Giraffe coat patterns

- **1** Seeing spots: Quantifying mother-offspring similarity and assessing fitness
- 2 consequences of coat pattern traits in a wild population of giraffes (Giraffa
- 3 *camelopardalis*)
- 4 Derek E. Lee,^{1,2,*} Douglas R. Cavener,² and Monica L. Bond^{1,3}
- ¹ Wild Nature Institute, Concord, New Hampshire, USA
- ⁶ ² Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- ³ Department of Evolutionary Biology and Environmental Studies, University of Zürich,
- 8 Zürich, Switzerland
- 9 * Correspondent: derek@wildnatureinstitute.org
- 10
- 11 RH: Giraffe coat patterns
- 12

Giraffe coat patterns

D. E. Lee et al.

13 Abstract

14 Polymorphic phenotypes of mammalian coat coloration have been important to the study of 15 genetics and evolution, but less is known about the inheritance and fitness consequences of 16 individual variation in complex coat pattern traits such as spots and stripes. Giraffe coat 17 markings are highly complex and variable and it has been hypothesized that variation in coat 18 patterns most likely affects fitness by camouflaging neonates against visually hunting 19 predators. We quantified complex coat pattern traits of wild Masai giraffes using image 20 analysis software, determined the similarity of spot pattern traits between mother and 21 offspring, and assessed whether variation in spot pattern traits was related to fitness as 22 measured by juvenile survival. The methods we described could comprise a framework for 23 objective quantification of complex mammal coat pattern traits based on photographic coat 24 pattern data. We demonstrated that some characteristics of giraffe coat spot shape were likely 25 to be heritable, as measured by mother-offspring regression. We found significant variation in 26 juvenile survival among phenotypic groups of neonates defined by multivariate clustering 27 based on spot trait measurement variables. We also found significant variation in neonatal 28 survival associated with spot size and shape covariates. Spot trait variation also may be 29 relevant to other components of fitness, such as adult survival or fecundity. These findings 30 will inform investigations into developmental and genetic architecture of complex mammal 31 coat patterns and their adaptive value.

32 Introduction

Complex color patterns such as spots and stripes are found on many animal species and these
phenotypic traits are hypothesized to play adaptive roles in predator and parasite evasion,
thermoregulation, and communication (Cott, 1940; Caro, 2005). Many foundational studies
of coloration using starkly different color morphs from diverse taxa such as insects
(Kettlewell, 1955; Wittkopp et al., 2003), mice (Morse, 1978; Russell, 1985; Bennett &

Giraffe coat patterns

38	Lamoreux, 2003), reptiles (Rosenblum et al., 2004; Calsbeek et al., 2008), fish (Endler, 1983;
39	Irion et al., 2016), and birds (Roulin, 2004) demonstrated Mendelian inheritance and natural
40	selection, and discovered genes that cause color morph mutations (Hoekstra, 2006; Protas &
41	Patel, 2008; San-Jose & Roulin, 2017). Individual variation in a complex color pattern trait of
42	spot size was also part of the earliest work on genetics and inheritance (Wright, 1917).
43	Measuring individual variation in complex color patterns, especially detailed measurements
44	such as animal biometrics (Kuhl & Burghardt, 2013), can provide novel insight into
45	developmental and genetic architecture (Bowen & Dawson, 1977; Klingenburg, 2010; San-
46	Jose & Roulin, 2017), and the adaptive value of the patterns (Hoekstra, 2006; Allen et al.,
47	2010), as well as benefitting studies of behavior (Lorenz, 1937; Whitehead, 1990), and
48	population biology (Holmberg et al., 2009; Lee & Bolger, 2017), and the growing field of
49	phenomics (Houle et al., 2010). Some methods to robustly quantify individuals' continuous
50	variation in complex color patterns have been developed for general use (Schneider et al.,
51	2012; Van Belleghem et al., 2018) and specific taxa such as fishes (Endler, 1980; Holmberg
52	et al., 2009), butterflies (LePoul et al., 2014), penguins (Sherley et al., 2010), and primates
53	(Allen et al., 2015). We see a need for more tools and techniques to reliably quantify
54	individual variation in complex coat pattern traits in wild populations (Eizirik et al., 2010;
55	Willisch et al., 2013), and studies that use quantitative genetics and demographic methods to
56	investigate heritability and adaptive significance of those traits in wild mammal populations
57	(Kruuk et al., 2008; Kaelin et al., 2012).
58	The coat patterns of Masai giraffes (Giraffa camelopardalis tippelskirchii) are
59	complex and show a high degree of individual variation (Dagg, 1968; Figure 1). Masai
60	giraffes spots vary in color and shape from those that are nearly round with very smooth
61	edges (low tortuousness), to extremely elliptical with incised or lobate edges (high
62	tortuousness). Giraffe skin pigmentation is uniformly dark grey (Dimond & Montagna,

Giraffe coat patterns

63	1976), but the spots that make up their coat markings are highly variable in traits such as
64	color, roundness, and perimeter tortuousness. This variation has been used to classify
65	subspecies (Lydekker, 1904), and to reliably identify individuals because patterns do not
66	change with age (Foster, 1966; Bolger et al., 2012; Dagg, 2014). Dagg (1968) first presented
67	evidence from a small zoo population that the shape, number, area, and color of spots in
68	giraffe coat patterns may be heritable, but analysis of spot traits in wild giraffes, and
69	objective measurements of spot characteristics in general have been lacking.
70	It has been hypothesized that giraffe coat patterns evolved to camouflage neonates
71	whose primary defense against predation is concealment (Langman, 1977; Mitchell &
72	Skinner, 2003); thus the most likely fitness effects from variation in coat patterns should be
73	variation in juvenile survival. Giraffe calves spend much of their time, day and night, hiding
74	in the dappled light of trees and bushes and their ability to match this background should
75	influence detection by visually hunting predators such as lions and hyenas (Endler, 1978;
76	Merilaita et al., 2017). Background matching, the adaptation of an animal's coloration to
77	mimic its average background and reduce detection by visually hunting predators, is a
78	common form of camouflage (Endler, 1978; Merilaita et al., 2017). Alternative hypotheses
79	about the adaptive value of giraffe coat markings include thermoregulation (Skinner &
80	Smithers, 1990), and in this social species with good visual sensory perception (Dagg, 2014;
81	VanderWaal et al., 2014), markings could also facilitate individual recognition (Tibbetts &
82	Dale, 2007) and kin recognition (Beecher, 1982; Tang-Martinez, 2001).
83	Our purpose in this study was to: 1) demonstrate the use of public domain image
84	analysis software ImageJ (Schneider et al., 2012) to extract patterns from image data and
85	quantify multiple aspects of the complex coat patterns of wild Masai giraffes; 2) use
86	quantitative genetics methods (parent-offspring regression) to quantify the proportion of
87	observed phenotypic variation of a trait that is shared between mother and offspring; and 3)

Giraffe coat patterns

D. E. Lee et al.

88	determine whether variation in complex coat pattern traits was related to a measure of fitness
89	(survival) and thereby infer the effect of natural selection (viability selection) on giraffe coat

90 patterns (Lande & Arnold, 1983; Falconer & Mackay, 1996).

