
Title 

Sequential regulatory activity prediction across chromosomes with convolutional neural networks. 

 

Authors 

David R. Kelley, Yakir A. Reshef. 

 

1. Calico Labs. South San Francisco, CA, USA. 

2. Department of Computer Science. Harvard University. Cambridge, MA, USA. 

 

Correspondence to: drk@calicolabs.com 

 

Abstract 

Functional genomics approaches to better model genotype-phenotype relationships have important 

applications toward understanding genomic function and improving human health. In particular, 

thousands of noncoding loci associated with diseases and physical traits lack mechanistic 

explanation. Here, we develop the first machine-learning system to predict cell type-specific 

epigenetic and transcriptional profiles in large mammalian genomes from DNA sequence alone. 

Using convolutional neural networks, this system identifies promoters and distal regulatory elements 

and synthesizes their content to make effective gene expression predictions. We show that model 

predictions for the influence of genomic variants on gene expression align well to causal variants 

underlying eQTLs in human populations and can be useful for generating mechanistic hypotheses 

to enable GWAS loci fine mapping. 

 

Introduction 

Although many studies show strong relationships between variation in genotype and phenotype 

across a range of human diseases and traits, the mechanisms through which this relationship 

operates remain incompletely understood. Noncoding variation has especially stifled progress; most 

genomic loci statistically associated with phenotypes via genome-wide association studies (GWAS) 

do not alter coding sequence, but mechanisms for only a rare few have been thoroughly described. 

Numerous lines of evidence suggest that many noncoding variants influence traits by changing 

gene expression 1-3. In turn, gene expression determines the diversity of cell types and states in 

multi-cellular organisms 4. Thus, gene expression offers a tractable intermediate phenotype for 

which improved modeling would have great value. 

 

Large-scale consortia and many individual labs have mapped the epigenetic and transcriptional 

profiles of a wide variety of cells 4-6. Further, it has recently become appreciated that many of these 

data can be accurately modeled as a function of underlying DNA sequence using machine learning. 

Successful predictive modeling of transcription factor (TF) binding, accessible chromatin, and 

histone modifications has provided mechanistic insight and useful interpretation of genomic variants 

7-11. In particular, the substantial training data available from the 3 billion-nucleotide human genome 

has enabled deep learning approaches to achieve significant gains 10,11. 
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Despite this progress, models to predict cell type-specific gene expression from DNA sequence 

have remained elusive in complex organisms. Existing models all use experimental annotations as 

input (e.g. peak calls for various known regulatory attributes), allowing them to shed light on the 

relationships between these annotations, but disabling their application to regulatory variant 

interpretation 12,13. Even with intra-experiment training data to infer the relevant sequence motifs, the 

complexity of distal regulation across up to millions of nucleotides challenges the current generation 

of methods 14. However, a solidifying base of gene regulation principles from inquiry into enhancer 

biology and 3D chromosomal contact domains has yet to be fully incorporated into expressive 

machine learning models 15. Considering larger sequences and cues from diverse experimental 

data offers a path forward. More effective models would enable researchers to profile one instance 

of a tissue or cell type and project that profile to individuals with varying genomic sequence. 

 

Here, we leverage thousands of epigenetic and transcriptional profiles from hundreds of human cell 

types and novel machine-learning algorithms to provide comprehensive models of transcription as a 

function solely of DNA sequence. From intra-experiment training data and DNA sequence, we can 

predict mRNA expression, as measured by capped analysis of gene expression (CAGE), with 

concordance matching the acquisition of a replicate experiment. Using the model, we predict the 

difference between the two alleles of genomic variants, focusing particularly on predicted changes 

to gene expression. These predictions align well with magnitudes of effect reported in expression 

QTL studies performed in human populations. We demonstrate the considerable potential value of 

this observation to identify likely causal variants and mechanisms within GWAS loci. 

 

Basenji 

In previous work, we introduced a deep convolutional neural network approach named Basset for 

modeling “peak”-based chromatin profiles, focusing particularly on DNase hypersensitivity 11. That 

model makes a single binary prediction for a given input sequence of 500-1000 bp for each training 

dataset provided. Here, we modify the Basset architecture to (1) model distal regulatory 

interactions and (2) predict finer resolution, quantitative (as opposed to binary) genomic profiles 

that are more appropriate for the dynamic range of gene expression (Figure 1). As a related 

approach, but one begging for metaphor to a more nimble and far-sighted hound, we refer to this 

method as Basenji. 
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Figure 1 - Sequential regulatory activity prediction. 

DNA sequences come in to the model one hot coded to four rows representing A, C, G, and T. The 

annotations are fabrications to help convey the reasons for the various elements of the architecture. We apply 

several layers of convolution and max pooling, similarly to previous methods 11, to obtain representations that 

describe 128 bp bins. To share information across large distances, we apply several layers of dilated 

convolutions. The purple squares indicate the columns that the convolution directly sees; the teal shade is 

drawn proportional to the number of operations performed on that column with respect to the center position. 

