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Abstract

Stable coexistence relies on negative frequency-dependence, in which rarer species invading a
patch benefit from a lack of conspecific competition experienced by residents. In nature, how-
ever, rarity can have costs, resulting in positive frequency-dependence particularly when species
are rare. Many processes can cause positive frequency-dependence, including a lack of mates,
mutualist interactions, and reproductive interference. Reproductive interference (RI), fitness re-
duction due to interspecific matings, is widespread in plants and animals with sexual reproduction.
Because species that are rare in the community can be overwhelmed by mating attempts from
common species, RI results in positive frequency-dependence and possible extinction of species
when they become rare. Understanding the role of RI and positive frequency-dependence is par-
ticularly important in systems experiencing environmental fluctuations. These fluctuations can
drive species to low frequencies where they are then vulnerable to costs of rarity and positive
frequency-dependence. Here we analyze deterministic and stochastic mathematical models of two
species interacting through both RI and resource competition. Individual fitness in these mod-
els decomposes into two components, mating success and reproductive potential. Mating success
always exhibits positive frequency-dependence. Consistent with classical coexistence theory, re-
productive potential exhibits negative frequency-dependence when individuals experience greater
intraspecific competition than interspecific competition. In the absence of environmental fluc-
tuations, our analysis reveals that (1) a synergistic effect of RI and niche overlap that hastens
exclusion, (2) trade-offs between susceptibility to RI and reproductive potential facilitate coexis-
tence, and (3) coexistence, when it occurs, requires that neither species is initially rare. In the
presence of environmental fluctuations, our analysis highlights that (1) environmental fluctuations
are likely to drive one of the species extinct, and (2) this risk of species loss is marginalized with
sufficiently positively correlated demographic responses of the two species to the environmental
fluctuations. This dynamic works in opposition to another coexistence mechanism, the storage
effect, which gets weaker as species exhibit more similar demographic responses to environmental
fluctuations. These results highlight the need to develop a theory of coexistence accounting for
positive frequency-dependent interactions and environmental fluctuations.
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Introduction

Understanding mechanisms of multispecies coexistence is one of the central topics in community ecology.
Stabilizing forces of niche differentiation (intraspecific suppression being stronger than interspecific
suppression) and fitness differences among species are thought to lie at the heart of stable coexistence
by species [Chesson, 2000]. When stabilizing forces are sufficiently strong relative to fitness differences,
the fitness functions of competing species exhibit negative frequency-dependence in which the rare
species gains a fitness advantage. These properties have been considered primarily in light of resource
competition between species, with fitness functions that give fitness advantages to the rarer species
through competitive release. The rarer species escapes intense conspecific competition, while the more
common species strongly suppresses itself.

On the other hand, a growing body of literature is beginning to appreciate that rarity may have costs
that outweigh the fitness gains of competitive release (positive frequency- or density-dependence) [Tay-
lor and Hastings, 2005]. Examples of these costs include a lack of mates when species are rare (Allee
effects [Courchamp et al., 1999, Schreiber, 2003, Zhou and Zhang, 2006]), a lack of required mutualists
in the environment [Nuñez et al., 2009, Chung and Rudgers, 2016, Lankau and Keymer, 2016] or costs
of reproductive interference (RI), in which mating attempts by one species have fitness costs for (re-
productively isolated) heterospecifics (reviewed in Gröning and Hochkirch [2008], Burdfield-Steel and
Shuker [2011], Kyogoku [2015]). In particular, RI is often most injurious for the rarer species [Field
et al., 2008, Gröning and Hochkirch, 2008, Runquist and Stanton, 2013] which gets swamped by matings
or attempted matings by the more common species.

RI occurs in both plants and animals. In animals, many mechanisms can cause RI, including het-
erospecific mating attempts, heterospecific matings, signal jamming, and others (reviewed in Gröning
and Hochkirch [2008]). More than 53 cases of field-observed RI have been recorded in animal species
spanning three phyla and more than 8 classes [Gröning and Hochkirch, 2008], indicating the ubiquity
of RI across diverse animal species. In plants, RI can arise from heterospecific pollen transfer, when
heterospecific pollen interferes with the ability of conspecific pollen to fertilize ovules, or when pollen re-
moved from a rare species is lost to the more common species and never reaches a conspecific (reviewed
in Arceo-Gómez and Ashman [2016], Weber and Strauss [2016]). While RI is generally sensitive to
the frequency of hetero- and conspecifics (e.g., Keränen et al. [2013]), it is almost always also affected
by mating or other traits of individual species. In fact, in almost every case of RI, one member of
the interacting pair is more strongly affected by the interaction than the other, and the magnitude of
effects of RI on fitness is often large (Table 1). This asymmetry may arise from a number of mech-
anisms including, one species being more likely to mate, or to attempt to mate, with the other, or
one species exacting greater fitness costs from heterospecific mating (e.g., Kyogoku and Nishida [2012],
Runquist and Stanton [2013], Vági and Hettyey [2016], Arceo-Gómez and Ashman [2016], Weber and
Strauss [2016], Bargielowski and Lounibos [2016]). RI has been documented most often in close rela-
tives [Hochkirch et al., 2007, Gröning and Hochkirch, 2008, Arceo-Gómez and Ashman, 2016], likely
owing to their shared morphological, niche, phenological, and signal traits. Shared traits might also
increase the strength of resource competition between close relatives [Anacker and Strauss, 2016], and
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both RI and competition have been shown to impede coexistence [Kishi and Nakazawa, 2013, Drury
et al., 2015]. In sum, RI has been documented in large number of diverse taxa, almost always has
asymmetric effects on the fitnesses of interacting species, and its direction and magnitude of effects
on fitness are highly frequency- and density-dependent. Thus, RI, along with other processes that
exhibit positive frequency-dependence when species are rare, has the potential to affect the conditions
of long-term ecological coexistence.

Environmental stochasticity may magnify the importance of frequency-dependent processes. If
environmental fluctuations reduce population sizes of a species to the point where positive density- or
frequency-dependence kicks in, then such stochasticity may result in the loss of that species from the
system. This phenomena has been demonstrated in single species models with an Allee effect [Dennis,
2002, Liebhold and Bascompte, 2003, Roth and Schreiber, 2014]. For example, using models coupled
with historical data, Liebhold and Bascompte [2003] found that environmental stochasticity could cause
extinction of local gypsy moth populations (Lymantria dispar) in North America even when their
densities were well above the Allee threshold – the density at which the per-capita growth rate, on
average, equals zero. In sharp contrast, environmental fluctuations can, via the storage effect, mediate
coexistence between competing species [Chesson and Warner, 1981, Chesson, 1994]. This positive effect
of environmental fluctuations on maintaining species diversity is greater when the competing species
exhibit negatively correlated responses to the environmental fluctuations. However, the simultaneous
effects of positive frequency-dependence and environmental stochasticity on species coexistence is not
understood.