91 Materials & Methods

92 As a general overview, our methods were to: 1) collect field data in one area of Tanzania as

digital images of giraffes to be used for spot pattern and survival analyses; 2) extract patterns

from images; 3) quantify giraffe patterns by measuring 11 spot traits; 4) use principal

95 components analysis (PCA) to reduce the dimensionality of the spot traits; 5) use mother-

96 offspring regressions to estimate the phenotypic similarity between mother and offspring of

97 the 11 spot traits and the 1st two dimensions of the PCA; 6) use k-means clustering to assign

98 giraffe calves into 4 phenotypic groups according to their spot pattern traits; 7) use capture-

99 mark-recapture analysis to estimate survival and determine whether there are fitness

100 differences among the phenotypic groups; 8) use capture-mark-recapture analysis to

101 determine whether there are fitness effects from any particular spot traits.

102 Field Data Collection

103 This study used data from individually identified, wild, free-ranging Masai giraffes in a 1700

104 km² sampled area within a 4400 km² region of the Tarangire Ecosystem, northern Tanzania,

105 East Africa. Data were collected as previously described in Lee et al. (2016a). We collected

106 data during systematic road transect sampling for photographic capture-mark-recapture

107 (PCMR). We conducted 26 daytime surveys for giraffe PCMR data between January 2012

and February 2016. We sampled giraffes three times per year around 1 February, 1 June, and

109 1 October near the end of every precipitation season (short rains, long rains, and dry,

respectively) by driving a network of fixed-route transects on single-lane dirt tracks in the

study area. We surveyed according to Pollock's robust design sampling framework (Pollock,

112 1982; Kendall et al., 1995), with three occasions per year. Each sampling occasion was

Giraffe coat patterns

113	composed of two sampling events during which we surveyed all transects in the study area
114	with only a few days interval between events. Each sampling occasion was separated by a 4-
115	month interval (4.3 years \times 3 occasions year ⁻¹ \times 2 events occasion ⁻¹ = 26 survey events).
116	During PCMR sampling events, a sample of individuals were encountered and either
117	'sighted' or 'resighted' by slowly approaching and photographing the animal's right side at a
118	perpendicular angle (Canon 40D and Rebel T2i cameras with Canon Ultrasonic IS $100 - 400$
119	mm lens, Canon U.S.A., Inc., One Canon Park, Melville, New York, 11747, USA). We
120	identified individual giraffes using their unique and unchanging coat patterns (Foster, 1966;
121	Dagg, 2014) with the aid of pattern-recognition software Wild-ID (Bolger et al., 2012). We
122	attempted to photograph every giraffe encountered, and recorded sex and age class based on
123	physical characteristics. We assigned giraffes to one of four age classes for each observation
124	based on the species' life history characteristics and our sampling design: neonate calf $(0 - 3)$
125	months old), older calf (4 – 11 months old), subadult (1 – 3 years old for females, 1 – 6 years
126	old for males), or adult (> 3 years for females, > 6 years for males) using a suite of physical
127	characteristics (Strauss et al., 2015), and size measured with photogrammetry (Lee et al.,
128	2016a). In this analysis, we used only adult females and animals first sighted as neonate
129	calves.
130	All animal work was conducted according to relevant national and international
131	guidelines. This research was carried out with permission from the Tanzania Commission for
132	Science and Technology (COSTECH) Research Permit numbers 2017-163-ER-90-172, 2016-
133	146-ER-2001-31, 2015-22-ER-90-172, 2014-53-ER-90-172, 2013-103-ER-90-172, 2012-
134	175-ER-90-172, 2011-106-NA-90-172, Tanzania National Parks (TANAPA), the Tanzania
135	Wildlife Research Institute (TAWIRI). No Institutional Animal Care and Use Committee
136	(IACUC) approval was necessary because animal subjects were observed without disturbance
137	or physical contact of any kind.

Giraffe coat patterns

D. E. Lee et al.

138 Quantification of Spot Patterns

139 We extracted patterns and analysed spot traits of each animal within the shoulder and rib area 140 by cropping all images to an analysis rectangle that fit horizontally between the anterior edge 141 of the rear leg and the chest, and vertically between the back and where the skin folded 142 beneath the posterior edge of the foreleg (**Figure 1**). For color trait analysis, we used the 143 Color Histogram procedure of ImageJ (Schneider et al., 2012) on full-color images of the 144 analysis rectangle. We extracted coat patterns using ImageJ to convert full-color images of 145 the analysis rectangle to 8-bit greyscale images, then converted to bicolor (black and white) 146 using the Enhance Contrast and Threshold commands (Schneider et al., 2012). We quantified 147 10 spot trait measurements of each animal's extracted coat pattern using the Analyze 148 Particles command in ImageJ (Schneider et al., 2012). To account for differences in image 149 resolution and animal size (including age-related growth), and to obtain approximately scale-150 invariant standard images of each animal, we set the measurement unit of each image equal to 151 the number of pixels in the height of the analysis rectangle. Therefore all measurements are in 152 giraffe units (GU), where 1 GU = height of the analysis rectangle (**Figure 1**). We excluded 153 spots cut off by the edge of the analysis rectangle to avoid the influence of incomplete spots, and we also excluded spots whose area was $< 0.00001 \text{ GU}^2$ to eliminate the influence of 154 155 speckles.

We characterized each animal's coat spot pattern traits within the analysis rectangle using the following 11 metrics available in ImageJ: number of spots; mean spot size (area); mean spot perimeter; mean angle between the primary axis of an ellipse fit over the spot and the x-axis of the image; mean circularity $(4\pi \times [Area] / [Perimeter]^2]$ with a value of 1.0 indicating a perfect circle and smaller values indicating an increasingly elongated shape); mean maximum caliper (the longest distance between any two points along the spot boundary, also known as Feret diameter); mean Feret angle (the angle [0 to 180 degrees] of