Dilated convolution layers are densely passed on to the final prediction layer, where a shared fully connected 

neural network makes predictions across the sequence. We compare these predictions to the experimental 

counts via a Poisson regression loss function and use stochastic gradient descent with back propagation to fit 

the model parameters. 
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The model accepts much larger (217=)131 kb regions as input and, similarly to Basset, performs 

multiple layers of convolution and pooling, to condense the DNA sequence to a sequence of vector 

representations for 128 bp regions. To share information across long distances, we then apply 

several layers of densely connected dilated convolutions (Methods). After these layers, each 128 

bp region is represented by a vector that considers the detected regulatory elements across a large 

span of sequence. Finally, we apply a fully connected neural network layer to parameterize a multi-

task Poisson regression on a normalized count of aligned reads to that region for every dataset 

provided 16. That is, the model’s ultimate goal is to predict read coverage in 128 bp bins across 

these sequences. 

 

Modeling binned count data as opposed to peak data required careful preprocessing beyond that 

performed in the standard pipelines of genomics consortium projects. For example, processed 

consortium data discards multi-mapping read alignments, which leaves half the genome 

incompletely annotated, despite the substantial evidence that repetitive sequence is critical to gene 

regulation 17. Thus, we downloaded the original sequencing reads for 593 ENCODE DNase-seq, 

1704 ENCODE histone modification ChIP-seq, 356 Roadmap DNase-seq, 603 Roadmap histone 

modification ChIP-seq, and 973 FANTOM5 CAGE experiments. We processed these data with a 

pipeline that includes additional computation to make use of multi-mapping reads and normalize for 

GC bias (Methods). Though additional data modalities may require slight modification, this base 

pipeline will allow seamless addition of future data. 

 

We trained to fit the model parameters on one set of genomic sequences annotated by all datasets 

and benchmarked predictions on those same datasets for a held-out set of sequences. We used a 

Basenji architecture with 4 standard convolution layers, pooling in between layers by 2, 4, 4, and 4 

to a multiplicative total of 128, 7 dilated convolution layers, and a single fully connected layer to 

predict the 4229 coverage datasets. We optimized all additional hyper-parameters using Bayesian 

optimization (Methods). 

 

Prediction accuracy 

To assess how effectively the model predicts the signal in these datasets, we compared predictions 

to coverage signal in the 128 bp bins for a set of held-out test sequences (Figure 2A). As previously 

observed, accuracy varies by the type of data—punctate peak data tend to be more directly 

dependent on the underlying sequence, making for an easier prediction task (Figure 2B). 

Accordingly, Basenji predictions explained the most variance in DNase-seq and ChIP-seq for active 

regulatory regions. Lower accuracy for the broad chromatin domains marked by modifications like 

H3K79me2 and H3K9me3 is expected because they depend more on distant sequence signals and 

incompletely understood propagation mechanisms 18. 
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Figure 2 - Basenji predicts diverse epigenetic and transcriptional profiles from DNA sequence. 

(A) The AKT2 locus exemplifies the genome-wide accuracy of Basenji predictions; gene promoters and the 

strongest distal regulatory elements are easily identified, with some false positive and negative predictions for 

weaker elements. For each track, the darker version on top represents the experimental coverage and the 

lighter version below represents Basenji predictions. (B) We computed the variance explained (R2) for each 

experiment and plot here the distributions classified by dataset type. Basenji predicts punctate peak data, but 

broad chromatin marks remain challenging. (C) For the median accuracy DNase experiment, fetal lung, we 

plotted the log2 predictions versus log2 experiment coverage in 128 bp bins. (D) For all replicated 

experiments, we plotted log-log Pearson correlation between the replicate experiments versus the correlation 

between the experiment and prediction (averaged across replicates). Basenji predictions exceed the 

accuracy of a second replicate on average and are more accurate for experiments with less variability 

between replicates. 
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The quantitative signal prediction identified peaks called from the original data with a similar level of 

accuracy as previous approaches (Supplementary Figure 1). The mean AUPRC for DNase peaks 

was 0.44 across the genome, approaching the 0.56 previously reported for Basset on an easier 

dataset enriched for active regions and with smoothing across similar experiments 11. 

 

1284 replicated experiments (mostly technical, rather than biological) allowed us to appreciate that 

model predictions in the 128 bp bins had greater correlation than the signal obtained from a second 

replicate on average (Figure 2D; Supplementary Figure 2). Even cross-replicate predictions (i.e. the 

prediction for replicate one versus the real data for replicate two) matched the correlation between 

replicates (Supplementary Figure 3). Basenji was more accurate for experiments with more 

correlated replicates, suggesting that higher quality data enables more effective modeling of the 

sequence dependence of the regulatory signal (Figure 2D). The silencing modifications H3K9me3 

and H3K27me3 had low replicate consistency; improved data may lead to better modeling of 

repressive chromatin in the future (Supplementary Figure 2,3). 