Here, we use models to explore how positive frequency-dependence, environmental stochasticity,
and asymmetry in RI interact to influence the coexistence of species. Previous theoretical studies have
considered species coexistence with resource competition and RI by numerical simulations [Waser,
1978, Ribeiro and Spielman, 1986, Feng et al., 1997, Ruokolainen and Hanski, 2016] as well as with
graphical approaches [Levin and Anderson, 1970, Kuno, 1992, Yoshimura and Clark, 1994, Kishi and
Nakazawa, 2013]. Although these studies revealed positive frequency-dependence and alternative sta-
ble states arising due to RI, they are not well integrated into the framework of modern coexistence
theory [Chesson, 2000]. To facilitate this integration, we formulated a new discrete-time model ac-
counting for the interactive effects of competition and RI of individual fitness. This model builds on a
model that has been used extensively to empirically test and further develop coexistence theory [Adler
et al., 2007, Levine and HilleRisLambers, 2009, Godoy et al., 2014, Hart et al., 2016, Godoy et al.,
2017]. We present an analysis of the deterministic and stochastic versions of the model to address the
following questions: How strong does niche differentiation have to be in the face of RI to generate
negative frequency-dependence and allow for coexistence? How do asymmetries in RI and reproductive
potential between species influence whether coexistence occurs? How robust is species coexistence to
environmental fluctuations and how does this robustness depend on the degree of correlation between
the species demographic responses to these fluctuations?

[Table 1 about here.]

Model and Methods

To integrate the dynamics of competition and reproductive interference (RI), we build on the Leslie-
Gower model of competing species [Leslie and Gower, 1958] which has been used extensively for de-
scribing the dynamics of competing annual plants and insects [Leslie and Gower, 1958, Chesson, 1994,
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Adler et al., 2007, Godoy and Levine, 2014, Godoy et al., 2014]. The dynamics of these models are fully
characterized and serve as discrete-time analogs of the classical, continuous-time Lotka-Volterra com-
petition models [Cushing et al., 2004]. Unlike earlier models of RI [Kuno, 1992, Yoshimura and Clark,
1994, Kishi and Nakazawa, 2013], this model choice allows us to directly account for the interactive
effects of RI and competition on reproductive output.

The model

The model has two competing species with densities N1 and N2. The maximal number of offspring
produced by a mated individual of species i is λi. Due to competition, this intrinsic fitness of mated
individuals is only achieved at low densities of both species. Intra- and inter-specific competition reduce
this fitness by a linear function of the species densities. That is, let αi and βi be the strengths of intra-
and inter-specific competition, respectively. Then the expected number of offspring produced by an
individual of species i experiencing no RI is

λi
1 + αiNi + βiNj

with j 6= i.

Due to RI with heterospecific individuals, this potential reproductive output decreases with the fre-
quency of these heterospecific individuals. Specifically, we assume the realized fraction of the potential
reproductive output equals

Ni

Ni + biNj

(1)

where bi measures the strength of RI of species j on species i. One mechanistic interpretation of
expression (1) is that it equals the probability of a conspecific mating.

Multiplying these components of individual fitness together yields the following deterministic model:

N1,t+1 = N1,t

mating success︷ ︸︸ ︷
N1,t

N1,t + b1N2,t

λ1
1 + α1N1,t + β1N2,t︸ ︷︷ ︸

reproductive potential

=: N1,tf1(N1,t, Nt,2) (2)

N2,t+1 = N2,t
N2,t

N2,t + b2N1,t

λ2
1 + α2N2,t + β2N1,t

=: N2,tf2(N1,t, Nt,2)

(3)

where Ni,t denotes the density of species i in year t.
To account for environmental stochasticity, we replace the intrinsic fitnesses λi with random terms

λi,t that are log-normally distributed with log means µi, log variances σ2
i , and log correlation r. The

correlation r determines to what extent the intrinsic fitnesses of the two species respond in a similar
manner to the environmental fluctuations. For r = 1, the species respond identically to the fluctuations.
For r = 0, their responses are uncorrelated, while for r = −1, good years from one species are bad
years for the other species.
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Methods

To analyze the deterministic model, we use the theory of monotone maps [Smith, 1986, 1998, Hirsch
and Smith, 2005] to show that the dynamics always converge to a one-dimensional curve in the two
species state space. The dynamics on this one-dimensional set are governed by a finite number of
equilibria. We analytically and numerically explore the structure of these equilibria to determine how
niche overlap, fitness differences, and RI interact to determine species coexistence and exclusion. Our
presentation focuses on the case of highly fecund species (i.e., λi � 1) for which analysis is substantially
simpler yet still captures the full dynamical complexity of the model. Analytical details for both the
special and general case are presented in Appendix S1.

To analyze the stochastic model, we use theory of stochastic difference equations [Chesson and
Ellner, 1989, Schreiber, 2012, Roth and Schreiber, 2014] to identify when stochastic fluctuations do
or do not ultimately result in species loss. When species loss occurs, it occurs at a super-exponential
rate and rapidly produces numerical zeros for a species’ density (i.e., density lower than 10−16). We
use these numerical zeros as a proxy for extinction. We numerically explore how the probability of
species loss over finite time intervals depends on RI, the standard deviations σi of the environmental
fluctuations, and the interspecific correlation r in these fluctuations. Analytical results are provided in
Appendix S2.

Results

[Figure 1 about here.]

Frequency-dependence, coexistence, and exclusion

Our analysis begins with the deterministic model. To ensure each species i can persist in isolation, we
assume that the intrinsic fitness λi of mated individuals is greater than one for each species. Under this
assumption, species i in isolation converges to the positive equilibrium at which Ki ≡ Ni = λi−1

αi
. When

there is RI (bj > 0), the low density fitness of species j 6= i is zero at this equilibrium as individuals
fail to mate with conspecifics due to their low frequency. Consequently, species j is excluded whenever
it reaches such low frequencies, and the equilibria (N1, N2) = (K1, 0) and (0, K2) are locally stable.