Giraffe coat patterns

163	the maximum caliper); mean aspect ratio (of the spot's fitted ellipse); mean roundness (4 \times
164	$[Area]\pi \times [Major axis]^2$ or the inverse of aspect ratio); mean solidity ($[Area] / [Convex area]$,
165	also called tortuousness); and mode shade ($[65536 \times r] + [256 \times g] + [b]$ using RGB values
166	from color histogram from full color photos).
167	We quantified among-individual variation in spot trait values by reporting the mean,
168	SD, and coefficient of variation (CV) of each trait. We also quantified the reliability of our
169	spot pattern trait measurement technique by computing the amount of among-measurement
170	variation for the same animal made on different photos from different dates using a set of 30
171	animals with >2 images per animal. We performed a principal components analysis (PCA;
172	Hotelling, 1933) on the covariance matrix of the 10 spot trait measurements (standardized) to
173	examine the patterns of variation and covariation among the spot measurement data and to
174	compute 2 summary dimensions explaining the 10 measurements. We performed k-means
175	clustering to divide animals into 'coat pattern phenotypes,' phenotypic groups based upon
176	their spot trait characteristics (MacQueen, 1967). The optimal number of phenotypic groups
177	was determined by the gap statistic (Tibshirani et al., 2001). We performed all statistical
178	operations using R (R Core Development Team, 2017).
179	Mother-Offspring Similarity of Spot Traits
180	The (narrow sense) heritability of a trait (symbolized h^2) is the proportion of its total
181	phenotypic variance that is additive, or available for selection to act upon. Parent-offspring
182	(PO) regression is one of the traditional quantitative genetics tools used to test for heritable
183	additive genetic variation (Falconer & Mackay, 1996). PO regression studies cannot
184	distinguish among phenotypic similarity due to genetic heritability, maternal investment, or
185	shared environmental effects, it is however one of the few methods available when
186	information on other kin relations are lacking. Pigmentation traits in mammals are known to

- 186 information on other kin relations are lacking. Pigmentation traits in mammals are known to
- 187 have a strong genetic basis (Bennett and Lamoreux 2003; Hoekstra 2006), supporting the

188 interpretation of PO regression as indicating a genetic component. We expect minimal non-189 random variation due to environmental effects because the calves were all born in the same 190 area with the same vegetation communities during a relatively short time period of average 191 climate and weather with no spatial segregation by coat pattern phenotype (Supplementary 192 **Material Figure S1**). The animal model was not an improvement because we do not know 193 fathers, and we had no known siblings in our dataset, therefore PO regression is the most 194 appropriate tool for our estimates of heritability, with the caveat that there are potentially 195 environmental and maternal investment effects also present. 196 We identified 31 mother-calf pairs by observing extended suckling behavior. Wild 197 female giraffes very rarely suckle a calf that is not their own (Pratt and Anderson 1979). We 198 examined all identification photographs for individuals in known mother-calf pairs, and 199 selected the best-quality photograph for each animal based on focus, clarity, perpendicularity 200 to the camera, and unobstructed view of the torso. 201 We predicted spot pattern traits of a calf would be correlated with those of its mother. 202 We estimated the mother-offspring similarity for each of the 11 spot trait measurements, and 203 the first dimension generated by the PCA. When we examined the 11 individual spot traits, 204 we used the Bonferroni adjustment (α /number of tests) to account for multiple tests and set 205 our adjusted $\alpha = 0.0045$. We performed statistical operations in R (R Core Development

206 Team, 2017).

207 Fitness of Spot Patterns from Juvenile Survival

We assembled encounter histories for 258 calves first observed as neonates for survival analysis. For each calf we selected the best-quality calf-age (age <6 mo) photograph based on focus, clarity, perpendicularity to the camera, and unobstructed view of the torso, and ran the photographs through the ImageJ analysis to quantify each individual's coat spot traits. We analysed survival using capture-mark-recapture apparent survival models that account for

Giraffe coat patterns

D. E. Lee et al.

imperfect detectability during surveys (White & Burnham, 1999). No capture-mark-recapture
analyses except 'known fate' models can discriminate between mortality and permanent
emigration, therefore when we speak of survival it is technically 'apparent survival,' but
during the first seasons of life we expected very few calves to emigrate from the study area,
and if any did emigrate permanently this effect on apparent survival should be random
relative to their spot pattern characteristics.

219 We estimated age-specific seasonal (4-month seasons) survival (up to 3 years old) 220 according to coat pattern phenotype groups with calves assigned to groups by k-means 221 clustering of their overall spot traits. We compared 3 models, a null model of no group effect, 222 age + group, and age \times group, to examine whether coat pattern phenotypes affected survival 223 differently at different ages. We also estimated survival as a function of individual covariates 224 of specific spot traits including linear and quadratic relationships of all 11 spot traits and the 225 first two PCA dimensions on juvenile survival to examine whether directional, disruptive, or 226 stabilizing selection was occurring (Lande & Arnold, 1983; Falconer & Mackay, 1996). To 227 determine at what age specific spot traits had the greatest effect of survival, we examined 228 survival as a function of spot traits during 3 age periods: the first season of life, first year of 229 life, and first three years of life.

230 We used Program MARK to analyse complete capture-mark-recapture encounter 231 histories of giraffes first sighted as neonates (White & Burnham, 1999). We analysed our 232 encounter histories using Pollock's Robust Design models to estimate age-specific survival 233 (Pollock, 1982; Kendall et al., 1995), and ranked models using AICc following Burnham and 234 Anderson (2002). We used weights (W) and likelihood ratio tests as the metrics for the 235 strength of evidence supporting a given model as the best description of the data (Burnham & 236 Anderson, 2002). Due to model selection uncertainty, we present model-averaged parameter 237 values and based all inferences on these model-averaged values (Burnham & Anderson,

Giraffe coat patterns

D. E. Lee et al.

2002). We considered factors to be statistically significant if the 85% confidence interval of
the beta coefficient did not include zero (Arnold, 2010), this is a widely accepted convention
for covariates of survival analyses (Arnold, 2010).

- Based on previous analyses for this population (Lee et al., 2016a, b), we constrained
- 242 parameters for survival (S) and temporary emigration ($\gamma \Box$ and $\gamma \Box$) to be linear functions of
- age (symbolized 'A'), and capture and recapture (c and p) were time dependent (symbolized
- 244 't'), so the full model was: {(S(A), $\gamma \Box$ (A), $\gamma \Box$ (A), c(t), p(t)}. Giraffe calf survival does not
- vary by sex (Lee et al., 2016b), so we analysed all calves together as an additional constraint
- on the number of parameters estimated. We tested goodness-of-fit in encounter history data
- using U-CARE (Choquet et al., 2009), and we found some evidence for lack of fit ($\chi_{62}^2 = 97$,
- 248 P = 0.01), but because the computed \hat{c} adjustment was < 3 ($\hat{c} = 1.5$), we felt our models fit
- the data adequately and we did not apply a variance inflation factor (Burnham and Anderson
- 250 2002; Choquet et al., 2009).
- 251 We have deposited the primary data underlying these analyses as follows: Sampling
- 252 locations, original data photos, and spot trait data: Dryad DOI:
- 253 https://doi.org/10.5061/dryad.6514r.

