensionality reduction in machine learning and pattern recognition

[30, 33–35]. It aims to reconstruct the underlying low-dimensional manifolds from the abstract

representations in the high-dimensional space, that is, it uncovers the intrinsic low-dimensional

manifolds which preserve the local neighbourhoods of high-dimensional data (Supplementary
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Fig. 1).

In practice, many high-dimensional data of interest lie on the structures that are intrinsically

embedded from a low-dimensional manifold. For example, in computer vision, images of

faces can be regarded as points in a high-dimensional vector space, in which each dimension

corresponds to the brightness of every pixel in the image. All the images can be considered to lie

on an intrinsic 3D manifold parameterized by two pose variables and and an azimuthal lighting

orientation angle [34]. In our chromatin structure modeling problem, the meaningful spatial

organizations of chromosomes can be interpreted as the geometry of manifolds in 3D Euclidean

space. The Hi-C interaction frequency data can be regarded as a specific representation of the

neighboring affinities reflecting the spatial arrangements of genomic loci, which is intrinsically

determined by the underlying manifolds embedded in Hi-C space. Thus, manifold learning can

be used here to uncover the meaningful geometry of manifolds in low-dimensional space based

on a process of neighborhood embedding, which preserves the local neighborhood of genomic

loci in Hi-C space.

Modeling the conformational energy of chromatin structures

According to our known biophysical knowledge of a polymer model [49–51], the physical

potential of a chromatin conformation can be described by an energy function E(m) consisting of

three terms, including the stretching energy Estretch, the bending energy Ebend and the excluding

energy Eexclude, that is,

E(m) = E(m)
stretch + E(m)

bend + E(m)
exclude. (7)

First, the stretching energy term Estretch accounts for the stretching resistance of chromatin
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fibers, which is defined by the following equation

E(m)
stretch =

n−1∑
i=1

1
2

ks(‖s
(m)
i+1 − s(m)

i ‖−li)2, (8)

where ks stands for the spring constant characterizing the chromatin stiffness, and li stands for

the equilibrium length of the i-th segment in the modeled chromatin structure. Since the se-

quence length for each pair of adjacent genomic loci is known, their corresponding distance li

can be generally derived based on the packing density, which is usually assigned with 130bp/nm

[36, 52] in approximate 10 kb resolution and can be computed based on a 1/3 power-law re-

lationship between spatial distances and corresponding genomic distances in other resolutions

(which can be derived mainly based on the 3D FISH data [13] or the fractal globule model

[53]).

Second, the bending energy term Ebend accounts for the bending potential of chromatin

fibers [54], which is defined by the following equation,

E(m)
bend =

n−1∑
i=2

1
2

kθ
〈
s(m)

i+1 − s(m)
i , s(m)

i − s(m)
i−1

〉2
, (9)

where kθ denotes the bending constant and 〈·〉 denotes the angle between two adjacent segments.

Third, the excluding energy term Estretch accounts for the inter-particle repulsive potential.

It takes the form of the repulsive part of the Lennard-Jones potential [55, 56], that is,

E(m)
exclude =


∑

2≤i+1≤ j≤n

4ε


 d0

d(m)
i j


12

−

 d0

d(m)
i j


6

+
1
4

 , d(m)
i j < 2

1
6 d0;

0, otherwise,

(10)

where d(m)
i j = ‖s(m)

i − s(m)
j ‖ stands for the Euclidean distance between s(m)

i and s(m)
j , ε is a Lennard-

23

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2017. ; https://doi.org/10.1101/161208doi: bioRxiv preprint 

https://doi.org/10.1101/161208


Jones energy parameter, and d0 is the distance threshold within which the repulsive force is

zero.