Despite these stable, single-species equilibria, coexistence may occur at another stable equilibrium.
To see when this contingent coexistence occurs, we focus on the case of highly fecund species (i.e.,
λi � 1) for which competition is more likely to be severe, and present analysis of the general case in
Appendix S1. In this case, competitive outcomes depend on the relative fitness (R1 = f1/f2) of species
1 as a function of its frequency x = N1

N1+N2
. The relative fitness of species 1 is a product of two terms:

R1(x) =
x

1− x
(1− x+ b2x)

x+ b1(1− x)︸ ︷︷ ︸
relative mating success

×

relative reproductive potential︷ ︸︸ ︷
λ1
λ2

α2(1− x) + β2x

α1x+ β1(1− x)
.

The first term, the relative mating success of species 1, exhibits positive frequency-dependence whenever
species 1 experiences RI (dotted curves in Fig. 1A,C; Appendix S1). Intuitively, as species 1 becomes
more frequent, it is less likely to experience RI while species 2 is more likely to experience RI.
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Frequency-dependence in the second term, the relative reproductive potential, can be positive or
negative. The sign of this frequency-dependence depends on the niche overlap of these two species:

ρ =

√
β1
α1

β2
α2

[Chesson, 2013, Godoy and Levine, 2014]. If there is partial niche overlap (ρ < 1), the relative re-
productive potential exhibits negative frequency-dependence (dashed curves in Fig. 1A,C; Appendix
S1). Intuitively, as a species becomes more frequent in the community, it experiences more intraspecific
competition than interspecific competition; as intraspecific competition is stronger than interspecific
competition, the relative reproductive potential decreases. When there is perfect niche overlap (ρ = 1)
or excessive niche overlap (ρ > 1), the relative reproductive potential is frequency independent or
exhibits positive frequency-dependence, respectively. In either of these latter two cases, the relative
fitness only exhibits positive frequency-dependence and coexistence is not possible. Consequently, from
now on, we assume ρ < 1.

Provided there is sufficiently low niche overlap, the relative fitness R1 of species 1 exhibits negative
frequency-dependence at intermediate species frequencies (Fig. 1A,B). When this occurs, there are two
critical frequencies, x∗ < x∗ of species 1 such that (i) the fitness of species 1 is greater than the fitness
of species 2 when its frequency is slightly above x∗, and (ii) the fitness of species 2 is greater than
the fitness of species 1 when species 1’s frequency is slightly below x∗. When species 1’s frequency
lies between x∗ and x∗, negative frequency-dependent feedbacks dominate and the species approach a
unique stable coexistence equilibrium. In contrast, when species 1’s frequency falls below x∗ or exceeds
x∗, positive frequency-dependent feedbacks dominate and either species 1 gets excluded by species 2 or
excludes species 2, respectively.

When niche overlap is too great, positive frequency-dependence dominates at all species frequencies
and coexistence is not possible (Fig. 1C,D). Consequently, there is a critical frequency x∗ of species 1
below which species 1 is excluded and above which species 2 is excluded.

[Figure 2 about here.]

Niche overlap, fitness differences, and contingent coexistence

To better understand when coexistence or exclusion occurs, we focus on the case where the species are
demographically similar with respect to competition (α1 = α2 and β1 = β2) but potentially differ in
their intrinsic fitnesses (λi) or their susceptibility to RI (bi). The general case is presented in Appendix
S1. If there is no RI (b1 = b2 = 0), coexistence occurs if the niche overlap is less than the intrinsic
fitness ratios λi/λj:

ρ <
λ1
λ2

and ρ <
λ2
λ1
.

In this case, coexistence is not contingent upon initial conditions. Alternatively, if the species experience
RI but no interspecific competition (β1 = β2 = 0), then coexistence occurs if the RI experienced by
each species is less than the associated intrinsic fitness ratio

b1 <
λ1
λ2

and b2 <
λ2
λ1
.
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In this case, coexistence is contingent upon initial conditions. These coexistence conditions are sharp:
if they are satisfied, the species coexist, else they do not (Fig. 2A).

When species experience both RI and interspecific competition, coexistence requires that the addi-
tive effects of niche overlap and RI are less than intrinsic fitness ratios:

ρ+ b1 <
λ1
λ2

and ρ+ b2 <
λ2
λ1
. (4)

If (4) is not satisfied, negative frequency-dependent feedbacks are too weak to promote coexistence.
Satisfying (4), however, need not ensure coexistence due to nonlinear, interactive effects between RI
and niche overlap (the distance between the dashed lines and the coexistence region in Fig. 2). For
species that exhibit no fitness differences (λ1 = λ2) and are equally susceptible to RI (b1 = b2), this
interactive effect equals 3ρ bi and coexistence occurs if

ρ+ bi + 3ρbi < 1.

As niche overlap and RI contribute equally to this nonlinear interactive effect, coexistence is least likely
when RI and niche overlap are equally strong (Fig. 2B).

Intrinsic fitness differences or asymmetries in RI lead to larger, nonlinear effects on coexistence
(the greater distance between the dashed line and the coexistence region in Figs. 2C,D than B). When
RI is symmetric, intrinsic fitness differences (e.g., larger values of λ1/λ2) always inhibit coexistence
(Fig. 2C). Numerical simulations suggest that interactive effects of RI and niche overlap continue to
be symmetric in this case. When intrinsic fitness differences are too large to permit coexistence, the
species with the fitness disadvantage can be excluded despite being at an initially higher frequency.

When there are sufficiently strong asymmetries in RI (b1/b2 > 3.5 in Fig. 2D), coexistence occurs
at intermediate intrinsic fitness differences. If the intrinsic fitness advantage of the species 1 is not
sufficiently high, coexistence is not possible and this species can be excluded even when it is initially
at the higher frequency (the bottom-right dark gray region in Fig. 2D). Alternatively, if the intrinsic
fitness advantage of species 1 is too large, coexistence is not possible and species 2 has a lower threshold
frequency below which it is excluded (the top-left light gray region of Fig. 2D).