 

We hypothesized that the 7 dilated convolution layers enabled the model to capture the distal 

influences that are an established feature of human gene regulation. To isolate the influence of 

receptive field width, we trained similar models with 1-7 dilated layers. Test accuracy increased with 

increasing receptive field for all data types, confirming the value added by the additional dilated 

convolution layers of the final network (Supplementary Figure 4). 

 

Cell type-specific gene expression 

A driving goal of this research is to effectively model cell type-specific gene expression. CAGE 

quantifies gene expression by capturing and sequencing 5’ capped mRNAs to measure activity 

from genes’ various start sites 6. To offer a gene-centric view from Basenji predictions, we focused 

on annotated TSSs and computed CAGE accuracy for those outside the training set. After log2 

transform, the mean Pearson correlation of gene predictions with experimental measurements 

across cell types was 0.84 overall and 0.75 for nonzero genes (Figure 3A,B), which is on par with 

models that consider measurements of the relevant regulatory events with sequencing assays 

rather than predicting them from sequence 13. Correlation is greater for CAGE datasets with more 

reads aligned to TSSs due to greater sequencing depth and signal to noise ratio (Figure 3A), 

suggesting that the lower half of the datasets are constrained more by sparse, noisy signal rather 

than algorithm learning capacity. 
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Figure 3 - Basenji predicts cell type-specific gene transcription. 

(A) We computed Pearson correlation between the log2 prediction and experiment across all test set genes 

for each CAGE dataset. We plotted those correlations against the total number of reads aligned to test gene 

TSSs, which measures the relevant sequencing depth. (B) For the median accuracy cell, the DS1 

lymphangiectasia cell line, we plotted the experiment coverage versus Basenji prediction. (C) For both the 

experimental measurement and Basenji prediction, the gene expression by CAGE dataset matrix displays 

clusters. We measured the similarity of those clusters between the real and predicted data by bootstrap 

sampling gene subsets, clustering both the real and predicted data, and computing the adjusted Rand index 

between the cluster sets (Methods). The adjusted Rand index is significantly greater than the null model value 

zero (p-value < 1e-26). (D) We plotted gene expression versus prediction after quantile normalization across 

cell types for the genes ranked in the 95th, 75th, 50th, and 25th percentiles by Pearson correlation. 

 

 

 

 

Predictions varied across cell types, suggesting that the model learns cell type-specific 

transcriptional programs (Supplementary File 5). For these experiments, we normalized the 

predictions and real data across experiments with quantile normalization. Substituting the 

predictions into a hierarchical clustering of the true expression maintained apparent clusters. To 

quantify this concordance, we performed Gaussian mixture model clustering of bootstrap gene 

samples for the real and predicted expression profiles. The adjusted Rand index distribution (mean 
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0.087) indicated significant agreement between clusters (p-value < 1e-18). 

 

To quantify the greater difficulty of predicting highly cell type-specific expression, we computed the 

mean squared prediction error for sets of genes binned into quartiles by their coefficient of variation 

across all CAGE experiments. The stable expression across cell types of housekeeping genes relies 

on a particular promoter architecture 19, which the model learns well; accordingly, predictions are 

closer to their measured values in the genes most stable across experiments (Supplementary 

Figure 6). Beyond this first quartile, increasing variability does not weaken prediction accuracy, 

further supporting the view that the model has learned cell type-specific regulatory programs. 

 

We found it instructive to closely examine genes with variable expression patterns. We computed 

accuracy statistics independently for each gene on their vectors of quantile normalized predictions 

and experimental measurements across cell types. In Figure 3D, we display genes at the 95th, 

75th, 50th, and 25th percentiles ranked by correlation. Instances of effective predictions across 

several orders of magnitude, such as for BIRC3 with its greatest expression in the small intestine, 

stomach, and spleen, lend credence to the model. In many cases, Basenji has learned that the 

gene’s expression varies across cells, but underestimates the dynamic range of the variance. For 

example, BMPR2 and LTF predictions correlate with the experimental measurement, but compress 

the range between the most and least expressed cells. Some degree of variance reduction is 

warranted because the CAGE measurement includes stochastic noise that Basenji will implicitly 

smooth out. However, poor prediction of some genes, such as mitochondrial protein UCP2 indicate 

that an inability to capture more complex regulation 20 likely also dampens prediction confidence. 

 

Distal regulatory elements 

To further explore the role of distal sequence in the model’s predictions, we computed saliency 

maps for the regions surrounding TSSs to quantify the influence of genome segments. Briefly, the 

saliency scores depend on the magnitude of the gradient of the model’s prediction at that TSS with 

respect to each of the 128 bp segments that arise after the convolutional layers and before the 

dilated convolutions share information across wider distances (Methods). Peaks in this saliency 

score detect distal regulatory elements, and its sign indicates enhancing versus silencing influence. 