Optimization of the objective function

We use gradient descent to minimize C in Equation (4). In particular, the gradient of C is

calculated as follows

∂C

∂s(m)
i

=
∂C1

∂s(m)
i

+ λEπ
(m)∂E(m)

∂s(m)
i

, (11)

∂C
∂π(m) =

∂C1

∂π(m) + λEE(m). (12)

The gradient of C1 with respect to the coordinates s(m)
i in 3D Euclidean space is given by

∂C1

∂s(m)
i

= 4
∑

j

∂C1

∂d(m)
i j

(s(m)
i − s(m)

j ), (13)

where d(m)
i j stands for the Euclidean distance between s(m)

i and s(m)
j , and

∂C1

∂d(m)
i j

=
π(m)(pi j − qi j)(1 + d(m)

i j )−2

qi jZ
, (14)

Z =
∑

k

∑
l 6=k

∑
m′
π(m′)(1 + ‖s(m′)

k − s(m′)
l ‖

2
)−1. (15)

From the term (1+d(m)
i j )−2 in the above gradient, we can also see that two neighboring nodes are

not likely to be modeled by widely separated points. Also, π(m) is defined as follows to satisfy

the definition of probability, that is,

π(m) =
e−w(m)∑
m′ e−w(m′)

. (16)
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Then we can obtain a new version of the gradient

∂C1

∂w(m) = π(m)

∑
m′
π(m′) ∂C1

∂π(m′)

 − ∂C1

∂π(m)

 , (17)

where

∂C1

∂π(m) =
∑

k

∑
l 6=k

(qkl − pkl)(1 + d(m)
kl )−1

qklZ
. (18)

The gradient of E(m) with respect to s(m)
i includes three parts, that is,

∂E(m)

∂s(m)
i

=
∂E(m)

stretch

∂s(m)
i

+
∂E(m)

bend

∂s(m)
i

+
∂E(m)

exclude

∂s(m)
i

. (19)

The first part is given by

∂E(m)
stretch

∂s(m)
i

=



(G11 + G12), i = 2, · · · , n − 1;

G11, i = 1;

G12, i = n,

(20)

where

G11 = −ks(‖∆s(m)
i ‖−li)

∆s(m)
i

‖∆s(m)
i ‖

, (21)

G12 = ks(‖∆s(m)
i−1‖−li−1)

∆s(m)
i−1

‖∆s(m)
i−1‖

, (22)

∆s(m)
i = s(m)

i+1 − s(m)
i . (23)
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The second part is given by

∂E(m)
bend

∂s(m)
i

=



(G21 + G22 + G23), i = 3, · · · , n − 2;

G23, i = 1;

G21 + G23, i = 2;

G21 + G22, i = n − 1;

G22, i = n,

(24)

where

G21 =

kθ arccos ∆s(m)
i ∆s(m)

i−1

‖∆s(m)
i ‖‖∆s(m)

i−1‖√
‖∆s(m)

i ‖
2
‖∆s(m)

i−1‖
2
− (∆s(m)

i ∆s(m)
i−1)2

·

∆s(m)
i − ∆s(m)

i−1 +
∆s(m)

i ∆s(m)
i−1

‖∆s(m)
i ‖

2 ∆s(m)
i −

∆s(m)
i ∆s(m)

i−1

‖∆s(m)
i−1‖

2 ∆s(m)
i−1

 ,
(25)

G22 =

kθ arccos ∆s(m)
i−1∆s(m)

i−2

‖∆s(m)
i−1‖‖∆s(m)

i−2‖√
‖∆s(m)

i−1‖
2
‖∆s(m)

i−2‖
2
− (∆s(m)

i−1∆s(m)
i−2)2

∆s(m)
i−2 −

∆s(m)
i−1∆s(m)

i−2

‖∆s(m)
i−1‖

2 ∆s(m)
i−1

 , (26)

G23 =

kθ arccos ∆s(m)
i+1∆s(m)

i

‖∆s(m)
i+1‖‖∆s(m)

i ‖√
‖∆s(m)

i+1‖
2
‖∆s(m)

i ‖
2
− (∆s(m)

i+1∆s(m)
i )2

−∆s(m)
i+1 +

∆s(m)
i+1∆s(m)

i

‖∆s(m)
i ‖

2 ∆s(m)
i

 . (27)

The third part is given by

∂E(m)
exclude

∂s(m)
i

=


∑

1≤ j≤n

24ε

−2d12
0

s(m)
i − s(m)

j

d(m)
i j

14 + d6
0

s(m)
i − s(m)

j

d(m)
i j

8

, d(m)
i j < 2

1
6 d0 & i 6= j;

0, otherwise.