Stochastic environments

When the intrinsic fitnesses λi,t fluctuate stochastically, the fluctuations in the frequency dynamics are
determined by the fluctuations in the intrinsic fitness ratio λ1,t/λ2,t. As the intrinsic fitnesses λi,t are
log-normally distributed with log-mean µi, log-variance σ2

i and correlation r, the intrinsic fitness ratio
λ1,t/λ2,t is log-normally distributed with

log-mean: µ1 − µ2 and log-variance: σ2
1 − 2rσ1σ2 + σ2

2. (5)

Equation 5 implies that positively correlated responses (r > 0) of the two species to the envi-
ronmental fluctuations decrease the log-variance in the frequency dynamics. Intuitively, environmental
fluctuations cause the intrinsic fitness of each species to change by the same factor and, thereby, reduces
their effect of these fluctuations on the intrinsic fitness ratios (Fig. 3B). Indeed, when the responses to
environmental fluctuations are of the same magnitude and perfectly correlated (σ2

1 = σ2
2 and r = 1),

there are no fluctuations in the intrinsic fitness ratios and species may coexist indefinitely.
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In contrast, when species exhibit opposing responses to environmental fluctuations (r < 0), environ-
mental fluctuations that drive one species to higher densities simultaneously drives the other species to
low densities. This results in larger fluctuations in the intrinsic fitness ratios (Fig. 3A). In the extreme
case where the responses to the environmental fluctuations are of the same magnitude and are perfectly
negatively correlated (σ2

1 = σ2
2 and r = −1), the fluctuations in the log intrinsic fitness ratios are twice

as large than as for uncorrelated fluctuations (i.e., 4σ2
1 versus 2σ2

1).

[Figure 3 about here.]

When species exhibit some differentiated responses to environmental fluctuations (r < 1 or σ2
1 6= σ2

2),
environmental fluctuations ultimately will drive one of the species extinct, whether or not deterministic
coexistence is possible (Appendix S2, Fig. 4). Intuitively, environmental fluctuations can push one of
the species to a sufficiently low frequency that the deterministic effects of RI rapidly drive the species
to extinction. Larger environmental fluctuations increase the likelihood of these events and, thereby,
increase the probability of species loss. As negative correlations increase fluctuations in frequencies,
they also increase the likelihood that one species falls below its critical frequency and rapidly goes
extinct. Consequently, the probability of extinction decreases with positive correlations. In fact, when
species responses to the environmental fluctuations are identical (i.e., σ2

1 = σ2
2 and r = 1), environmental

stochasticity does not drive any species extinct provided they are initially near a stable, coexistence
equilibrium of the deterministic model (Appendix S2).

[Figure 4 about here.]

The effects of asymmetries in intrinsic fitnesses and RI on extinction risk largely follow patterns
suggested by the deterministic model: when a species is at low frequency at the stable, coexistence
equilibrium, extinction risk is greater (compare Fig. 2D to Fig. 5). In particular, for a given level
of asymmetry in RI, persistence of both species is most likely at an intermediate intrinsic fitness
advantage of the species more susceptible to RI. For smaller intrinsic fitness differences, the species
with the intrinsic fitness advantage is more likely to go extinct. For larger intrinsic fitness differences,
the species less susceptible to RI is more likely to go extinct. As larger intrinsic fitness differences (i.e.,
µ1 larger than µ2) result in larger fluctuations in the intrinsic fitness differences (i.e., variance λ1,t/λ2,t
equals exp(2(µ1−µ2) +σ2

1 +σ2
2)(exp(σ2

1 +σ2
2)− 1) when r = 0), extinction risk is generally greater due

to larger intrinsic fitness differences rather than smaller intrinsic fitness differences (blue region larger
in Fig. 5B than in Fig. 5A).

[Figure 5 about here.]

Discussion

Many competing species are likely to experience both negative and positive frequency-dependence.
Positive frequency-dependence, in and of itself, does not allow for coexistence and leads to alternative
stable states supporting only a single species [Amarasekare, 2002]. In contrast, negative frequency-
dependence allows for stable coexistence [Adler et al., 2007] but does not allow for alternative stable
states. For competing species experiencing both positive and negative frequency-dependent feedbacks,
a new dynamic emerges supporting alternative stable states that allow for coexistence (Fig. 1). This
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dynamic occurs when positive frequency-dependence occurs at low species frequencies, and negative
frequency-dependence dominates at intermediate species frequencies. When this occurs, coexistence
is no longer determined by the celebrated “mutual invasability criterion” of modern coexistence the-
ory [Turelli, 1978, Chesson, 2000] or, more generally, by species growth rates when rare [Hofbauer and
Sigmund, 1998, Schreiber, 2000, Schreiber et al., 2011].

In our models, negative frequency-dependence arises through resource competition while positive
frequency-dependence stems from reproductive interference (RI). For these models, we can decompose
the relative fitness of each species into two demographic components: mating success and reproductive
potential–the number of offspring produced by an individual not experiencing RI (Fig. 1). Mating suc-
cess always exhibits positive frequency-dependence and dominates at low frequencies of either species.
Consistent with modern coexistence theory [Chesson, 2000, Adler et al., 2007, Godoy and Levine,
2014], reproductive potential exhibits negative frequency-dependence only if there is partial niche over-
lap (ρ < 1, Appendix S1).

Our deterministic model is similar to that of Kishi and Nakazawa [2013] (originally from Kuno
[1992]), focusing on population dynamics of two competing species experiencing RI. Our model, how-
ever, accounts for the simultaneous reduction of birth rates due to competition and RI, while Kishi
and Nakazawa [2013] assume that competition increases mortality rates whereas RI reduces birth rates.
Thus, our model is more easily integrated into the framework of modern coexistence theory [Chesson,
2000, Adler et al., 2007]. Furthermore, as our model is in discrete-time (i.e. difference equations) and
Kishi and Nakazawa [2013] is in continuous-time (i.e. differential equations), our model is readily appli-
cable to RI in annual plants [Levine and HilleRisLambers, 2009, Godoy and Levine, 2014, Hart et al.,
2016] and insects (see also Ribeiro and Spielman [1986]). Assuming high fecundity also allowed us to
obtain explicit analytical results missing from earlier models (e.g. Kishi and Nakazawa [2013]). We
show that the additive effects of niche overlap and RI need to be smaller than intrinsic fitness differences
to allow for coexistence (Fig. 2), an analytical finding extending results of Kishi and Nakazawa [2013].
In particular, this result implies there is always a synergistic effect of RI and niche overlap on inhibiting
coexistence. Also, we found that asymmetries in RI result in intermediate intrinsic fitness differences
promoting coexistence (Fig. 2D). This is consistent with Kishi and Nakazawa [2013], although they
focused on the trade-off between RI and niche overlap (Fig. 4 of Kishi and Nakazawa [2013]), whereas
we focused on the trade-off between RI and intrinsic fitness difference (Fig. 2D).