 

The region surrounding PIM1 in the GM12878 cell line exemplifies this approach (Figure 4A). The 

promoter region is highly influential, including repressive segments; mutating the driver motifs in 

these regions would increase the prediction. More distant elements are also captured; we identified 

two enhancers annotated by ENCODE, one with a panoply of motifs highlighted by POU2F and 

another with two adjacent PU.1 motifs. We searched for perturbation data to support these 

regulatory interactions. In a collection of 59 siRNA TF knockdowns performed in a similar 

lymphoblastoid cell line GM19238, POU2F1 and POU2F2 knockdowns resulted in differential 

expression of PIM1 mRNA with p-values 0.026 and 0.066 respectively 21. PU.1 could not be 

depleted sufficiently. 
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Figure 4 - Basenji identifies distal regulatory elements. 

(A) ENCODE enhancer annotations for PIM1 in GM12878 specify two downstream regulatory elements. 

Basenji saliency scores (see Methods) mark these elements, in addition to a variety of others that lack typical 

enhancer chromatin. In silico saturation mutagenesis of these elements with respect to Basenji’s PIM1 

GM12878 CAGE prediction outline the driving motifs. The upstream cis-regulatory module most prominently 

features a POU2F factor motif, while the downstream element consists solely of two adjacent PU.1 motifs. (B) 

We plotted the cumulative distributions of the maximum saliency score for elements of various annotation 

classes in GM12878. Genome-wide, promoter and enhancer annotations have greater saliency scores than 

null sequence. CTCF binding sites outside of those regulatory elements appear to not be taken advantage of. 

 

 

 

To assess this method’s ability to detect such elements genome-wide, we downloaded several 

curated annotations from ENCODE for GM12878—promoters, enhancers (not overlapping 

promoters), and CTCF binding sites (not overlapping promoters or enhancers) 5. We computed the 

maximum saliency value overlapping instances of these annotations and shuffled background sets. 

Saliencies for promoters and enhancers were significantly greater than those for the background 

set (Mann-Whitney U test p-values 9e-22 and 4e-7 respectively), but CTCF sites were not (Figure 

4B). The established role of CTCF in distal regulation suggests significant potential in future work to 

more effectively model the contribution of these elements. 
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Expression QTLs 

Functional profiling of genotyped individuals is widely used to detect influential genomic variation in 

populations. The Gene-Tissue Expression (GTEx) project offers one such data collection, having 

measured RNA abundance via RNA-seq in 44 separate human tissues post-mortem and searched 

for genomic variants significantly correlated with gene expression (eQTLs) 22. Without observing 

such data, a trained Basenji model can be used to predict which single nucleotide polymorphisms 

(SNPs) are eQTLs by comparing model output for the different SNP alleles. To benchmark this 

approach, we downloaded the GTEx V6p release and focused on 19 tissues that were reasonable 

semantic matches for FANTOM5 CAGE profiles. 

 

Given a SNP-gene pair, we define its SNP expression difference (SED) score as the difference 

between the predicted CAGE coverage at that gene’s TSS (or summed across multiple alternative 

TSS) for the two alleles (Figure 5A). Linkage disequilibrium (LD) complicates the comparison to 

eQTL statistics; marginal associations and significance calls depend on correlated variants in 

addition to the measured variant, and association scans are better powered for variants that tag 

more genetic variation 1. To put SED on a level plane with the eQTL statistics, we distributed the 

SED scores according to variant correlations to form a signed LD profile of our SED scores, here 

denoted SED-LD (Methods) 55. 
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Figure 5 - Basenji gene-specific variant scores enrich for eQTLs. 

(A) We defined SNP expression difference (SED) scores for each bi-allelic variant and gene combination as 

the difference between the model prediction for the two alleles at that gene’s TSSs. (B) We computed the 

signed LD profile of the SED annotations (denoted by SED-LD) to more readily compare to eQTL 

measurements in human populations (Methods). |SED-LD| shows a strong relationship with eQTL statistics 

from GTEx. Here, we binned variants into five quantiles by the difference between their regression predictions 

including and excluding |SED-LD| and plotted the proportion of variants called significant eQTLs in pancreas. 

The proportion rises with greater |SED-LD| to 4.1x in the highest quantile over the average of the bottom 

three quantiles, which represented the median enrichment in a range of 3-7x across the 19 tissues. See 

Supplementary Figure 7 for all tissues and TSS-controlled analysis. (C) Plotting |SED-LD| versus the chi-

squared statistics reveals a highly significant correlation. 

 

 

 

We checked whether the absolute value of SED-LD correlated with eQTL chi-squared statistics 

after controlling for the total amount of genetic variation tagged by each SNP as measured by LD 

score 23 on a set of LD-pruned variants (Methods). Indeed, |SED-LD| significantly correlated with the 

adjusted eQTL statistics in all 19 tissues (p-values all <1e-54 using LD-pruned variants from chr1). 