254 **Results**

- We were able to extract patterns and quantify 11 spot traits using ImageJ, and found
- 256 measurements were highly reliable with low variation in measurements from different photos
- of the same individual (Table 1). From our 31 mother-calf pairs, we found two spot traits,
- circularity and solidity (tortuousness) (Figure 2) had significant PO slope coefficients
- between calves and their mothers indicating similarity (Table 1). Neither of the first two
- dimensions from the PCA (see below) had significant PO regression slopes.
- 261 The first dimension from the PCA (from 258 calves, including the 31 calves used to
- estimate heritability) was composed primarily of spot size-related traits (perimeter, maximum

Giraffe coat patterns

D. E. Lee et al.

263	caliper, area, and number) such that increasing dimension 1 meant increasing spot size.
264	Dimension 1 explained 40.5% of the variance in the data (Figure 3). The second dimension
265	was composed primarily of spot shape traits (aspect ratio, roundness, solidity, and circularity)
266	such that increasing dimension 2 meant increasing roundness and circularity while decreasing
267	dimension 2 meant more tortuous edges and irregular shapes. Dimension 2 explained 24.0%
268	of the variation in the data (Figure 3).
269	Gap statistics indicated 4 phenotypic groups was the optimal number of clusters for k-
270	means clustering, but groups 1 and 2 had a large amount of overlap in PCA variable space
271	(Figure 4), so we also defined 3 phenotypic groups by lumping the two overlapping groups.
272	Group 1 had medium-sized circular spots, group 2 had small-sized circular and irregular
273	spots, group 3 had medium-sized irregular spots, and group 4 had large circular and irregular
274	spots (Figures 3 & 4). Our survival analysis of 258 calves divided into 4 phenotypic groups
275	based on their spot traits indicated that the null model was top-ranked, but AIC_c weights
276	showed there was some evidence for survival variation among the 4 phenotypic groups
277	(Table 2). The 3 phenotypic group model found significant differences in survival according
278	to group (Table 2 , beta coefficient for lumped groups 1 and $2 = -0.717$, 85% CI = -1.235 to -
279	0.199). Model-averaged seasonal apparent survival estimates indicated differences in survival
280	existed among phenotypic groups during the first seasons of life, but those differences were
281	greatly reduced in ages 1 and 2 years old (Figure 5).
282	We found two specific spot traits significantly affected survival during the first season

of life (number of spots and aspect ratio; beta $_{number of spots} = -0.031$, 85% CI = -0.052 to -

284 0.009; beta $_{aspect ratio} = -0.466$, 85% CI = -0.827 to -0.105). Both number of spots and aspect

- ratio were negatively correlated with survival during the first season of life (Figure 6). No
- other trait during any age period significantly affected juvenile survival (all beta coefficient
- 287 85% CIs included zero), but model selection uncertainty was high (**Table 3**).

Giraffe coat patterns

D. E. Lee et al.

288 **Discussion**

289 We were able to objectively and reliably quantify coat pattern traits of wild giraffes using 290 image analysis software. We demonstrated that some giraffe coat pattern traits of spot shape 291 appeared to be heritable from mother to calf, and that coat pattern phenotypes defined by spot 292 size and shape differed in fitness as measured by neonatal survival. Individual covariates of 293 spot size and shape significantly affected survival during the first 4 months of life. These 294 results support the hypothesis that giraffe spot patterns are heritable (Dagg, 1968), and affect 295 neonatal calf survival (Langman, 1977; Mitchell & Skinner, 2003). The fact that spot patterns 296 affected survival could be related to camouflage, but could also reflect an individual quality 297 effect, maternal investment, or some other environmental effect. Our methods and results add 298 to the toolbox for objective quantification of complex mammalian coat pattern traits, and 299 should be useful for taxonomic or phenotypic classifications based on photographic coat 300 pattern data.

301 Our analyses highlighted a few aspects of giraffe spots that were most likely to be 302 heritable and which seem to have the greatest adaptive significance. Circularity and solidity, 303 both descriptors of spot shape, showed the highest mother-offspring similarity. Circularity 304 describes how close the spot is to a perfect circle, and is positively correlated with the trait of 305 roundness and negatively correlated with aspect ratio. Solidity describes how smooth and 306 entire the spot edges are versus tortuous, ruffled, lobed, or incised and is positively correlated 307 with the trait of perimeter. We did not document significant similarity of any size-related spot 308 traits (number of spots, area, perimeter, and maximum caliper), but the first dimension of the 309 PCA was largely composed of size-related traits. These characteristics could form the basis 310 for quantifying spot patterns of giraffes across Africa, and gives field workers studying any 311 animal with complex color patterns a new quantitative lexicon for describing spots. However, 312 our mode shade measurement was a crude metric, and color is greatly affected by lighting

Giraffe coat patterns

D. E. Lee et al.

conditions, so we suggest standardization of photographic methods to control for lighting ifcolor is to be analyzed in future studies.

315 We found that both size and shape of spots was relevant to fitness measured as 316 juvenile survival. We observed the highest calf survival in the phenotypic group generally 317 described as large spots that were either circular or irregular. Lowest survival was in the 318 groups with small and medium-sized circular spots, and small irregular spots. Both the 319 survival by phenotype analysis and the individual covariate survival analysis found that larger 320 spots and irregularly shaped spots were correlated with increased survival. It seems likely that 321 these traits enhance the background-matching of giraffe calves in the vegetation of our study 322 area (Ruxton et al., 2004; Merilaita et al., 2017). However, covariation in spot patterns and 323 survival could also reflect an individual quality effect, maternal investment, or some other 324 environmental effect. The relationships among giraffe spot traits and their effects on fitness 325 are clearly complex, and require additional investigations into adaptive function and genetic 326 architecture.

327 Whether or not spot traits affect juvenile survival via anti-predation camouflage, spot 328 traits may serve other adaptive functions such as thermoregulation (Skinner and Smithers 329 1990), social communication (VanderWaal et al., 2014), or indicators of individual quality 330 (Ljetoff et al., 2007), and thus may demonstrate associations with other components of 331 fitness, such as survivorship in older age classes or fecundity. Individual recognition, kin 332 recognition, and inbreeding avoidance also could play a role in the evolution of spot patterns 333 in giraffes (Beecher, 1982; Tibbetts & Dale, 2007; Sherman et al., 1997). Different aspects of 334 spot traits may also be nonadaptive and serve no function, or spot patterns could be affected 335 by pleiotropic selection on a gene that influences multiple traits (Lamoreux et al., 2010). 336 Photogrammetry to remotely measure animal traits has utilized geometric approaches

that estimate trait sizes using laser range finders and known focal lengths (Lyon, 1994; Lee et

Giraffe coat patterns

D. E. Lee et al.

341 ImageJ software to quantify spot characteristics with trait measurements from photographs

342 will prove useful to future efforts at quantifying animal markings as in animal biometry (Kuhl

343 & Burghardt, 2013). Trait measurements and cluster analysis such as we performed here

could also be useful to classify subspecies, phenotypes, or other groups based on variation in

markings, which could advance the field of phenomics for organisms with complex skin or

coat patterns (Houle et al., 2010).