Systems with positive frequency-dependence are particularly vulnerable to fluctuations in environ-
mental conditions, or taken more broadly, any process that rapidly alters the relative frequencies of
species, such as invasions [Bargielowski and Lounibos, 2016]. Indeed, extinction is expected when pop-
ulations are repeatedly pushed over the critical threshold where positive frequency-dependence kicks
in. The effects of such positive frequency-dependence are most severe for interacting species exhibit-
ing opposing demographic responses to environmental fluctuations. For species with highly positively
correlated responses to environmental fluctuations, fluctuations in species frequencies are minimal and
extinction risk is small. These results are in direct contrast with the theory of the storage effect [Ches-
son and Warner, 1981, Chesson, 1994], in which the competitively inferior species sometimes has a
“good” year relative to the dominant species, and is able to capitalize on that year by through long
term storage of offspring until the next “good” year. For the storage effect, uncorrelated and negative
environmental correlations in fitnesses across years promote coexistence. However, in the presence of
RI, our results demonstrate that such negative correlations may actually promote extinction. As the
classical formulation of the storage effect requires overlapping generations, a feature not included in
our model, it will be interesting to extend our model by adding overlapping generations and analyze
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how the storage effect and RI interact.
While our theory provides a first step in developing community ecology theory accounting for posi-

tive frequency-dependence and environmental fluctuations, there are many additional complexities that
need to be explored in future studies. These complexities include interactions between RI and spatial
population structure [Ruokolainen and Hanski, 2016], interference competition [Amarasekare, 2002],
evolution toward avoiding RI (i.e., reproductive character displacement or RI-driven niche partition-
ing [Liou and Price, 1994, Goldberg and Lande, 2006]), and conservation of rare species by considering
the interaction between genetic and demographic swamping [Todesco et al., 2016]. For example, ag-
gregative behavior of species may allow species at low frequency in the larger community to be partially
buffered from RI and other positive frequency-dependent processes by creating tiny local patches of
higher density [Molofsky et al., 2001, Ruokolainen and Hanski, 2016]. Going beyond RI, positively
frequency-dependent phenomena include a large range of ecological and evolutionary interactions con-
tributing to biodiversity. These phenomena include below-ground mutualisms between plants and
microbes that facilitate increases of plant species at low densities, the basis of selection on intricate
warning coloration in mimicry complexes [Chouteau et al., 2016], in which rare morphs rapidly increase
to converge on a common model, and processes favoring patchiness that contributes to spatial hetero-
geneity, which, in turn, generates opportunities for local diversity [Ruokolainen and Hanski, 2016].
Developing a theory to understand how these many forms of positive frequency-dependence interact
with environmental fluctuations to determine community structure is a major challenge that will likely
require a paradigm shift in coexistence theory.
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Study Species Mechanism FD
or
DD†

Fitness-related
trait

Nature of Reproductive Interference

Plants
Bruckman
and Campbell
[2016]

Phacelia parryi,
Brassica nigra

heterospecific
pollen deposition

yes seed set At low densities, B. nigra facilitates P.
parryi ; at high densities B. nigra, reduces
P. parryi seed set via heterospecific pollen.

Arceo-Gómez
et al. [2016]

Clarkia speciosa,
C. xantiana

heterospecific
pollen deposi-
tion/conspecific
pollen loss

na # of pollen tubes
reaching base of
style

Heterospecific pollen deposition reduces
conspecific pollen tubes reaching styles by
20% (speciosa) and 32% (xantiana).

Runquist
and Stanton
[2013]

Limnanthes dou-
glasii rosea, L.
alba

heterospecific
pollen deposition

yes seed set 30-65% reduction in seed set in L. d. rosea
with 8:8 rosea:alba plants relative to all L.
d. rosea arrays; 0% reduction in seed set in
L. alba in arrays with 8:8 plants rosea:alba
relative to all L. alba arrays.

Grossenbacher
and Stanton
[2014]

Mimulus guttatus,
M. bicolor yellow
and white morphs

pollinator limita-
tion/conspecific
pollen loss

yes seed set 60% reduction in seed set of M. bicolor yel-
low morph in the presence of yellow M. gut-
tatus.

Animals
Sato et al.
[2014]

Tetranychus
urticae, T. evansi

heterospecific
mating

na population
growth

T. evansi not affected; T. urticae popula-
tion growth reduced ca. 45% by T. evansi.

Vági and Het-
tyey [2016]

Rana temporaria,
R. dalmatina

heterospecific
mating

na % fertilized eggs Heterospecific matings reduce fertilization
rates of R. temporaria eggs.

Rohde et al.
[2015]

Chorthippus mon-
tanus, C. paral-
lelus

heterospecific
mating

yes mating success Females of C. parallelus were more of-
ten involved in interspecific matings (12×)
than those of C. montanus.

Kyogoku and
Nishida [2012]

Callosobruchus
chinensis, C.
maculatus

heterospecific
mating

yes # of hatched eggs
per female

C. maculatus had ca. 40% reduction in fit-
ness when rare; no effect of heterospecifics
on C. chinensis at any density.

Noriyuki et al.
[2012]

Harmonia yedoen-
sis, H. axyridis

heterospecific
mating

yes mating opportu-
nity, restricted
niche

H. yedoensis female mating success de-
creased; H .axyridis females unaffected.

Friberg et al.
[2013]

Leptidea sinapis,
L. juvernica

heterospecific
courtship

yes conspecific mat-
ing

High frequency of heterospecifics reduces
conspecific matings by 50–100%.

de Bruyn
et al. [2008],
Haddad et al.
[2015]

Arctocephalus
gazella, Apten-
odytes patagoni-
cus

hetero-class male
harassment

no survival Seals attempt to mate with penguins,
sometimes eat them.

Table 1: Examples of reproductive interference since the review of Gröning and Hochkirch [2008] from
diverse plants and animals. †Frequency-dependence or density-dependence.
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List of Figures