To assess the quantitative extent of this enrichment, we ranked variants by the difference between 

their predictions from regression models including and excluding |SED-LD| for each tissue and 

binned into five quantiles. The proportion of variants called significant eQTLs was 3-7x greater in 

the top quantile relative to the average of the bottom three in all tissues (Figure 5B). This effect was 
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robust to controlling for distance to TSS (Supplementary Figure 7). Thus, our analyses support a 

robust predictive relationship between Basenji scores and population measurements of RNA 

abundance, despite the additional layers of post-transcriptional regulation captured by the eQTL 

analysis and presently invisible to Basenji. 

 

Disease-associated loci 

Basenji’s utility for analyzing human variation goes beyond intermediate molecular phenotypes like 

eQTLs to downstream ones like physical traits and disease. Basenji also offers substantial upside—

eQTL analysis is highly informative for disease variant interpretation, but few cell types can plausibly 

be sampled to conduct such an investigation. With Basenji, a single experiment is sufficient to 

predict a genomic variant’s influence on gene expression in that cell type. We hypothesized that a 

predictive view of the 973 human samples profiled by CAGE would offer a novel perspective on 

disease variants. 

 

To test the utility of Basenji SNP scores for this application, we acquired a curated set of disease 

variants studied by the successful DeepSEA method to predict variant influence on TF binding and 

chromatin 10. DeepSEA trained deep convolutional neural networks to predict ENCODE and 

Roadmap DNase and ChIP-seq peak calls. The set includes 12,296 bi-allelic SNPs taken from the 

NIH GWAS Catalog database 24 and a negative set with matched minor allele frequencies that we 

sampled down to the same size. We followed the DeepSEA authors’ approach of ignoring linkage 

disequilibrium in order to compare fairly. For each SNP, we computed the log2 ratio between the 

predictions for the two alleles in each 128 bp bin across the surrounding region. We assigned the 

SNP its maximum absolute value of this ratio. 200 principal components were sufficient to represent 

the full profile well. A logistic regression model to predict GWAS catalog presence using the Basenji 

principal component features achieved 0.661 AUROC, slightly greater than the .658 achieved by 

DeepSEA using a more sophisticated model that also included conservation statistics 

(Supplementary Figure 8). Adding DeepSEA’s predictions as a feature to our logistic regression 

model increased accuracy to 0.7045, confirming the value of our predictions. 

 

Having established meaningful signal in the predictions, we analyzed a set of 1170 loci associated 

with immune phenotypes and processed using the linkage-based statistical fine mapping approach 

PICS 25. 67 loci contained a variant predicted to alter a gene’s transcription in one of the CAGE 

experiments by >10%, and an additional 73 contained a variant predicted to alter one of the 

chromatin profiles >10% at a gene’s start sites. rs78461372, associated with multiple sclerosis via 

linkage with the lead variant rs74796499 26, emerged from this analysis. Basenji predicts the C>G at 

rs78461372 to increase transcription of the nearby GPR65 in many cells, most severely acute 

lymphoblastic leukemia cell lines, thyroid, insular cortex, and a variety of immune cells. GPR65 is a 

receptor for the glycosphingolipid psychosine and may have a role in activation-induced cell death 

or differentiation of T-cells 27. Without mention of GPR65 in the literature, sphingolipid metabolism 

has emerged as a therapeutic target for MS via the drug fingolimod, a sphingosine analogue that 
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alters immune cell trafficking and is now in clinical use 28. The model also predicts a small increase 

for GALC, 12.9 kb away, in many immune cells. Both genes have been implicated in several 

immune diseases (inflammatory bowel disease, Crohn’s disease, ulcerative colitis) via variants 

independent of this set 29, and both genes may propagate a downstream causal influence on the 

disease. 

 

PICS fine mapping assigns rs78461372 a 5% probability of causal association with multiple 

sclerosis and the leading variant rs74796499 a 24% probability. Basenji predicts no effect for 

rs74796499 or any other variants in the PICS credible set. To validate the predicted stronger effect 

of rs78461372 on nearby transcription, we consulted the GTEx multiple tissue eQTL analysis 22. 

GTEx supports Basenji’s diagnosis, detecting significantly increased GPR65 expression for 

individuals with the minor allele at rs78461372 in transformed fibroblasts (marginal beta 0.75; p-

value 1.8e-9); the competing correlated variant rs74796499 has a smaller measured effect 

(marginal beta 0.66; p-value 4.9e-7). 

 

To better understand the model prediction, we performed an in silico saturation mutagenesis 11,30 in 

several affected cell types. That is, we generated sequences that introduce every possible mutation 

at all sites in the region, predicted CAGE activity, and computed the difference from the reference 

prediction. The functional motifs that drive the model’s prediction emerge as consecutive sites 

where mutations result in large differences. rs78461372 overlaps an ETS factor motif adjacent to a 

RUNX factor motif, where the G allele confers a stronger hit to the JASPAR database PWM for ETS, 

discovered using the motif search tool Tomtom 31,32 (Figure 6). Interestingly, Basenji predicted 

opposite effects for these motifs in different cell types. In immune cells, where GPR65 and GALC 

are more active, disruption of the motifs would result in a decreased prediction. Alternatively, in e.g. 

insular cortex, disruption of the same motifs would increase the model’s predictions. Altogether, 

Basenji predictions shed substantial light on this complex and influential locus, offering several 

promising directions for future work to unravel the causal mechanism. 
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Figure 6 - Basenji gene-specific variant scores illuminate multiple sclerosis associated locus. 