347 Conclusions

348 Masai giraffe spot patterns are particularly diverse among giraffe subspecies (Dagg, 1968),

349 and there are spot patterns in northern Tanzania that bear strong similarities to other giraffe

350 subspecies elsewhere in Africa. Two recent genetic analyses of giraffe taxonomy both placed

351 Masai giraffes as their own species (Brown et al., 2007; Fennessy et al., 2016), but the lack of

352 quantitative tools to objectively analyze coat patterns for taxonomic classification may

underlie some of the confusion that currently exists in giraffe systematics (Bercovitch et al.,

2017). We expect the application of image analysis to giraffe coat patterns will provide a

new, robust dataset to address taxonomic and evolutionary hypotheses.

Patterned coats of mammals are hypothesized to be formed by two distinct processes: a spatially oriented developmental mechanism that creates a species-specific pattern of skin cell differentiation and a pigmentation-oriented mechanism that uses information from the pre-established spatial pattern to regulate the synthesis of melanin (Eizirik et al., 2010). The giraffe skin has more extensive pigmentation and wider distribution of melanocytes than most other animals (Dimond & Montagna, 1976). Coat pattern variation may reflect discrete

362 polymorphisms potentially related to life-history strategies, a continuous signal related to

Giraffe coat patterns

D. E. Lee et al.

- 363 individual quality, or a combination of both. Future work on the genetics of coat patterns will
- 364 hopefully shed light upon the mechanisms and consequences of coat pattern variation.

365 Acknowledgements

- 366 This research was carried out with permission from the Tanzania Commission for Science
- 367 and Technology (COSTECH), Tanzania National Parks (TANAPA), the Tanzania Wildlife
- 368 Research Institute (TAWIRI), African Wildlife Foundation, and Manyara Ranch
- 369 Conservancy. This paper was improved by comments from two anonymous reviewers and
- 370 A.K. Lindholm.

371 **References**

- Allen WL, Cuthill IC, Scott-Samuel NE, Baddeley R. 2010. Why the leopard got its spots:
- relating pattern development to ecology in felids. Proceedings of the Royal Society of

374 London B: Biological Sciences 278:1373–1380

- Allen WL, Higham JP, Allen WL. 2015. Assessing the potential information content of
- 376 multicomponent visual signals: a machine learning approach. Proceedings of the Royal
- 377 Society of London B: Biological Sciences 282:20142284
- 378 Arnold TW. 2010. Uninformative parameters and model selection using Akaike's Information
- 379 Criterion. Journal of Wildlife Management, 74:1175–1178
- Beecher MD. 1982. Signature systems and kin recognition. American Zoologist 22:477–490
- Bennett DC, Lamoreux ML. 2003. The color loci of mice—a genetic century. Pigment Cell
- 382 Research 16:333–44
- Bercovitch FB, Berry PS, Dagg A, Deacon F, Doherty JB, Lee DE, Mineur F, Muller Z,
- Ogden R, Seymour R, Shorrocks B. 2017. How many species of giraffe are there? Current
- 385 Biology 27:R136–R137
- 386 Bergeron P. 2007. Parallel lasers for remote measurements of morphological traits. Journal of
- 387 Wildlife Management 71:289–292

Giraffe coat patterns

388	Bolger DT, Morrison TA, Vance B, Lee D, Farid H. 2012. A computer assisted system for
389	photographic mark-recapture analysis. Methods in Ecology and Evolution 3:813-822
390	Bowen WW, Dawson WD. 1977. Genetic analysis of coat color pattern variation in oldfield
391	mice (Peromyscus polionotus) of Western Florida. Journal of Mammalogy 58:521-530
392	Brown DM, Brenneman RA, Koepfli KP, Pollinger JP, Milá B, Georgiadis NJ, Louis EE,
393	Grether GF, Jacobs DK, Wayne RK. 2007. Extensive population genetic structure in the
394	giraffe. BMC Biology 5:57
395	Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical
396	information-theoretical approach. Springer-VerlagNew York, New York
397	Caro T. 2005. The Adaptive Significance of Coloration in Mammals. BioScience 55:125–136
398	Calsbeek R, Bonneaud C, Smith TB. 2008. Differential fitness effects of immunocompetence
399	and neighbourhood density in alternative female lizard morphs. Journal of Animal
400	Ecology 77:103-109
401	Choquet R, Lebreton JD, Gimenez O, Reboulet AM, Pradel R. 2009. U-CARE: Utilities
402	for performing goodness of fit tests and manipulating CApture-REcapture data.
403	Ecography 32:1071–1074
404	Cott HB. 1940. Adaptive coloration in animals. Methuen Publishing, London, United
405	Kingdom
406	Dagg AI. 1968. External features of giraffe. Mammalia 32:657-669
407	Dagg AI. 2014. Giraffe biology, behavior and conservation. Cambridge University PressNew
408	York, New York
409	de Villemereuil P, Gimenez O, Doligez B. 2013. Comparing parent-offspring regression with
410	frequentist and Bayesian animal models to estimate heritability in wild populations: a
411	simulation study for Gaussian and binary traits. Methods in Ecology and Evolution
412	4:260–275

Giraffe coat patterns

- 413 Dimond RL, Montagna W. 1976. The skin of the giraffe. Anatomical Record 185:63–75
- 414 Eizirik E, David VA, Buckley-Beason V, Roelke ME, Schäffer AA, Hannah SS, Narfström
- 415 K, O'Brien SJ, Menotti-Raymond M. 2010. Defining and mapping mammalian coat
- 416 pattern genes: multiple genomic regions implicated in domestic cat stripes and spots.
- 417 Genetics 184:267–275
- 418 Endler JA. 1978. A predator's view of animal color patterns. Evolutionary Biology 11:319–
- 419 364(doi:10.1007/978-1-4615-6956-5_5)
- 420 Endler JA. 1980. Natural selection on color patterns in Poecilia reticulate. Evolution 34:76-91
- 421 Endler JA. 1983. Natural and sexual selection on color patterns in poeciliid fishes.
- 422 Environmental Biology of Fishes 9:173–190
- 423 Falconer DS, Mackay TFC. 1996. Introduction to quantitative genetics. 4th edition,
- 424 Pearson/Prentice Hall, New York, New York
- 425 Fennessy J, Bidon T, Reuss F, Kumar V, Elkan P, Nilsson MA, Vamberger M, Fritz U, Janke
- A. 2016. Multi-locus analyses reveal four giraffe species instead of one. Current Biology
 26:2543–2549
- 428 Foster JB. 1966. The giraffe of Nairobi National Park: home range, sex ratios, the herd, and
- 429 food. African Journal of Ecology 4:139–148
- 430 Garvie MR, Trenchea C. 2014. A three level finite element approximation of a pattern
- 431 formation model in developmental biology. Numerische Mathematik 127:397–422
- 432 Hoekstra HE. 2006. Genetics, development and evolution of adaptive pigmentation in
- 433 vertebrates. Heredity 97:222–234
- 434 Holmberg J, Norman B, Arzoumanian Z. 2009. Estimating population size, structure, and
- 435 residency time for whale sharks Rhincodon typus through collaborative photo-
- 436 identification. Endangered Species Research 7:39–53