1 Frequency-dependent feedbacks and the dynamics of contingent coexistence (A,B) and
contingent exclusion (C,D). In A and C, relative frequencies of mated individuals (black
dotted), relative fitness of mated individuals (black dashed), and relative fitness R1(x)
(blue) for species 1 are shown as a function of the frequency x of species 1. In B and D,
colored curves correspond to the zero-growth nullclines, and trajectories for different ini-
tial conditions are gray lines. In all figures, stable equilibria/frequencies are filled circles
and unstable equilibria/frequencies are unfilled circles. In A and B, low niche overlap
results in negative frequency-dependence at intermediate species frequencies and coex-
istence. In C and D, large niche overlap and RI result in positive frequency-dependence
at all species frequencies and species loss. Parameter values for RI are b1 = b2 = 0.25 in
A and B, and b1 = 0.75 and b2 = 0.25 in C and D. Other parameter values are λi = 100,
αi = 1, and βi = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Effects of RI, niche overlap, and fitness differences on species coexistence. Colored region
corresponds to contingent coexistence, while shaded region corresponds to exclusionary
dynamics. Colors indicate frequency of species 1 at the stable coexistence equilibrium,
while shading indicates threshold equilibrium density of species 1 below which it goes
extinct and above which species 2 goes extinct. In A, B, and C, species are equally
sensitive to RI (b1 = b2) or niche overlap (β1 = β2). In A, there is either RI or niche
overlap (βi = 0 or bi = 0), while both RI and niche overlap occur in B (βi > 0 and
bi > 0). In C and D, species differ in their relative intrinsic fitness and experience either
symmetric (in C) or asymmetric (in D) RI. Dashed lines the coexistence boundary from
equation (4) which only accounts for the additive contributions of effective RI and niche
overlap. The solid black lines are determined by the analytic criterion presented in
Appendix S1. In C and D, there is symmetric 10% niche overlap (βi = 0.1). Other
parameter values are λ2 = 100 and αi = 1. . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Fluctuations, correlations, and coexistence. Two stochastic simulations (as gray lines)
with negative (left) and positive (right) correlations r between the log intrinsic fitnesses
of the species. The nullclines for the mean field model shown as thick red and blue curves
and stochastically varying nullclines shown as thin red and blue curves. Parameter values
as in Figure 1 with σ2

i = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Extinction in the face of environmental fluctuations. In the left panels, multiple simula-

tions of the minimum species density dynamics (i.e., the smaller value of N1,t and Nt,2)
for two values of the the correlation r. In the right panel, the probability of the loss of
a species within 50 years as a function of the magnitude of the fluctuation σ1 = σ2 = σ
and the cross-correlation r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Fluctuations, correlations, and coexistence. The probability of the loss of species 1 (A)
or species 2 (B) within 100 years. Species started at the stable coexistence equilibrium
for the mean field model (i.e., deterministic model with σ2

1 = σ2
2 = 0) whenever it exists.

Parameter values: σ2
1 = σ2

2 = 0.1, r = 0, and remaining parameters as in Fig. 2D. . . . 21
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Appendix S1 Deterministic Analysis

Analysis of the case of symmetric species

When the two species are identical (b = b1 = b2, λ = λ1 = λ2, α = α1 = α2, and β = β1 = β2),
the analysis can be simplified. This symmetric version of the model has a coexistence equilibrium,
N1 = N2 = λ−(1+b)

(1+b)(α+β)
. For the equilibrium to be present and locally stable, the following conditions

must hold:

λ− 1− b > 0 and λ(3ρb+ ρ+ b− 1) + (1− ρ)(1 + b)2 < 0. (6)

where ρ = β/α in this symmetric case. This is equivalent to the inequality (3) in Kishi and Nakazawa
[2013]. Thus λ and ρ are equivalent to b/d and c, where b, d, and c are birth rate, death rate, and
the relative strength of interspecific to intraspecific resource competition in the ODEs of Kishi and
Nakazawa [2013]. This indicates that decreasing λ value results in reduced parameter regions for
coexistence in the b-β plane (as Fig. 2B).

Analysis of the case of high fecundity: λi � 1

When λi � 1 for both species, we show that model (2) can be approximated by

N1,t+1 = N1,t
N1,t

N1,t + b1N2,t

λ1
α1N1,t + β1N2,t︸ ︷︷ ︸

f1(N1,t,N2,t)

(7)

N2,t+1 = N2,t
N2,t

N2,t + b2N1,t

λ2
α2N2,t + β2N1,t︸ ︷︷ ︸

f2(N1,t,N2,t)

.

To show that the simplified model (7) provides a good description of the dynamics of the global
attractor of (2), we begin by showing that non-zero solutions of (7) ultimate yield population sizes
of order λi. To this end, let A = max{α1, α2, β1, β2}, B = max{b1, b2, 1}, and R = min{λ1, λ2}. If
nt = N1,t +N2,t, then

nt+1 =
∑
i

Ni,t
Ni,t

Ni,t + biNj,t

λi
1 + αiNi,t + βiNj,t

≥
∑
i

Ni,t
1

B

Ni,t

nt

R

1 + Ant

≥ R

2B

nt
1 + Ant

where the final inequality follows from a2 + b2 ≥ (a + b)2/2 for any a ≥ 0 and b ≥ 0. Hence, by
monotonicity, if n0 > 0, then

lim inf
t→∞

nt ≥
R/(2B)− 1

A
≥ R/(2BA)
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In particular, if we define a = min{α1, α2, β1, β2}, then αiNi,t+βiNj,t ≥ aR/(2BA) for sufficiently large
t. Hence, provided that N1,0 +N2,0 > 0, (N1,t, N2,t) enters the set

Γ = {(N1, N2) : αiNi + βiNj ≥ aR/(2BA) for i = 1, 2, j 6= i}

for t sufficiently large.
Now assume that λ2 = Cλ1 for some C > 0 and λ1 � 1. As (2) is equivalent to

N1,t+1 = N1,t
N1,t

N1,t + b1N2,t

1

1/λ1 + α1N1,t/λ1 + β1N2,t/λ1

N2,t+1 = N2,t
N2,t

N2,t + b2N1,t

1

1/λ2 + α2N2,t/λ2 + β2N1,t/λ2

Let c = min{1, C}. For (N1, N2) ∈ Γ, we have that αiNi/λi +βiNj/λi ≥ c/(2BA) > 0. Hence provided
that (N1, N2) ∈ Γ and λ1 � 1 is sufficiently large

1

1/λi + αiNi/λi + βiNj/λi
≈ 1

αiNi/λi + βiNj/λi
=

λi
αiNi + βiNj

and we have justified the approximation (7) of the long-term dynamics of (2).

Analysis of the simplified model (7)

Equation 7 can be reduced to a one-dimensional model via the change of coordinates y = N1

N2
. In this

coordinate system

yt+1 = y2t
1 + b2yt
yt + b1

λ1
λ2

α2 + β2yt
α1yt + β1

(8)

For our analysis of (8), we first verify the two assertions in the main text about the relative fitness
function and then analyze the dynamics of (8).