Lead variant rs74796499 is associated with multiple sclerosis 53. Among the credible set of linked variants, 

Basenji predicts that rs78461372 would alter transcription of the nearby genes GPR65 and GALC. In immune 

cells, such as treated CD14+ cells depicted here, both genes are transcribed and the C>G introduces an ETS 

factor motif that enhances transcription. In contrast, in other cell types, e.g. insular cortex, where GPR65 is 

far less transcribed, Basenji predicts the same motifs play a role in repressing the gene. 

 

 

 

Discussion 

Transcriptional regulation is the primary driver of gene expression specificity across cell types and 

states. The genome research community needs more effective models of how sequence 

determines transcription in large mammalian genomes in order to understand how genomic 

alterations influence the downstream physical output of those genomes. Here, we introduced a 
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comprehensive model to predict epigenetic and transcriptional profiles from DNA sequence. A 

deep convolutional neural network, trained on >4000 datasets, shares information across large 

distances with dilated layers to make sequential predictions along the chromosomes. The model 

explains considerable variance in these data, including cell type-specific activity. Predictions for 

sequences containing different versions of variant alleles agree with measurements made in human 

populations and subjected to eQTL analysis. 

 

Although we demonstrated the present utility of this approach, there are several indications that we 

may be scratching the surface of what will be possible in this space. The datasets analyzed vary in 

quality, both by signal-to-noise ratio and technical variance from under-sampling with limited 

sequencing. We observed increasing predictive accuracy for experiments with greater sequencing 

depth and greater consistency between replicates. Thus, sequence-based modeling will benefit 

from improved experimental protocols, which are an area of active research (e.g., CUT&RUN in 

place of ChIP 33). Furthermore, most of the samples either describe cell lines or heterogeneous 

tissue samples. Pending efforts to profile more pure, specific cell types and states will enhance our 

ability to thoroughly detect all regulatory elements and offer precise predictions of when and where 

regulatory activity will occur 34. 

 

Dilated convolutions extended the reach of our model to view distal regulatory elements at 

distances beyond previous models to 32 kb receptive field width. This distance contains many, but 

certainly not all regulatory elements 35,36, and extending the model’s vision and insulator-awareness 

will be an active area of future research, with considerable potential to improve predictive accuracy 

and variant interpretation. 

 

Despite focusing only on transcription without considering post-transcriptional regulation and 

interaction across regulatory layers 37, we found our predictions highly informative of which genomic 

variants would be highlighted as eQTLs in RNA-seq population studies measuring RNA abundance 

levels. We foresee considerable potential in further integrating regulatory activity models trained on 

functional genomics profiles with population genotyping and phenotyping. These orthogonal 

approaches both offer views into how the noncoding genome works, and their joint consideration 

ought to sharpen those views. We envision Basenji as an important step forward in this direction. 

 

Methods 

Data preprocessing 

Finer resolution analysis of broad regions exposes expressive machine learning models more to 

biases in functional genomics sequencing experiments (e.g. fragment GC%) 38,39 and repetitive 

DNA. Processed data available for download by the consortiums disposes multi-mapping reads and 

largely ignores these biases. Thus, we carried out our own processing of this data, with greater 

care taken to account for how these factors would influence the downstream training algorithms. 
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We downloaded FASTQ files for 973 CAGE experiments performed by FANTOM5 6, 593 DNase 

and 1704 histone modification ChIP-seq performed by ENCODE 5, and 356 DNase and 603 histone 

modification ChIP-seq performed by the Epigenomics Roadmap 4. We aligned the reads with 

Bowtie2, requesting the program return a maximum of 10 multi-mapping alignments 40. We 

proportioned these multi-reads among those 10 positions using an EM algorithm that leverages an 

assumption that coverage will vary smoothly 41. In the algorithm, we alternate between estimating 

expected coverage across the genome using a Gaussian filter with standard deviation 32 and re-

allocating multi-read weight proportionally to those coverage estimates. We normalized for GC% 

bias using a procedure that incorporates several established ideas 39,42. We assigned each position 

an estimated relevant GC% value using a Gaussian filter (to assign greater weight to nearby 

nucleotides more likely to have been part of a fragment relevant to that genomic position). Then we 

fit a third degree polynomial regression to the log2 coverage estimates. Finally, we reconfigured the 

coverage estimates to highlight the residual coverage unexplained by the GC% model. A python 

script implementing these procedures to transform a BAM file of alignments to a BigWig file of 

inferred coverage values is available in the Basenji tool suite. 