Giraffe coat patterns

- 437 Hotelling H. 1933. Analysis of a complex of statistical variables into principal components.
- Journal of Educational Psychology 25:417–441
- 439 Houle D, Govindaraju DR, Omholt S. 2010. Phenomics: the next challenge. Nature reviews
- 440 genetics 11:855–866
- 441 Ireland D, Garrott RA, Rotella J, Banfield J. 2006. Development and application of a mass-
- estimation method for Weddell seals. Marine Mammal Science 22:361–378
- 443 Irion U, Singh AP, Nuesslein-Volhard C. 2016. The developmental genetics of vertebrate
- 444 color pattern formation: lessons from zebrafish. In Current topics in developmental
- biology (Vol117, pp141–169). Academic Press
- 446 Kaelin CB, Xu X, Hong LZ, David VA, McGowan KA, Schmidt-Küntzel A, Roelke ME,
- 447 Pino J, Pontius J, Cooper GM, Manuel H. 2012. Specifying and sustaining pigmentation
- 448 patterns in domestic and wild cats. Science 337:1536–1541
- 449 Kaufman L, Rousseeuw PJ. 2009. Finding groups in data: an introduction to cluster analysis.
- 450 John Wiley & Sons, Hoboken, New Jersey
- 451 Kelsh RN. 2004. Genetics and evolution of pigment patterns in fish. Pigment Cell Melanoma
- 452 Research 17:326–336
- 453 Kendall WL, Pollock KH, Brownie C. 1995. A likelihood based approach to capture-
- recapture estimation of demographic parameters under the robust design. Biometrics
- 455 51:293–308
- 456 Kettlewell HBD. 1955. Selection experiments on industrial malanism in the Lepidoptera.
- 457 Heredity 9:323–342 (doi:10.1038/hdy.1955.36)
- 458 Klingenberg CP. 2010. Evolution and development of shape: integrating quantitative
- 459 approaches. Nature 11:623–635

Giraffe coat patterns

- 460 Kruuk LE, Slate J, Wilson AJ. 2008. New answers for old questions: the evolutionary
- 461 quantitative genetics of wild animal populations. Annual Review of Ecology, Evolution,
- 462 and Systematics 39:525–548
- 463 Kühl H.S, Burghardt T. 2013. Animal biometrics: quantifying and detecting phenotypic
- 464 appearance. Trends in Ecology and Evolution 28:432–441
- 465 Lamoreux ML, Delmas V, Larue L, Bennett D. 2010. The colors of mice: a model genetic
- 466 network. John Wiley & Sons, Hoboken, New Jersey
- 467 Lande R, Arnold SJ. 1983. The measurement of selection on correlated characters. Evolution
- 468 37:1210–1226
- Langman VA. 1977. Cow Calf Relationships in Giraffe (*Giraffa camelopardalis giraffa*).
- 470 Ethology 43:264–286
- 471 Lee DE, Bolger DT. 2017. Movements and source–sink dynamics of a Masai giraffe
- 472 metapopulation. Population Ecology 59:157-168
- 473 Lee DE, Bond ML, Kissui BM, Kiwango YA, Bolger DT. 2016a. Spatial variation in giraffe
- 474 demography: a test of 2 paradigms. Journal of Mammalogy 97:1015–1025
- 475 Lee DE, Kissui BM, Kiwango YA, Bond ML. 2016b. Migratory herds of wildebeests and
- zebras indirectly affect calf survival of giraffes. Ecology and Evolution 6:8402–
- 477 8411doi:10.1002/ece3.2561
- 478 Lee DE, Strauss MKL. 2016. Giraffe demography and population ecology. Reference module
- in earth systems and environmental sciences. Elsevier Amsterdam, Netherlands
- Le Poul Y, Whibley A, Chouteau M, Prunier F, Llaurens V, Joron, M. 2014. Evolution of
- 481 dominance mechanisms at a butterfly mimicry supergene. Nature Communications 5:1–8
- 482 Lorenz K. 1937. Imprinting. The Auk 54:245–273
- 483 Ljetoff M, Folstad I, Skarstein F, Yoccoz NG. 2007. Zebra stripes as an amplifier of
- 484 individual quality? Annales Zoologici Fennici 44:368–376

Giraffe coat patterns

- 485 Lydekker R. 1904. On the Subspecies of *Giraffa Camelopardalis*. Proceedings of the
- 486 Zoological Society of London 74:202–229
- 487 Lynch M, Walsh B. 1998. Genetics and analysis of quantitative traits. Sinauer Sunderland,
- 488 Massachusetts
- 489 Lyon BE. 1994. A technique for measuring precocial chicks from photographs. The Condor
- 490 86:805-809
- 491 MacQueen J. 1967. Some methods for classification and analysis of multivariate
- 492 observations. Pp. 281–297 in: Proceedings of 5th Berkeley Symposium on Mathematical
- 493 Statistics and Probability, University of California Press, Berkeley
- 494 Maini PK. 2004. Using mathematical models to help understand biological pattern formation.
- 495 Comptes Rendus Biologies 327:225–234
- 496 Merilaita S, Scott-Samuel NE, Cuthill I.C. 2017. How camouflage works. Philosophical
- 497 Transactions of the Royal Society B 372:20160341 (doi:10.1098/rstb.2016.0341)
- 498 Mills MG, Patterson LB. 2009. Not just black and white: pigment pattern development and
- 499 evolution in vertebrates. Seminars in Cell and Developmental Biology 20:72–81
- 500 Mitchell G, Skinner JD. 2003. On the origin, evolution and phylogeny of giraffes *Giraffa*
- 501 *camelopardalis*. Transactions of the Royal Society of South Africa 58:51–73
- 502 Morse H. 1978. Origins of Inbred Mice. Academic, New York
- 503 Murray JD. 1981. On pattern formation mechanisms for lepidopteran wing patterns and
- 504 mammalian coat markings. Philosophical Transactions of the Royal Society B: Biological
- 505 Sciences 295:473–496
- 506 Orr HA. 2009. Fitness and its role in evolutionary genetics. Nature Reviews Genetics 10:531
- 507 Paterson S, Wilson K, Pemberton JM. 1998. Major histocompatibility complex variation
- solution associated with juvenile survival and parasite resistance in a large unmanaged ungulate

