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Abstract1

Although vaccines against seasonal influenza are designed to protect against currently circulating2

strains, they may also affect the emergence of antigenically divergent strains and thereby change3

the rate of antigenic evolution. Such evolutionary effects could change the benefits that vaccines4

confer to vaccinated individuals and to the host population (i.e., the private and social benefits of5

vaccination). To investigate the potential evolutionary impacts of vaccination, we simulated the6

dynamics of an influenza A/H3N2-like pathogen in a host population receiving annual vaccines.7

On average, increasing vaccination rates decreased the cumulative amount of antigenic evolution of8

the viral population and the incidence of disease. Vaccination at a 5% random annual vaccination9

rate, implying a 48% cumulative vaccine coverage after 20 years, decreased cumulative evolution10

by 56% and incidence by 76%. These effects were mediated by the breadth of immunity conferred11

by the vaccine. To understand how the evolutionary effects of vaccination might affect its private12

and social benefits over multiple seasons, we fit linear panel models to simulated longitudinal13

infection and vaccination histories. Including the evolutionary effects of vaccination lowered the14

private benefits by 14% but increased the social benefits by 30% (at a 5% annual vaccination rate)15

compared to when evolutionary effects were ignored. Thus, in the long term, vaccines’ private16

benefits may be lower and social benefits may be higher than predicted by current measurements17

of vaccine impact, which do not capture long-term evolutionary effects. These results suggest that18

conventional seasonal vaccines against influenza, if protective against transmission, could greatly19

reduce the burden of disease by slowing antigenic evolution. Additionally, these evolutionary effects20

could compound collective action problems, increasing the importance of social policies to encourage21

vaccination.22

1 Introduction23

As seasonal influenza evolves from year to year, antigenic differences between previously and cur-24

rently circulating strains contribute to low vaccine efficacy [1–4] and high incidence of influenza25
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illness [2, 5]. The influenza A/H3N2 subtype evolves faster than influenza A/H1N1 and B [6], and26

the vaccine is least effective against A/H3N2 on average compared to other circulating subtypes [7].27

While vaccines regularly undergo reformulation to accommodate antigenic evolution, it is also the-28

oretically possible for vaccines to affect antigenic evolution [8]. Traditional estimates of the public29

health benefits of influenza vaccines tend to focus on the benefits of vaccination in the current30

season and assume viral evolution is unchanged by the vaccine [9–12]. Accounting for the potential31

evolutionary impact of vaccines, however, may alter assessments of their long-term value.32

In theory, seasonal influenza vaccines might be able to slow antigenic evolution [13–15]. Univer-33

sal vaccines, which confer immunity against all antigenic variants, are predicted to slow antigenic34

evolution by uniformly decreasing the fitness of all strains [15]. Conventional vaccines against sea-35

sonal influenza, which protect against some strains more than others and thereby confer narrower36

immunity, might have similar effects. First, by reducing the prevalence of infection, they reduce37

viral population size and thus the probability that antigenic escape mutants will arise. Second,38

although vaccination increases the growth rate of antigenically distant mutants relative to less dis-39

tant mutants (which can lead to strain replacement in other pathogens [16–26]), it also increases40

the amount of immunity in the population. This increased immunity reduces the growth rate or41

invasion fitness of escape mutants, slowing the rate of strain replacement (SI 1.1, Eq. S19, Fig. S1).42

Finally, smaller viral population sizes increase the rate at which different strains go stochastically43

extinct, weakening selection for more antigenically diverged strains. However, vaccination might44

accelerate antigenic evolution if the vaccine is ineffective against some strains that compete with45

vaccine-targeted strains, leading to strain replacement or vaccine escape [27,28].46

Vaccination’s potential evolutionary effects may change the private and social benefits of vacci-47

nation. Vaccination confers a private benefit to vaccinated individuals by directly reducing their risk48

of infection: the vaccine reduces the within-season rate of clinical laboratory-confirmed influenza49

infections in healthy adult recipients by 41% (95% CI 36-47%) [29]. Vaccination also confers a50

social benefit to the host population by reducing the burden of disease, although these effects51

are infrequently measured. Vaccinating children reduces the risk of influenza infection in unvac-52

cinated household contacts by 30-40% [30, 31], in the local community by up to 5-82% [32], and53

in a metropolitan county by up to 59% [33]. The valuation of private and social benefits changes54