In the y coordinate system, the relative fitness function f1/f2 is given by

R1 =
y(1 + b2y)

y + b1︸ ︷︷ ︸
=:φ

λ1
λ2

α2 + β2y

α1y + β1︸ ︷︷ ︸
=:ψ

where φ corresponds to the “relative mating success” of species 1 and ψ corresponds to the “relative
reproductive potential” of species 1. A direct computation of the derivatives yields:

dφ

dy
=
b2y

2 + 2b1b2y + b1
y2 + 2b1y + b21

and
dψ

dy
=
λ1
λ2

β1β2 − α1α2

α2
1y

2 + 2α1β1y + β2
1

.

dφ
dy

is always positive, and dψ
dy

is negative if and only if α1α2 > β1β2 i.e. ρ < 1. To get the derivatives

with respect to the frequency (x = N1/(N1 + N2)) of species 1, notice that y = x/(1 − x) and
dy/dx = 1

(x−1)2 > 0 for x 6= 1. Therefore, by the chain rule
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dφ

dx
=
dφ

dy

dy

dx
and

dψ

dx
=
dψ

dy

dy

dx
, and

the derivatives dφ/dx and dψ/dx have the same signs as the derivatives dφ/dy and dψ/dy, respectively.
Therefore, as claimed in the main text, φ is an increasing function of x and ψ is a decreasing function
of x if and only if α1α2 > β1β2 i.e. ρ > 1.

Now we perform the dynamical analysis of (8). As the right-hand side of (8) is an increasing function
of y for x ≥ 0, all solutions either approach an equilibrium or approach +∞ which corresponds to species
2 going extinct in (7). The non-zero (and non-infinite) equilibria are given by the solutions of R1 = 1.
Equivalently, the roots of the cubic:

b2β2λ1y
3 + ((β2 + α2b2)λ1 − α1λ2)y

2 + ((−β1 − α1b1)λ2 + α2λ1)y − b1β1λ2 (9)

Contingent coexistence occurs when there are three positive solutions to this cubic equation i.e.
two unstable equilibria and one stable equilibrium. Contingent exclusion occurs when there is only
one positive real root to the equation. As this equation is negative at y = 0 and approaches +∞ as
y → +∞ (i.e. the cubic coefficient is positive), there never can be exactly two positive solutions.

As the cubic (9) is negative at y = 0 and approaches +∞ as y → +∞, three positive solutions are
possible only if the first derivative of this cubic is positive at y = 0 and the second derivative at y = 0
is negative. Namely,

λ1
α1

α2

λ2
>
β1
α1

+ b1 and
λ2
α2

α1

λ1
>
β2
α2

+ b2.

In the special case where α1 = α2 and β1 = β2, the ratios βi/αi equal ρ, and the coexistence condition
becomes

λ1
λ2

> ρ+ b1 and
λ2
λ1

> ρ+ b2

as presented in the main text.
While these coexistence conditions are only necessary, a necessary and sufficient condition is given

by considering the discriminant of the (9). Specifically, define

∆ = 18c0c1c2c3 − 4c32c0 + c22c
2
1 − 4c3c

3
1 − 27c23c

2
0

where c0 = −b1β1λ2, c1 = ((−β1 − α1b1)λ2 + α2λ1), c2 = ((β2 + α2b2)λ1 − α1λ2), and c3 = b2β2λ1. If
∆ > 0, then (9) has three real roots which are all positive if the necessary condition for coexistence is
satisfied. Unfortunately, while this expression provides a quick computational method for identifying
whether coexistence occurs or not, it is not readily interpretable.

Finally, in the special case of species symmetry (i.e. λ1 = λ2 =: λ, α1 = α2 =: α, β1 = β2 =: β and
b1 = b2 =: b), y = 1 is solution of (9) i.e. equal frequencies of both species. In this case, there are two
other equilibria if and only if the derivative of (9) is negative at y = 1. This derivative is given by

((3b+ 1)β + αb− α)λ

and is negative if and only if
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β

α
<

1− b
3b+ 1

Equivalently, as ρ = β/α in this symmetric case, coexistence occurs if and only if

b+ ρ+ 3bρ < 1.

This is a special case of the conditions (6) when λ� 1

General model: Carrying Simplices and Coexistence Criteria

To analyze the full model, we use the theory of monotone maps [Smith, 1998, Hirsch and Smith, 2005].
Define

F (N1, N2) = N1

=:N1f(N1,N2)︷ ︸︸ ︷
N1

N1 + b1N2

λ1
1 + α1N1 + β1N2

G(N1, N2) = N2
N2

N2 + b2N1

λ2
1 + α2N2 + β2N1︸ ︷︷ ︸

=:N2g(N1,N2)

Then the dynamics of (2) is given by

(N1,t+1, N2,t+1) = (F (N1,t, N2,t), G(N1,t, N2,t)) = H(N1,t, N2,t).

We recall a few definitions. The competitive ordering of the non-negative cone C = [0,∞)2 is given
by (N1, N2) ≥K (M1,M2) if N1 ≥ N2 and M1 ≤ M2, (N1, N2) >K (M1,M2) if (N1, N2) ≥K (M1,M2)
and either N1 > N2 or M1 < M2, and (N1, N2) �K (M1,M2) if N1 > N2 and M1 < M2. We will
show that (2) is strongly competitive: H(N1, N2)�K H(M1,M2) whenever (N1, N2) >K (M1,M2). By
Smith [1998, Proposition 2.1], H being strongly competitive follows from the derivative map DH =
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( ∂F
∂N1

∂F
∂N2

∂G
∂N2

∂G
∂N2

)
having the sign pattern

(
+ −
− +

)
. Taking the partial derivatives yields:

∂F

∂N1

= (2b1β1λ1N1N
2
2 + ((β1 + α1b1)λ1N

2
1 + 2b1λ1N1)N2 + λ1N

2
1 )/

(b21β
2
1N

4
2 + ((2b1β

2
1 + 2α1b

2
1β1)N1 + 2b21β1)N

3
2 +

((β2
1 + 4α1b1β1 + α2

1b
2
1)N

2
1 + (4b1β1 + 2α1b

2
1)N1 + b21)N

2
2

+((2α1β1 + 2α2
1b1)N

3
1 + (2β1 + 4α1b1)N

2
1 + 2b1N1)N2

+α2
1N

4
1 + 2α1N

3
1 +N2

1 ) > 0

∂F

∂N2

= − b1λ1N
2
1

(b1N2 +N1)2(β1N2 + α1N1 + 1)
− β1λ1N

2
1

(b1N2 +N1)(β1N2 + α1N1 + 1)2

< 0
∂G

∂N1

= − b2λ2N
2
2

(N2 + b2N1)2(α2N2 + β2N1 + 1)
− β2λ2N

2
2

(N2 + b2N1)(α2N2 + β2N1 + 1)2

< 0
∂G

∂N2

= (((β2 + α2b2)λ2N1 + λ2)N
2
2 + (2b2β2λ2N

2
1 + 2b2λ2N1)N2)/

(α2
2N

4
2 + ((2α2β2 + 2α2

2b2)N1 + 2α2)N
3
2 +

((β2
2 + 4α2b2β2 + α2

2b
2
2)N

2
1 + (2β2 + 4α2b2)N1 + 1)N2

2 +

((2b2β
2
2 + 2α2b

2
2β2)N

3
1 + (4b2β2 + 2α2b

2
2)N

2
1 +

2b2N1)N2 + b22β
2
2N

4
1 + 2b22β2N

3
1 + b22N

2
1 ) > 0

Hence, H is strongly competitive.
The sign of the determinant of DH is positive due to the following truly horrific calculation:

f(N1, N2)g(N1, N2)(2b1β1N
3
2 + ((b1β2 + (2b1b2 + 1)β1 + α2b1b2 + α1b1)N1

+2b1)N
2
2 + (((2b1b2 + 1)β2 + b2β1 + (α1b1 + α2)b2)N

2
1 + (3b1b2 + 1)N1)N2

+2b2β2N
3
1 + 2b2N

2
1 )/(α2b1β1N

4
2 + ((b1β1β2 + (α2b1b2 + α2)β1

+α1α2b1)N1 + b1β1 + α2b1)N
3
2 + ((((b1b2 + 1)β1 + α1b1)β2

+α2b2β1 + α1α2b1b2 + α1α2)N
2
1 + (b1β2 + (b1b2 + 1)β1 + α2b1b2 + α1b1

+α2)N1 + b1)N
2
2 + (((b2β1 + α1b1b2 + α1)β2 + α1α2b2)N

3
1 + ((b1b2 + 1)β2

+b2β1 + (α1b1 + α2)b2 + α1)N
2
1 + (b1b2 + 1)N1)N2 + α1b2β2N

4
1

+(b2β2 + α1b2)N
3
1 + b2N

2
1 ) > 0

From these two calculations, we get that DH is invertible and all of its entries are strictly positive.
Using these facts, the work of [Smith, 1986, 1998] implies two key results. First, all solutions with

N1,0N2,0 > 0 converge to a continuous (in fact Lipschitz), invariant curve Γ. This curve is known as
the carrying simplex of the system. It has the important property that all radial lines in C intersect Γ
in exactly one point. Thus, all possible frequencies of the species have a unique representation on this
curve. One can view the dynamics of H restricted to Γ as describing the asymptotic frequency dynamics
of the competing species. Second, all solutions of (2) converge to an equilibrium. We note: in the
limiting case of λi →∞ for i = 1, 2, the simplified model (8) can be viewed as a radial projection of the
dynamics on the carrying simplex onto the standard simplex {(N1, N2) : N1 ≥ 0, N2 ≥ 0, N1 +N2 = 1}.
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As the boundary equilibria on Γ are stable, coexistence is possible if and only if there exist equilibria
(N+

1 , N
+
2 ) and (N−1 , N

−
2 ) on Γ such that (i) N+

1 /(N
+
1 + N+

2 ) > N−1 /(N
−
1 + N−2 ) and (ii) there are no

other equilibria (N∗1 , N
∗
2 ) ∈ Γ satisfying 0 < N∗1/(N

∗
1 + N∗2 ) < N−1 /(N

−
1 + N−2 ) or N+

1 /(N
+
1 + N+

2 ) <
N∗1/(N

∗
1 + N∗2 ) < 1. These equilibria correspond to the critical frequencies on Γ such that when the

species lie on Γ between these critical frequencies, the species converge to an equilibrium supporting
both species. Conversely, when the species initially lie on Γ outside these critical frequencies, the
species dynamics converge to one of the boundary equilibria.

Appendix S2 Stochastic Analysis

Analysis of the simplified model (7)

In the relative density coordinate system y = N1

N2
, the stochastic simplified model takes the form

yt+1 = y2t
1 + b2yt
yt + b1

λ1,t
λ2,t

α2 + β2yt
α1yt + β1

. (10)

Assume that bi > 0, αi > 0, βi > 0, and (log λ1,t, log λ2,t) are a sequence of independent, identically
distributed random vectors with a multivariate normal distribution with mean vector (µ1, µ2) and

covariance matrix Σ2 =

(
σ2
1 rσ1σ2

rσ1σ2 σ2
2

)
where σ1 > 0 and σ2 > 0.

If σ2
1 = σ2

2 and r = 1, then λ1,t/λ2,t = exp(µ1 − µ2) is constant for all time t. Hence, the dynamics
are deterministic and the analysis from Appendix S1 applies.

If σ2
1 6= σ2 or r < 1, then log λ1,t/λ2,t is normally distributed with mean µ1 − µ2 and variance

σ2
1−2rσ1σ2 +σ2

2 > 0. As y = 0 is a stable equilibrium, the proof of Roth and Schreiber [2014, Theorem
4.1] implies that for all ε > 0 there exists δ > 0 such that

P
[

lim
t→∞

yt = 0 | y0 ∈ [0, ε)
]
≥ 1− δ.

Namely, for initial values y0 sufficiently close to zero, the probability of losing species 1 is arbitrarily
close to 1. Making the change of variables zt = 1/yt, the dynamics of (10) become

zt+1 = z2t
1 + b1zt
zt + b2

λ2,t
λ1,t

α1 + β1zt
α2zt + β2

. (11)

Reapplying the proof of Roth and Schreiber [2014, Theorem 4.1] implies that for all ε > 0 there exists
δ > 0 such that

P
[

lim
t→∞

zt = 0 | z0 ∈ [0, ε)
]
≥ 1− δ.

Namely, for initial values z0 sufficiently close to zero, the probability of losing species 2 is arbitrarily
close to 1.

Since log λ1,t/λ2,t is normally distributed with positive variance, for any M > 0 there exists γ > 0
such that

P [there exists t ≥ 1 such that yt ∈ [0, 1/M ] ∪ [M,∞) | y0 > 0] ≥ γ.
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Consequently, the proof of Roth and Schreiber [2014, Theorem 3.2] implies that

P
[

lim
t→∞

yt = 0 or lim
t→∞

yt =∞ | y0 > 0
]

= 1.

Hence, for any initial condition y0, with probability one, species 1 or species 2 goes extinct asymp-
totically. Moreover, whenever y0 > 0, there is a positive probability that either species goes extinct
asymptotically.
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