(28)

Based on the above derivations, we can develop an adaptive gradient descent method to

solve the optimization problem in Equation (4). In particular, the learning rates for π(m) and

s(m)
i can be changed constantly during different stages to accelerate the optimization process.

However, there may exist a “sinking” problem in such an optimization strategy, if the random
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initialization process leads to a huge difference of goodness between a pair of conformations.

In such a case, if the learning rate for π(m) is too large, π(m) of those structures that deviated

largely from random initialization will sink at zero rapidly, and these conformations will not

be considered during the downstream optimization process, mainly due to the vanishing gradi-

ent, although they can still converge to proper solutions if a sufficient number of optimization

iterations are performed.

To address this problem, we could employ two strategies during the optimization process,

i.e., two-stage optimization and asynchronous starting. The first strategy is to divide the whole

optimization procedure into two stages, including average-structure optimization and multi-

conformation optimization. In particular, we first compute an average structure using a single-

conformation version of GEM. Then, this average structure is used as an initial structure for

the second-stage optimization, which is accomplished through a multi-conformation version of

GEM. Initialization from such a pre-computed structure that is not so far away the final solution

provides a beneficial guidance for optimization. More importantly, the goodness scores of the

initial conformations in the second-stage optimization do not has extremely large variance,

which thus can prevent the aforementioned sinking problem. The second strategy that we

could use is to delay the update of the learning rates of π(m) in the second-stage optimization

if the goodness scores of the initial conformations remain considerably different. Under such

a strategy, it is unlikely that the sinking problem will occur, after a number of iteration steps

to optimize the conformations with relatively fixed weights. In practice, we found that the first

strategy is often sufficient enough to prevent the sinking problem.
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The convergence and parameter selection of GEM

We examined the convergence of the optimization procedure employed in GEM, which is a two-

stage optimization scheme including average-structure optimization and multi-conformation

optimization. As shown in Supplementary Fig. 5a, both optimization stages converged suc-

cessfully. In the first optimization stage, which aimed at computing the average structure, the

cost function descended rapidly at the beginning. After 2000 iterations, the cost function began

to converge, indicating a stable average structure was reached. After that, the second opti-

mization stage was performed to obtain multiple conformations. Probably because the average

structure had been determined, the cost function only descended slightly in this stage. Overall,

the second optimization stage converged after approximate 20000 iterations.

In our model, the only parameter, the coefficient of the energy term λE, determines a trade-

off between the fitness of the spatial constraint derived from Hi-C data and structural feasibility

measured in terms of conformational energy. The parameter λE can be decided by the users

according to their emphasized aspects. Alternatively, this parameter can be determined by the

following two automatic methods.

First, inspired by previous studies [19, 21, 57], we can use a Bayesian approach to determine

the proper value of the coefficient of the energy term, λE, based on extra priori knowledge, such

as the volume of a chromosome obtained by direct experimental observations or estimated by

indirect experimental observations (e.g., DNA density [58]). The goal is to select a proper

value of λE that best interprets both the input Hi-C data and the observation about the volume

of a chromosome. The posterior probability Pr(λE |H,V) of the coefficient λE given Hi-C data
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H and the volume of a chromosome V can be derived according to Bayes’ theorem, i.e.,

Pr(λE |H,V) =
Pr(H,V |λE) Pr(λE)

Pr(H,V)
=

Pr(H|λE) Pr(V |λE) Pr(λE)
Pr(H) Pr(V)

∝ Pr(H|λE) Pr(V |λE) Pr(λE).