according to how much vaccination decreases the burden of disease. If vaccines slow antigenic55

evolution and thereby further decrease incidence, then the social benefit increases. However, the56

private benefit may fall as the lower infection risk reduces vaccines’ marginal protective benefit. As57

the private benefit falls, additional incentives might be necessary to compensate for less frequent58

voluntary vaccination [34,35]. A reduction in antigenic evolution from vaccination could also reduce59

the need to update vaccines as frequently.60

Empirical estimates of the benefits of vaccination have so far been unable to measure the poten-61

tial long-term evolutionary effects of vaccination. Most studies estimating the value of vaccination62

occur in temperate populations such as North America, Europe, and Oceania, which have high vac-63

cine coverage but do not consistently contribute to influenza’s long-term evolution [7, 36–39]. By64

contrast, source populations that contribute more to influenza’s evolution (e.g., China and India)65

have almost zero vaccination [36–38], and few studies of vaccination occur there [40].66

We consider here the consequences of an idealized vaccination strategy, where vaccination occurs67

in populations that shape influenza’s long-term evolution. To assess the potential effects of vaccines68

on antigenic evolution, we simulated the evolutionary and epidemiological dynamics of an influenza-69

like pathogen. We evaluated how different rates of vaccination may slow antigenic evolution and in70

turn decrease the total burden of disease. We then quantified how the evolutionary effects change71

the relative magnitude of the private and social benefits of vaccination in the short and long term.72
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2 Results73

2.1 Modeling approach and choice of parameters74

We adapted a model to simulate the transmission and evolution of an influenza-like pathogen over75

20 years in a well-mixed population (Methods) [41]. Individuals infected with a strain of the virus76

can transmit their infection to susceptible individuals upon contact. The risk of infection given77

contact depends on the antigenic identities (phenotypes) of previous infections and the challenging78

strain. After recovering from infection, individuals acquire immunity against the infecting strain,79

whose antigenic phenotype is represented by a point in two-dimensional Euclidean space (Fig. 1A).80

Geometrically distributed mutations displace strains in this space (Table S1, Fig. 1D). This space81

is analogous to the main components after multidimensional scaling of pairwise measurements82

of cross-reactivity in hemagglutination inhibition (HI) assays, where one antigenic unit of distance83

represents a twofold dilution of antiserum [6,42]. Each antigenic unit difference in distance between84

strains increases susceptibility by 7% (Fig. 1C) [1, 41,43].85

The model reproduces characteristic epidemiological and evolutionary patterns of the A/H3N286

subtype in the absence of vaccination (Fig. 1A,B). Unvaccinated populations are best for model87

validation because they contribute most to the evolution of seasonal influenza in reality [36, 38].88

We chose transmission and mutation parameters (Table S1) such that simulated epidemiological89

and evolutionary patterns most resembled qualitative patterns observed for H3N2 [44]. H3N2 has90

remained endemic in the human population since its emergence in 1968 and also has low standing91

genetic and antigenic diversity. Due to the stochastic nature of the simulations, the viral population92

goes extinct 18% of the time and becomes too diverse 29% of the time across replicate simulations.93

A viral population is considered too diverse when the time separating two co-circulating lineages94

(time to most recent common ancestor, or TMRCA) exceeds 10 years, since recent H3N2 HA95

lineages have coexisted for no more than 7 years. The remaining 53% of simulations that show96

qualitatively influenza-like dynamics reproduce epidemiological and evolutionary statistics of H3N2.97

The viral population has low genealogical diversity with an average TMRCA across replicates of 3.8098

years (SD = 0.52), comparable to empirical estimates of 3.84 years [38]. The path of evolution in99

antigenic space is mostly constrained to one dimension (Fig. 1A), characteristic of H3N2’s antigenic100

evolution [6,42]. Antigenic evolution occurs at an average rate of 1.09 antigenic units per year (SD101

= 0.14), comparable to an observed rate of 1.01 antigenic units per year [6]. The mean annual102

incidence is 9.0% (SD = 1.0%). Annual incidence across all types of seasonal influenza ranges from103