Giraffe coat patterns

- 509 population (*Ovis aries* L.). Proceedings of the National Academy of Sciences 95:3714–
- 510 3719
- 511 Pollock KH. 1982. A capture–recapture design robust to unequal probability of capture.
- 512 Journal of Wildlife Management 46:752–757
- 513 Pratt DM, Anderson VH. 1979. Giraffe Cow Calf Relationships and Social Development of
- the Calf in the Serengeti. Ethology 51:233–251
- 515 Protas ME, Patel NH. 2008. Evolution of coloration patterns. Annual Review of Cell and
- 516 Developmental Biology 24:425–446
- 517 R Core Development Team. 2017. R: a language and environment for statistical computing.
- 518 R Foundation for Statistical Computing, Vienna, Austria
- 519 Roff DA. 1997. Evolutionary Quantitative Genetics. Chapman and Hall, New York
- 520 Roulin A. 2004. The evolution, maintenance and adaptive function of genetic colour
- 521 polymorphism in birds. Biological Reviews 79:815–848
- 522 (doi:10.1017/s1464793104006487)
- 523 Rosenblum EB, Hoekstra HE, Nachman MW. 2004. Adaptive reptile color variation and the
- evolution of the *Mc1r* gene. Evolution 58:1794–808
- Russell ES. 1985. A history of mouse genetics. Annual Review of Genetics 19:1–28
- 526 Ruxton GD, Sherratt TN, Speed MP. 2004. Avoiding attack. Oxford University Press,
- 527 Oxford, United Kingdom
- 528 San-Jose LM, Roulin A. 2017. Genomics of coloration in natural animal populations.
- 529 Philosophical Transactions of the Royal Society B 372:20160337
- 530 Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image
- analysis. Nature Methods doi:10.1038/nmeth.2089[C]

Giraffe coat patterns

- 532 Sherley RB, Burghardt T, Barham PJ, Campbell N, Cuthill I.C. 2010. Spotting the difference:
- towards fully-automated population monitoring of African penguins Spheniscus
- demersus. Endangered Species Research 11:101-111
- 535 Sherman PW, Reeve HK, Pfennig DW. 1997. Recognition systems. Pp. 69–96 in Behavioural
- ecology: an evolutionary approach (JR Krebs and NB Davies, eds.)Blackwell Scientific
- 537 Oxford, United Kingdom
- 538 Skinner JD, Smithers RHN. 1990. The mammals of the Southern African Sub-region. 2nd ed,
- 539 University of Pretoria, Pretoria, South Africa
- 540 Strauss MK, Kilewo M, Rentsch D, Packer C. 2015. Food supply and poaching limit giraffe
- abundance in the Serengeti. Population Ecology 57:505–516
- 542 Tang-Martinez Z. 2001. The mechanisms of kin discrimination and the evolution of kin
- recognition in vertebrates: a critical re-evaluation. Behavioural Processes 53:21–40
- Tibbetts EA, Dale J. 2007. Individual recognition: it is good to be different. Trends in
- 545 Ecology and Evolution 22:529–537
- 546 Tibshirani R, Walther G, Hastie T. 2001. Estimating the number of clusters in a data set via
- 547 the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical
- 548 Methodology) 63:411–423
- 549 Van Belleghem SM, Papa R, Ortiz Zuazaga H, Hendrickx F, Jiggins CD, McMillan WO,
- 550 Counterman BA. 2018. patternize: An R package for quantifying colour pattern variation.
- 551 Methods in Ecology and Evolution, 9:390–398
- 552 VanderWaal KL, Wang H, McCowan B, Fushing H, Isbell LA. 2014. Multilevel social
- organization and space use in reticulated giraffe (*Giraffa camelopardalis*). Behavioral
- 554 Ecology 25:17–26
- 555 White GC, Burnham KP. 1999. Program MARK: survival estimation from populations of
- 556 marked animals. Bird Study 46(Supplement):120–138

Giraffe coat patterns

D. E. Lee et al.

- 557 Whitehead H. 1990. Computer assisted individual identification of sperm whale flukes.
- 558 Reports of the International Whaling Commission, Special Issue 12:71–77
- 559 Willisch CS, Marreros N, Neuhaus P. 2013. Long-distance photogrammetric trait estimation
- in free-ranging animals: A new approach. Mammalian Biology 78:351–355
- 561 Wilson AJ, Reale D, Clements MN, Morrissey MM, Postma E, Walling CA, Kruuk LE,
- 562 Nussey DH. 2010. An ecologist's guide to the animal model. Journal of Animal Ecology
- 563 79:13–26
- 564 Wittkopp PJ, Williams BL, Selegue JE, Carroll SB. 2003. Drosophila pigmentation
- evolution: divergent genotypes underlying convergent phenotypes. Proceedings of the
- 566 National Academy of Sciences USA 100:1808–13
- 567 Wright S. 1917. Color inheritance in mammals –III. The rat. Journal of Heredity 8:426–430

568

Giraffe coat patterns

D. E. Lee et al.

570 **Figure Captions**

571	Figure 1 Representative images of spot patterns of mother-calf pairs of Masai giraffes
572	(Giraffa camelopardalis tippelskirchii) from the Tarangire ecosystem, Tanzania used
573	in this study. The blue rectangle shows the area analysed using ImageJ to characterize
574	spot pattern traits.
575	Figure 2 Representative spot outlines from Masai giraffes in northern Tanzania and
576	their corresponding circularity and solidity values. Ranges of spot trait values from
577	258 calves are given in parentheses.
578	Figure 3 Contributions of 10 trait measurement variables to the first 2 dimensions of the
579	principal components analysis of giraffe spots. The first dimension (Dim1) was
580	composed primarily of spot size-related traits (perimeter, maximum caliper, area, and
581	number of spots), the second dimension (Dim2) was composed primarily of spot shape
582	traits (aspect ratio, roundness, solidity, and circularity).
583	Figure 4 Results from k-means cluster analysis of giraffe spot patterns to define
584	phenotypic groups. Left is gap statistic for different numbers of groups. Right is 4
585	clusters mapped in PCA space.
586	Figure 5 Model-averaged seasonal (4 months) apparent survival estimates for coat
587	pattern phenotypic groups of giraffes defined by k-means clustering of their spot
588	pattern traits. There was evidence for significant differences in survival among
589	phenotypic groups during the younger ages, but those differences were greatly reduced as
590	the animals approached adulthood (age 9 – 11 seasons). Error bars are ± 1 SE.
591	Figure 6 Survival of neonatal giraffes during their first 4-months of life was negatively
592	correlated with number of spots (a) and aspect ratio (b). Number of spots and aspect
593	ratio are the inversely related to spot size and roundness (the variables used when

Giraffe coat patterns

D. E. Lee et al.

- describing coat pattern phenotypic groups), respectively. Black lines are model estimates,
- 595 grey lines are 95% confidence intervals.

596

D. E. Lee et al.

598

599 Table 1 Summary statistics for mother-offspring regressions of spot traits of Masai giraffes in northern Tanzania. Mean trait values, SD
600 (standard deviation), CV (among-individuals coefficient of variation), Reliability (mean % variation in measurements from different pictures of
601 the same individual), PO slope coefficients, F-statistics, and P values are provided. Statistically significant heritable traits are in bold.