(29)

Based on the maximum a posteriori estimation of λE, we define a Bayesian score to evaluate

the parameter λE for our model. We assume that the prior distribution of λE is uniform, and

thus Pr(λE) can be considered constant and is not necessary to be included in the Bayesian

score. The final optimized value of the KL divergence C1 mentioned in Equation (4), which is

dependent on λE during the optimization process, measures the degree of mismatch (ranging

from 0 to 1) between structures calculated with λE and the Hi-C data. Here, we use 1 − C1

to define Pr(H|λE). In addition, the mismatch between the volume of a computed structure v′

(which is also dependent on λE) and its real volume v can be measured by the relative error

ratio. Here, we use the inverse of this relative error ratio to define Pr(V |λE). To sum up, the

Bayesian score is defined as,

Bayesian score = Pr(λE |H,V)

= Pr(H|λE) Pr(V |λE) Pr(λE)

∝ (1 −C1)(
v

|v − v′|
).

(30)

Second, if we do not have any priori knowledge, we can transform the parameter selection

into a multi-criteria decision problem and use TOPSIS [59] to obtain the best estimate of pa-

rameter λE. In this setting, each value of different λE is regarded as a decision that is evaluated

by two criteria C1 and C2.

In our study, we employed the Bayesian approach to perform parameter selection. We

computed the Bayesian scores with respect to a wide range of the coefficient of energy term
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λE (Supplementary Fig. 5b) and then chose λE = 5 × 10−12 which had the maximum Bayesian

score, as the most reasonable parameter for human chromosome 14 (which is marked by the

orange dashed line in Supplementary Fig. 5b). In practice, we only need to select a rough

range for λE because in general the changes of λE within the same order of magnitude have

little influence on the performance of our model, measured by the Pearson correlation between

experimental and reconstructed Hi-C data in the 10-fold cross-validation procedure (Supple-

mentary Fig. 5c).

Generation of simulated Hi-C data

The simulated Hi-C data were generated according to the following procedure. At the be-

ginning, we applied the Brownian simulation method to generate a set of random chromatin

conformations, each of which imitated a real chromatin conformation in Hi-C experiments.

Let Nc denote the total number of cells. Then we mimicked the experimental Hi-C protocol

to obtain the simulated Hi-C interaction frequency map. First, the restricted sites along the

synthetic chromatin conformations were chosen randomly and then cleaved by the restriction

enzymes. Second, as in the study by Trussart et al. [20], we used a Gaussian process to generate

the genomic interactions between restriction sites. In particular, let Pm and σ denote the scaling

factor (i.e., the maximum interaction probability) and the standard deviation of the Gaussian

function describing the relationship between the probability of generating the interaction and

the spatial distance between a pair of genomic loci. Due to experimental uncertainty, not all the

interactions between restriction sites can be captured by Hi-C experiments. Here, we used the

trapping rate αt to model such experimental uncertainty, this is, with probability αt, an occurred

interaction is observed between restriction sites, otherwise it is missed with probability 1 − αt.

Overall, the simulation process for generating a synthetic interaction frequency dataset can be
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determined by parameters (αt, Pm, σ,Nc).

The 10-fold cross-validation procedure

The Hi-C data of a chromosome were randomly divided into 10 roughly equal-sized subsets.

Nine of them were selected as training data and input into GEM to compute the chromatin

structures. Based on the latent function between interaction frequencies and spatial distances

between genomic loci derived by GEM (see the dashed box in Fig. 1), the modeled chromatin

structures can also be used to obtain the reconstructed or predicted Hi-C map. Then the re-

maining subset was held as test data to assess the accuracy of the modeled conformations by

comparing the original Hi-C map to the reconstructed Hi-C map. Such a process was performed

10 folds, and the average result was used to evaluate the final modeling performance.