9-15% [45]. To confirm the accuracy of the model’s transmission dynamics, we compared model104

outputs against analytic expectations without evolution (since analytic solutions for a model with105

evolution are intractable) (Figs. S2, S3, S4, and S5).106
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Figure 1: Properties of the model. (A) Antigenic phenotypes are represented as points in two-
dimensional space (AG1 is antigenic dimension 1 and AG2 is antigenic dimension 2). Over time,
new strains appear as old strains can no longer transmit to immune hosts. Viral evolution is
mostly linear in antigenic space. The amount of evolution is calculated as the distance between
the founding strain and the average phenotype of strains circulating at the end of the simulation.
Vaccine strains (triangles) are chosen at the beginning of each year by averaging the antigenic
phenotype of all circulating strains. Strains are colored according time. (B) Incidence per 10 days
is shown. Cumulative incidence (not shown) is calculated as the sum of cases over the duration
of the simulation. Vaccines are distributed beginning 300 days after strain selection for 120 days.
Strain selection for the following year occurs during the distribution of the current vaccine (inset).
(C) Upon contact, the risk of infection increases linearly with the distance between the infecting
strain and the strain in the host’s infection or vaccination history that minimizes the risk of infection
(Eq. 3) (D) The sizes of antigenic mutations are chosen from a gamma distribution with mean
and standard deviation δmean and δsd. The radial directions (not pictured) of mutations are chosen
from a random uniform distribution. In this example, vaccines confer half the breadth of immunity
as natural immunity (b = 0.5).

To assess the potential effects of vaccination on antigenic evolution and disease burden, we107

introduced vaccination to the host population. At the beginning of each year, a vaccine strain108

is selected with the average antigenic phenotype of circulating strains. In the United States, the109

seasonal influenza vaccine is typically distributed from September through February. Distribution110

usually peaks in October or November, 8-9 months after strain selection [46]. In the model, the111

vaccine is distributed 300 days after strain selection and for a period of 120 days. During distribu-112

tion, individuals are randomly vaccinated at a constant daily rate (Eq. 2). Since individuals are113
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randomly vaccinated each year, the fraction of vaccinated individuals over time. At a 5% annual114

vaccination rate, approximately 4.9% of individuals in the population are vaccinated every year115

(due to sampling with replacement in the model) and 48.4% of the population has been vaccinated116

at least once by the twentieth year (Fig. S6A). At this rate, vaccination effectively renders 26.0%117

of individuals immune when vaccination is in equilibrium with antigenic evolution (Fig. S6B). We118

also tested the effects of the breadth of cross-immunity conferred by vaccination. The vaccine’s119

breadth b is defined as the ratio of the vaccine-induced immunity to that of infection-induced (or120

“natural”) immunity (Fig. 1). Vaccines with b = 1 have breadth identical to natural immunity,121

whereas vaccines with b < 1 (b > 1) have respectively smaller (larger) breadth compared to natural122

immunity.123

We initially used two metrics to quantify the effects of vaccination on the evolution and epi-124

demiology of the virus. First, because antigenic phenotypes evolve roughly linearly in two di-125

mensions [6, 41, 42], we measured the cumulative amount of antigenic evolution by calculating the126

antigenic distance between the founding strain’s antigenic phenotype and the average antigenic127

phenotype of strains circulating at the end of the simulation (Fig. 1). Second, we measured the128

burden of disease by calculating the cumulative incidence, or the total number of cases over the129

duration of the simulation divided by the population size (Fig. 1). In calculating the amount of130

antigenic evolution and incidence, we included simulations where the viral population remained131

endemic or went extinct. However, we excluded simulations where the viral population became too132

diverse (TMRCA > 10 years) because our measure of cumulative antigenic evolution is inadequate133

for branching viral populations.134

Because vaccination may qualitatively alter evolutionary patterns of H3N2, we used an addi-135

tional metric to asses evolutionary effects, namely the probability that viral populations would136

become too diverse (TMRCA > 10 years) under different vaccination regimes. Viral populations137

that are too diverse have the potential to cause high morbidity because hosts are unlikely to have138

immunity against many antigenic variants. Influenza subtypes H1N1 and B evolve antigenically139

slower than H3N2 but have greater genetic diversity at any time [6,38,47,48] Thus, we also examine140

whether vaccination, by affecting antigenic evolution, could also impact diversification.141

To estimate the contribution of evolution to vaccination’s epidemiological impact, we compared142

simulations in which vaccination could affect antigenic evolution to simulations where it could not.143