 

Avoiding assembly gaps and unmappable regions >1 kb, we extracted (217=)131 kb non-

overlapping sequences across the chromosomes. We discarded sequences with >35% 

unmappable sequence, leaving 14,533 sequences. We separated 5% for a validation set, 5% for a 

test set, and the remaining 90% for training. Within each sequence, we summed coverage 

estimates in 128 bins to serve as the signal for the model to predict. 

 

Model architecture and training 

We implemented a deep convolutional neural network to predict the coverage values as a function 

of the underlying DNA sequence. The high-level structure of the network consisted of convolution 

layers, followed by dilated convolution layers, and a final fully connected layer (Figure 1). All layers 

applied batch normalization, rectified linear units, and dropout. Standard convolution layers applied 

max pooling in windows of 2, 4, 4, and 4 to reach the 128 bp bin size. We compared the predicted 

and measured values via a Poisson regression log-likelihood function. 

 

Dilated convolutions are convolution filters with gaps whose size increases by a factor of two in 

each layer, enabling the receptive field width to increase exponentially 43. Dense connection of 

these layers means that each layer takes all previous layers as input, as opposed to taking only the 

preceding layer 44. This architecture allows for far fewer filters per layer because the incoming 

representation from the standard convolutional module and the subsequent refinements of the 

dilated layers are all passed on; this allows each layer to focus on modeling the residual variance 

not yet captured 45. We applied seven dilated convolution layers in order to reach a receptive field 

width of ~32 kb. This width will capture only a subset of possible distal regulatory interactions 35,36, 

and we intend to engineer methods to increase it. Nevertheless, it captures substantially more 
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relevant regulatory sequence than previous models, and evidence that variant effect magnitude 

decreases with distance suggests there will be diminishing returns to extension 22. 

 

We optimized the loss function via stochastic gradient descent with learning rates adapted via 

ADAM 46. Our TensorFlow implementation leverages automatic differentiation and the chain rule to 

compute the gradient of the loss function with respect to each parameter to step towards a local 

optimum 47. We used Bayesian optimization via the GPyOpt package to search for effective hyper-

parameters throughout the model, including the convolution widths, convolution filter numbers, fully 

connected unit numbers, dropout rates, learning rate, and momentum parameters 48 

[https://github.com/SheffieldML/GPyOpt]. 

 

Gene expression cluster comparison 

To measure Basenji’s ability to recapitulate gene expression clusters from the real data, we focused 

on the 2000 most variable genes and sampled sets of 1000 using a bootstrap procedure. For each 

sample, we performed Gaussian mixture model clustering with 10 clusters on the real and predicted 

gene expression matrixes across cell types. We quantified the similarity of the clusters with the 

adjusted Rand index statistic. The distribution of the statistic was approximately normal; thus, we 

estimated the mean and variance of the distribution to compute a p-value that the distribution was 

greater than zero. 

 

Regulatory element saliency maps 

We desired a computationally efficient measurement of the influence of distal sequence on 

predictions at gene TSSs. Deep learning research has suggested several effective schemes for 

extracting this information. Guided by the insights of prior work 49,50, we computed experiment-

specific saliency maps as the dot product of the 128 bp bin representations and their gradients with 

respect to the model prediction for that experiment. The rectified linear unit nonlinearity guarantees 

that all representation values will be positive. Thus, positive gradients indicate that stronger 

recognition of whatever triggered the unit would increase the prediction (and weaker recognition 

would decrease it); negative gradients indicate the opposite. Taking the dot product with the 

sequence’s representation amplifies the signal and sums across the vector, aggregating the effect 

into one signed value. Positive values identify regions where activating elements were recognized, 

and negative values identify repressor elements. 

 

GTEX eQTL analysis 

We downloaded the eQTL analysis in the GTEx V6p release and primarily studied the chi-squared 

statistics and significance calls 22. Nearby variants in the population data can have highly correlated 

statistics due to linkage disequilibrium. In contrast, Basenji can isolate the contribution of individual 

variants. To place SED scores and eQTL statistics on a level plane, we computed their signed LD 

profile 55 using LD computed from 1000 Genomes Phase 3 Europeans 51. The signed LD profile of a 

signed genomic annotation gives the expected marginal correlation of each SNP to a hypothetical 
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phenotype for which the true causal effect of each SNP is the value of the annotation at that SNP. 

 

We included several covariates that are known to influence eQTL chi-squared statistics 52. LD score 

measures the amount of variation tagged by an individual variant 23. We found that LD score 

correlated with the chi-squared statistics. Thus, we downloaded pre-computed scores for the 

European 1000 Genomes from the LDSC package 23 and included them in the analyses. We also 

found that distance to the nearest TSS correlated with the chi-squared statistics; variants closer to 

TSSs are more likely to influence gene expression. To control for this effect, we annotated SNPs 

with indicator variables classifying TSS distance as < 500 bp, 500-2000 bp, 2000-8000 bp, or 

8000-32000 bp and computed LD scores to each annotation using LD information from 1000 

Genome Phase 3 Europeans, as in 1. 