Data availability

The GEM model and the analysis data files can be downloaded from https://github.

com/mlcb-thu/GEM. The Hi-C data of yeast can be downloaded from Duan et al. [14]

(http://noble.gs.washington.edu/proj/yeast-architecture/sup.html). The Hi-

C data of human used for model validation can be downloaded from NCBI GEO GSE18199

[7] (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18199) and NCBI

GEO GSE48262 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48262),

and the normalized version can be downloaded from Yaffe et al. [60] (http://compgenomics.

weizmann.ac.il/tanay/?page_id=283). The Hi-C data and capture Hi-C data of human

used for the recovery test are available in NCBI GEO GSE63525 (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE63525) and ArrayExpress E-MTAB-2323 (http:

//www.ebi.ac.uk/arrayexpress/files/E-MTAB-2323/), respectively.
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Figure 1: A schematic illustration of the GEM pipeline. The genomic loci A, B, C and D
are selected as an example to demonstrate our pipeline. We first build up an interaction net-
work from the input Hi-C data to represent the organizations of chromatin structures in Hi-C
space. In this interaction network, each node represents a genomic loci and each edge rep-
resents a pairwise interaction describing the neighbouring affinity between genomic loci in
Hi-C space. Based on an optimization that considers both the KL divergence between
experimental and reconstructed Hi-C data and the conformational energy, the interaction
network is then embedded into 3D Euclidean space to reconstruct the 3D chromatin struc-
tures. During the embedding process, we first calculate an average conformation as an
initial structure, and then refine the initial structure to obtain an ensemble of conformations
through a multi-conformation optimization technique (see “Methods”). Finally, we can infer
the latent function between Hi-C interaction frequencies and spatial distances between ge-
nomic loci based on the input interaction frequency matrix and the output spatial distance
matrix derived from GEM (shown in the dashed box). Neighbouring probability, NP(B), in
the figure represents the probability of the spatial interaction between current genomic and
genomic locus B.
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Figure 2: The validation results on the simulated Hi-C data, which were generated
according to different settings of the trapping rate αt (see “Methods”). (a) The com-
parisons of Pearson correlations between GEM and other modeling methods, including the
MDS based model [29], ChromSDE [17] and ShRec3D [18]. (b) and (c) show the typical
examples of the simulated Hi-C maps and the corresponding distributions of the recon-
structed interaction frequencies as αt increases, respectively.
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Figure 3: The chromatin structure modeling results on human chromosomes under
1 Mb resolution. (a) Visualization of the computed ensemble of human chromosome 14.
The four conformations

{
s(1), s(2), s(3), s(4)