We generated the latter by first running simulations without vaccination and recording strain phe-144

notypes and relative abundances at every time step to use as a reference. Then, in each time step145

of the simulations with vaccination, we replaced all infections with randomly selected contempo-146

raneous strains from an unvaccinated reference simulation, matching the reference frequencies. In147

this way, temporal changes in strain frequencies were unaffected by vaccination.148
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2.2 Vaccination reduces the average amount of antigenic evolution and disease149

burden150
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Figure 2: High vaccination rates decrease the average amount of (A) cumulative antigenic evolution
and (B) cumulative incidence. The solid white lines show LOESS curves fit to cumulative antigenic
evolution and incidence across all simulations. The dotted white lines show fits for simulations
where the viral population survived until the end of the simulation. The dashed white lines show
fits for simulations where the viral population went extinct. Shaded areas show 95% confidence
intervals. Densities reflect 500 total simulations for each vaccination rate with excessively diverse
simulations (TMRCA > 10 years) excluded, leaving ∼ 300− 400 simulations.

Vaccination reduces the average amount of antigenic evolution (Spearman’s ρ = −0.75, p < 0.001)151

and incidence (Spearman’s ρ = −0.86, p < 0.001, Fig. 2) when the breadth of vaccine-induced152

immunity is the same as that of infection. Without vaccination, the viral population evolves on153

average 21.5 (SD = 3.3) antigenic units and causes an average of 1.8 (SD = 0.2) cases per person154

over the 20-year simulation. By reducing susceptibility in the host population, vaccination decreases155

the number of cases and the average size of surviving mutations, thus slowing the rate of antigenic156

evolution. In turn, slower antigenic evolution further reduces the force of infection, often driving157

the virus extinct. Once extinct, the viral population can no longer evolve or cause new infections.158

Above a 10% annual vaccination rate, implying a 28% cumulative vaccination rate over 4 years,159

extinction occurs rapidly, typically within 2.3 years (SD = 0.6, Fig. S7). Eliminating the time160

interval between strain selection and vaccine distribution reduces the amount of antigenic evolution161

(Wilcoxon rank-sum test, p < 0.001) and incidence (Wilcoxon rank-sum test, p < 0.001) even more162

(Fig. S8).163

Increasing the vaccination rate also decreases the probability that the viral population becomes164

too diverse (TMRCA > 10 years on average, Fig. S9). Thus, vaccination is unlikely to increase165

morbidity from diversifying viral populations.166

We next examined how much these reductions could be attributed solely to the “ecological”167

effects of vaccination—the reduction in prevalence and increased extinction risk from enhanced herd168

immunity—versus the combined ecological and evolutionary impacts. Relative to the case where the169

evolutionary effects of vaccination are blocked, vaccination with evolutionary effects decreases both170

the rate of antigenic evolution and the burden of disease (Wilcoxon rank-sum test, p < 0.001), (Fig.171

3). Also relative to the same baseline, eradication is achieved at a lower vaccination rate. At an 8.5%172

annual vaccination rate (∼ 20% cumulative vaccine coverage within 5 years), vaccination eradicates173
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the virus 100% of the time (within 3.3 years on average) when vaccines can affect evolution but174

only does so 68% of the time (within 5.6 years on average) when vaccines cannot affect evolution.175
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Figure 3: Vaccination further decreases incidence when vaccines can affect antigenic evolution
compared to when they cannot. Purple lines represent simulations where vaccination can affect
antigenic evolution. Yellow lines represent simulations where vaccination cannot affect antigenic
evolution. The solid lines show LOESS fits to cumulative (A) antigenic evolution and (B) incidence
across all simulations. The dotted lines show LOESS fits for simulations where the viral population
does not go extinct. Shaded areas show 95% confidence intervals. Lines reflect 500 total simulations
for each vaccination rate and evolutionary condition with excessively diverse simulations (TMRCA
> 10 years) excluded, leaving ∼ 300− 400 simulations.

The breadth of vaccine-induced immunity and the delay between vaccine strain selection and176

distribution change the impact of vaccination. With narrower vaccines, higher vaccination rates177

are needed to achieve the same average reductions in cumulative antigenic evolution and incidence178

using broader vaccines (Fig. S10). Regardless of breadth, distributing vaccines immediately after179

strain selection helps vaccines achieve the same average reductions in evolution and incidence at180

lower vaccination rates (Fig. S12).181

2.3 Vaccine-driven excessive evolution is rare182

We developed a test to determine whether vaccination causes excess evolution. We defined excess183

evolution as more than 21 antigenic units (the average amount of evolution without vaccination)184

over the duration of the simulation, or when the TMRCA exceeded 10 years. We counted the185

number of “excessively evolved” simulations for each vaccination rate and breadth. If vaccination186

does not affect the rate of evolution, the frequency of excessively evolved simulations should be the187

same as in vaccine-free case (Fig. S14). In contrast, if vaccination increases the rate of evolution,188

the frequency of excessively evolved simulations should be greater than without vaccination.189