 

Finally, we focused on chromosome 1 for computational efficiency and pruned the set of variants 

down to exclude variants with LD > 0.5. In a first analysis, we fit regression models individually for 

each tissue with LD score and |SED-LD| to the chi-squared statistics, and considered the 

significance of coefficients assigned to |SED-LD| across all variants. In a second analysis, we added 

the TSS-LD variables to the regression. 

 

Software availability 

The code to preprocess data, train models, and perform the analyses described is available from 

https://www.github.com/calico/basenji 
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Supplementary Figures 

 

Supplementary Figure 1 - Basenji accurately predicts peaks. 

For each dataset, we called peaks on the smoothed count data within the 128 bp bins using a 

Poisson model similar to the MACS2 approach and applied a .01 FDR cutoff 54. We computed the 

area under the precision-recall curve (AUPRC) for Basenji predictions of each experiment and plot 

the distributions for the various types of punctate dataset above. 
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Supplementary Figure 2 – Basenji predictions within-replicate match replicate concordance. 

For all replicated experiments, we plotted log-log Pearson correlation between the replicate 

experiments versus the correlation between the experiment and prediction (averaged across 

replicates). On the right, we make the same plots, faceted by experiment type. 
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Supplementary Figure 3 – Basenji predictions cross-replicate match replicate concordance. 

For all replicated experiments, we plotted log-log Pearson correlation between the replicate 

experiments versus the correlation between the experiment and its replicate’s prediction (averaged 

across replicates). On the right, we make the same plots, faceted by experiment type. 
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Supplementary Figure 4 - Dilated layers improve predictive accuracy. 

We trained models for a range of dilated convolution layer number. (A) We plotted the distribution of 

test R2 for each experiment, by data type. Test accuracy increases with each additional layer for all 

data types. (B) We plotted the test R2 of each experiment for the 6 layer versus 7 layer model. 

Adding the 7th layer improves test accuracy for 93.7% of the datasets. 
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Supplementary Figure 5 - Predictions recapitulate cell type-specific expression clusters. 

On the far left, we clustered and plotted as a heat map the real gene expression matrix across cell 

types after quantile normalization. On the far right, we similarly plotted the Basenji gene predictions 

matrix. In the center, we substituted Basenji predictions into the real data clustered heat map. 

Although the sharp definitions smear, the clusters remain visible. We used Euclidean distance and 

average linkage in the hierarchical clustering. 
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Supplementary Figure 6 – Accuracy is maintained for genes with cell type-specific expression. 

After removing genes expressed < 0.1 fragments per 128 bp bin, we ranked genes by their 

coefficient of variation across cell types to establish four quartile sets. We computed mean squared 

prediction error (MSE) across cell types for each gene and represent the distributions of MSE as a 

boxplot for each quartile set. Box represents the interquartile range (IQR), and whiskers represent 

1.5*IQR. We predict the first quartile of genes with ubiquitous, steady expression the most 

accurately. Beyond that, MSE levels off, and accuracy is maintained with increasing cell type 

specificity. 
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Supplementary Figure 7 – SNP expression difference predictions relate to GTEx eQTL statistics. 

We distributed SED by the LD correlation matrix to more readily compare to eQTL measurements in 

human populations (Methods). |SED-LD| shows a strong relationship with eQTL statistics from 

GTEx. (A) For each tissue, we ranked the variants by the difference between their regression 

predictions including and excluding |SED-LD| and formed five quantiles. We computed the 

proportion of significant eQTLs in each quantile and divided by the proportion of all variants called 

eQTLs in that tissue to normalize the tissues to a level plane. The line plots show those normalized 

significance proportions in each quantile, which rise to 3-7x over the average of the bottom three 

quantiles in all 19 tissues. (B) We observed that TSS distance also related to variant eQTL statistics 

and recomputed the regression-based ranking and quantiles including TSS distance covariates 

(Methods). The highest SED-LD quantile remains highly enriched for eQTLs. Enrichment of the 

lowest quantile may be attributable to variants that influence gene expression via mechanisms 

beyond the transcriptional regulation that Basenji focuses on 22. Variants that affect post-

transcriptional mechanisms such as splicing would collect in the lowest quantile where the SNPs 

tag substantial variation near the gene, but have low |SED-LD| predictions. 
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Supplementary Figure 8 – Basenji predictions exceed previous methods for GWAS classification. 

We computed SNP expression difference scores for a dataset containing 12,296 bi-allelic SNPs 

taken from the NIH GWAS Catalog database 24 and a negative set with matched minor allele 

frequency. We computed log2 fold changes between the predictions for the two alleles at each 

position in the surrounding region. We let the score for each SNP be the maximum of the absolute 

value of that fold change across the sequence. Finally, we reduced the dimensionality of the feature 

set to 200 with PCA and trained a logistic regression classifier to predict presence in the GWAS 

catalog. The DeepSEA authors previously computed predictions for this data using their method 

and conservation statistics in a more sophisticated model. Basenji-based scores match DeepSEA, 

and a joint model using both exceeds either one. 
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