						Maximum	Feret	Aspect			Mode	PCA 1st
	Number	Area	Perimeter	Angle	Circularity	Caliper	Angle	Ratio	Roundness	Solidity	Shade	Dimension
Mean	18.9	0.04	0.99	87.96	0.51	0.29	88.2	1.69	0.63	0.84	6924050	
SD	7.5	0.01	0.25	15.39	0.08	0.06	14.5	0.15	0.04	0.04	3930565	
CV	0.40	0.39	0.25	0.17	0.15	0.19	0.16	0.09	0.06	0.05	0.57	
Reliability	11	11	13	4	9	8	7	5	3	2	13	
PO Slope Coefficient	0.20	0.20	0.27	0.04	0.52	0.21	-0.15	0.19	0.08	0.53	0.44	0.39
PO Coefficient SE	0.23	0.21	0.18	0.20	0.16	0.21	0.15	0.18	0.17	0.17	0.22	0.21

Giraffe coat patterns						D.	D. E. Lee <i>et al</i> .					
F 1,29	0.76	0.87	2.27	0.04	9.97	1.01	0.91	1.11	0.19	9.73	4.16	3.45
P value	0.39	0.36	0.14	0.84	0.0037	0.32	0.35	0.30	0.66	0.0041	0.05	0.07

Giraffe coat patterns

D. E. Lee et al.

603

604	Table 2 Model selection results for giraffe calf survival according to phenotypic groups
605	defined by spot traits. Model weights indicated some evidence for group effects on survival.
606	Notation 'A' indicates a linear trend with age. Additive models indicate groups shared a
607	common slope coefficient, but had different intercepts; multiplicative models indicated
608	groups had different intercepts and different slopes. Model structure in all cases was $\{S(A \dots)$
609	g"(A) g'(A) p(t) c(t)}. Minimum AICc = 3236.38, $W = AIC_c$ weight, k = number of
610	parameters.

611

Model	ΔAICc	W	k
A + 3 groups	0	0.43	36
Null (no group effect)	0.94	0.27	34
A + 4 groups	2.06	0.15	37
$A \times 4$ groups	3.01	0.09	40
$A \times 3$ groups	3.91	0.06	38

612

613

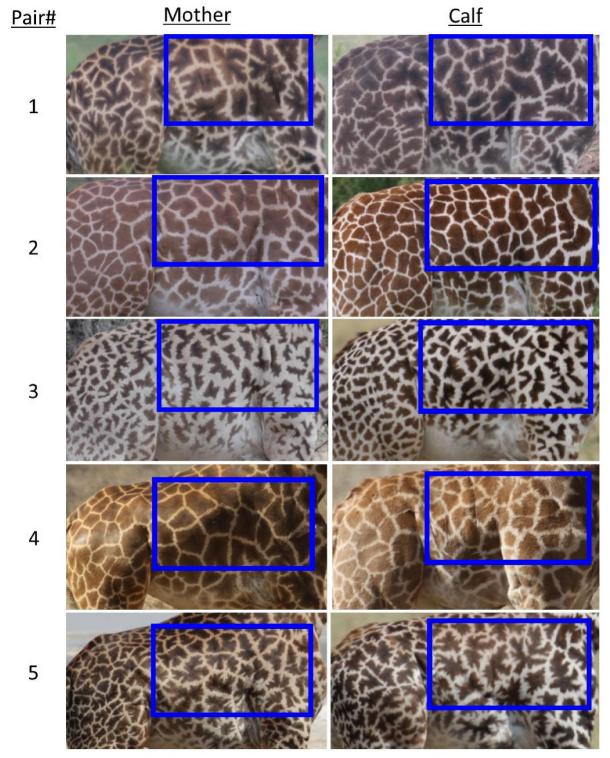
Giraffe coat patterns

D. E. Lee et al.

615

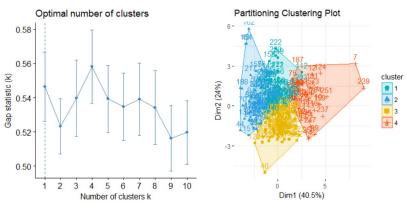
616	Table 3 Model selection results for giraffe calf survival as a linear or quadratic function
617	of spot trait covariates during the first season (4 months), first year, and first 3 years of
618	life. Confidence intervals of beta coefficients for two traits excluded zero (number of spots,
619	and aspect ratio), indicating evidence for significant spot trait effects on calf survival during
620	the first season of life. Model structure in all cases was $\{S(A + Covariate) g''(A) g'(A) p(t)\}$
621	c(t) with covariate structure in survival. Notation 'A' indicates a linear trend with age, 't'
622	indicates time dependence. Minimum AICc = 3239.87, W = AICc weight, k = number of
623	parameters. Models comprising the top 50% cumulative W are shown.

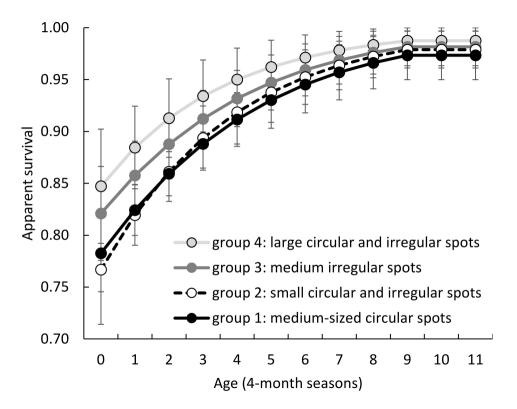
Model	ΔAICc	W	k
Number of spots, 1st season	0	0.048	33
Aspect ratio, 1st season	0.44	0.039	33
Roundness ² , 1st 3 years	0.82	0.032	34
Angle ² , 1st season	0.87	0.031	34
Roundness, 1st season	0.95	0.030	33
Solidity, 1st season	1.06	0.029	33
Area ² , 1st season	1.11	0.028	34
Circularity, 1st season	1.15	0.027	33
Angle ² , 1st 3 years	1.21	0.026	34
Null model, no covariate	1.22	0.026	32

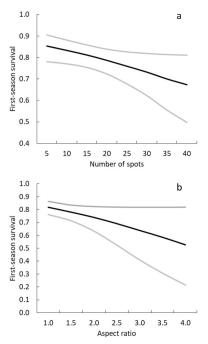

Giraffe coat patterns

D. E. Lee *et al*.

Maximum caliper, 1st season	1.30	0.025	33
PCA dimension 1, 1st year	1.63	0.021	33
Angle, 1st 3 years	1.75	0.020	33
Solidity ² , 1st season	1.76	0.020	34
Perimeter, 1st season	1.88	0.019	33
Feret ange ² , 1st season	1.88	0.019	34
PCA dimension 2^2 , 1st year	1.90	0.019	34
Feret angle, 1st season	1.93	0.018	33
Number of spots ² , 1st season	2.06	0.017	34


625


626



	Circularity	Solidity
<u>Shape</u>	(<u>0.10—0.94)</u>	(0.52—0.96)
	0.15	0.66
550	0.13	0.60
Õ	0.88	0.94
$\widehat{}$	0.37	0.76
0	0.40	0.83
\sum	0.57	0.82
\sqrt{s}	0.44	0.76
SIL	0.12	0.53
\bigcirc	0.83	0.96