}
in the derived ensemble are shown in red, blue,

green and orange, respectively. The middle shows the superimposition of all four confor-
mations, which were all aligned using the singular value decomposition (SVD) algorithm
[61]. The three large isolated regions (α, β, γ) which can be facilely distinguished from
the reconstructed 3D conformations were consistent well with those detected based on the
original Hi-C map (see Panel c). (b) The 10-fold cross-validation results for human chromo-
some 14, in which the scatter plot of the reconstructed Hi-C data derived from the modeled
structures vs. the original Hi-C data is shown. (c,d) The original interaction frequency
map derived from experimental Hi-C data and the reconstructed Hi-C map predicted by the
modeled structures for human chromosome 14 in the 10-fold cross-validation results, re-
spectively. (e) Bar graph depicting mutual validation by two sets of experimental Hi-C data
for individual 23 human chromosomes, which were collected using two different restriction
enzymes (i.e., HindIII vs. NcoI), respectively. (f,g) Comparison results between different
modeling methods, in terms of the agreement between experimental and predicted Hi-C
data and the conformational energy, respectively.
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Figure 4: The validation results on the known pairwise distance constraints derived
from the FISH imaging data of yeast and human. Top shows the schematic illustra-
tions of the locations of genomic loci used in the validation. Compartment partition was
performed based on the eigenvectors of the Hi-C maps computed by principal compo-
nent analysis (PCA) [7]. Bottom shows the bar graphs depicting the comparisons between
the mean distances between genomic loci derived from FISH imaging data and recon-
structed by GEM. (a) The validation results on the FISH imaging data of yeast chromo-
some 6. ARS603, ARS606, ARS607 and ARS609 lie consecutively along the chromosome.
ARS603 belongs to compartment A, while the other three loci belong to compartment B,
as visualized by the schematic illustration (top). (b) The validation results on the FISH
imaging data of human chromosome 14. L1, L2, L3 and L4 lie consecutively along the
chromosome. L1 and L3 belong to compartment A, while L2 and L4 belong to compart-
ment B, as visualized by the schematic illustration (top).
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Figure 5: Relationships between Hi-C interaction frequencies and reconstructed
spatial distances derived based on different test settings of simulated Hi-C data.
The purple curves depict the latent relationships between Hi-C interaction frequencies and
reconstructed spatial distances derived based on the tests on simulated Hi-C data, which
were generated according to different settings of the trapping rate αt (a), the maximum
interaction probability Pm (b), the standard deviation of Gaussian function σ (c), and the
number of cells Nc (d), respectively. The blue, orange and green curves show the functions
inferred by GEM, the hypothetical function F ∝ 1/D used in the MDS based model [29] and
ShRec3D [18], and the hypothetical function F ∝ 1/Dα used in ChromSDE [17], respec-
tively. The root-mean-square error (RMSE) was used to measure the distances between
these functions used in the modeling frameworks (shown in blue, orange or green curves)
and the latent functions (shown in purple curves), which can be derived from the parameter
settings used to generate the simulated Hi-C data.
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Figure 6: Relationships between Hi-C interaction frequencies and reconstructed
spatial distances derived from the chromatin structures modeled by GEM on ex-
perimental Hi-C data. (a-d) The latent functions inferred by GEM between Hi-C inter-
action frequencies and reconstructed spatial distances on human chromosome 13 at 1Mb
resolution, human chromosome 14 at 1Mb resolution, a 130Mb-180Mb region of human
chromosome 1 at 250 kb resolution, and yeast chromosome 6 at 10 kb resolution, respec-
tively. The functions were obtained by curve fitting to the points representing the pairs of
Hi-C interaction frequencies and reconstructed spatial distances in the modeled structures.
The expressions of the derived functions and the fitting results measured in terms of the
root-mean-square errors (RMSEs) are also shown.
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Figure 7: (Continued on the following page).

47

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2017. ; https://doi.org/10.1101/161208doi: bioRxiv preprint 

https://doi.org/10.1101/161208


Figure 7: Application of the chromatin structures reconstructed by GEM into the
recovery of missing long-range loops or contacts. (a,b) The recovery results on the
missing loops on human chromosome 19 in the GM12878 cell line at 5 kb resolution from
the Hi-C data of replicate 1 and replicate 2 [46], respectively. The orange curves rep-
resent the distributions of known loops (which were present in the Hi-C data of current
replicate), while the blue curves represent the distributions of missing loops (which were
missing in current replicate but present in the other replicate). The purple curves show
the background distributions, i.e., the distributions of spatial distances in the reconstructed
structures. The HiCCUPS algorithm [46] implemented in the Juicer tools [62], with 0.1%
FDR, was used to call chromatin loops from Hi-C maps. (c,d,e) The recovery results on
the missing promoter-promoter and promoter-enhancer contacts on human chromosome
19, using the chromatin structures reconstructed by GEM based on the promoter-other
contacts derived from the capture Hi-C data [47]. The purple curves show the background
distributions, i.e., the distributions of all the reconstructed spatial distances (as in Panels
a and b), while the other curves represent the distributions of the promoter-promoter or
promoter-enhancer contacts that were missing in the input promoter-other capture Hi-C
data [47] but present in an independent Hi-C map (c), the promoter-promoter contacts
derived from another capture Hi-C data (d), or the promoter-enhancer contacts identified
by PSYCHIC [48] from an independent Hi-C map [46], all of which were also called the
validation Hi-C data. In Panels c and d, the blue, orange and green curves represent
the distributions of the top 5, 25 and 50 missing promoter-promoter contacts which had
the highest interaction frequencies in the validation Hi-C data. In Panels f, the blue curve
represents the distribution of the missing promoter-enhancer contacts in the validation Hi-C
data. (f,g) Two examples on the recovered promoter-enhancer (f) or promoter-promoter (g)
contacts on human chromosome 19 of the GM12878 cell line that were recovered from the
chromatin structures reconstructed by GEM from one Hi-C dataset and can be validated by
another independent Hi-C dataset. The recovered loops are shown by orange linkers on
the bottom, while the connected promoter and enhancers regions (which were annotated
using the combination of ENCODE Segway [63] and ChromHMM [64] as in [65]) are shown
in blue and green, respectively. Among the lists of chromatin features, H3K27 and DNase-
seq signals indicated the active and accessibility states of both ends of chromatin loops,
while the states of promoters and enhancers are marked by H3K4me3 and H3K4me1, re-
spectively. All ChIP-seq and DNase-seq data were obtained from the ENCODE portal [66].
The human reference genome GRCh38/hg38 was used.

48

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 10, 2017. ; https://doi.org/10.1101/161208doi: bioRxiv preprint 

https://doi.org/10.1101/161208


Supporting Material

High-dimensional Space

2D space

Supplementary Figure 1: A schematic illustration of manifold learning. In high-
dimensional (3D for example) space, the data points lie on a “Swiss roll” structure. After
embedding the data points from high-dimensional space into low-dimensional (2D for ex-
ample) space by manifold learning, the intrinsic manifold is uncovered.
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Supplementary Figure 2: The validation results on the simulated Hi-C data, which
were generated according to different settings of the maximum interaction proba-
bility Pm (see “Methods”). (a) The comparisons of Pearson correlations between GEM
and other modeling methods, including the MDS based model [29], ChromSDE [17] and
ShRec3D [18]. (b) and (c) show the typical examples of the simulated Hi-C maps and the
corresponding distributions of the reconstructed interaction frequencies as Pm increases,
respectively.
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Supplementary Figure 3: The validation results on the simulated Hi-C data, which
were generated according to different settings of the standard deviation of Gaussian
function σ (see “Methods”). (a) The comparisons of Pearson correlations between GEM
and other modeling methods, including the MDS based model [29], ChromSDE [17] and
ShRec3D [18]. (b) and (c) show the typical examples of the simulated Hi-C maps and the
corresponding distributions of the reconstructed interaction frequencies as σ increases,
respectively.
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Supplementary Figure 4: The validation results on the simulated Hi-C data, which
were generated according to different settings of the number of cells Nc (see “Meth-
ods”). (a) The comparisons of Pearson correlations between GEM and other modeling
methods, including the MDS based model [29], ChromSDE [17] and ShRec3D [18]. (b)
and (c) show the typical examples of the simulated Hi-C maps and the corresponding dis-
tributions of the reconstructed interaction frequencies as Nc increases, respectively.
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Supplementary Figure 5: The convergence and parameter selection of GEM. Here,
human chromosome 14 at a resolution of 1 Mb was used as an example. (a) The conver-
gence results on the cost function C in Equation (4). The first-stage optimization (i.e.,
average-structure optimization) took about 1000 iterations and stopped at the position
marked with black cross, which denotes the start of the second-stage optimization (i.e.,
multi-conformation optimization), which also took about 1000 iterations. (b) The Bayesian
score as a function of the coefficient parameter λE that weighs the conformational energy
term. The value of λE (5 × 10−12) with the maximum Bayesian score was used in GEM,
which is marked by the orange dashed line. (c) The 10-fold cross-validation results (eval-
uated in terms of the Pearson correlation between experimental and reconstructed Hi-C
data) as a function of the coefficient parameter λE for the conformational energy term. The
orange dashed line indicates the value of λE used in GEM.
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Missing loops Known loops
H3K27ac 1.4020 1.1203

DNase-seq 1.7797 1.6842
H3K4me3 1.4423 1.3410
H3K4me1 1.2934 1.1034
Promoters 1.5563 2.4234
Enhancers 3.1685 2.5611

Supplementary Table 1: The enrichments of the functional elements (compared
with the background) in both missing and known chromatin loops on human chro-
mosome 19.
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