Although viral populations that survive are associated with more evolution (Figs. 2, 3, S10), this190

apparent excess evolution is generally not caused by vaccination. Instead, these viral populations191

evolved just as much in the absence of vaccination, and only survive vaccination because they192

evolved unusually quickly. In these cases, more vaccination does not increase the rate of antigenic193

evolution, but instead drives slowly evolving viral populations extinct while occasionally allowing194

persistence of quickly evolving populations (Fig. S14). Thus, apparent increases in the amount195

of antigenic evolution among survivors generally reflect selection among simulations (not among196
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viruses within a simulation) for fast-evolving populations, and these populations would appear at197

the same rate without vaccination.198

We found that vaccine-driven excess evolution was only possible at low-intermediate immune199

breadth (b = 0.2 or 0.3) and at low vaccination rates (Fig. S13). Even when we detected statis-200

tically significant excess evolution, these outcomes were only 10% more common with vaccination201

relative to without. Based on this analysis, we conclude that vaccine-driven excessive evolution is202

rare for the influenza-like parameters considered.203

2.4 Ignoring the evolutionary effects of vaccination overestimates the private204

benefit and underestimates the social benefit of vaccination205

Figure 4: Comparison of the private and social benefits of vaccination when vaccination can or
cannot affect antigenic evolution. Risk ratios are calculating using coefficients from a linear panel
model fitted to the last 17 years of simulated hosts’ infection and vaccination histories. Mean esti-
mates and 95% confidence intervals are shown. Red lines represent simulations where vaccination
can affect antigenic evolution (dynamic). Blue lines represent simulations where vaccination cannot
affect antigenic evolution (static). The relative risk for a population with a 10% annual vaccination
rate could not be calculated because all simulations were driven extinct within the first 3 years.

To quantify the private and social benefits of vaccination, we collected panel data consisting of206

individual hosts’ vaccination and infection histories from simulations where vaccination could affect207

antigenic evolution and simulations where vaccination could not affect antigenic evolution. We then208

fit linear panel models to these data (Eq. 4). We measured the private benefit of vaccination as209

vaccine efficacy, or one minus the risk of infection having been vaccinated relative to the risk of210

infection having not been vaccinated (Eq. 5). To measure the social benefit, we used an analogous211

risk ratio. The social benefit is one minus the risk of infection in a population vaccinated at a212

given rate relative to the risk of infection in an unvaccinated population (Eq. 6). The social benefit213

reflects a reduction in the force of infection due to vaccination.214

The social benefit of vaccination rises when vaccines can slow antigenic evolution compared to215

when evolutionary effects are omitted. The average risk of infection over the course of a season216

without vaccination is ∼10% (Table S3). When 5% of the host population is vaccinated annually,217

the average host is 60.5% less likely to become infected compared to a host in an unvaccinated218

population (Fig. 4, Table S3). However, when vaccination cannot affect antigenic evolution, the219
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average host is only 27.7% less likely to become infected (Fig. 4, Table S3) at the same vaccination220

rate relative to a host in an unvaccinated population. The social benefits accounting for evolution221

at 10% vaccination rate could not be calculated because the virus was always eradicated quickly.222

Since the evolutionary effects of vaccination further reduce the overall risk of infection in the223

population, individuals personally benefit less from getting vaccinated when vaccines affect antigenic224

evolution than when vaccines do not. The reduction in the private benefit due to evolutionary effects225

is a natural consequence of lower incidence: when the overall risk of infection is low, the marginal226

benefit of vaccination is lower than when incidence is high (Eq. 5). Individuals receiving the current227

vaccine are 36.0% less likely to become infected in the same season compared to unvaccinated228

individuals when vaccines can affect evolution (Fig. 4, Table S3). However, when vaccines cannot229

affect antigenic evolution, vaccinated individuals are 49.5% less likely to become infected (Fig. 4,230

Table S3). We observed similar patterns when the breadth of vaccine-induced immunity was half231

that of natural immunity (Table S4).232

By slowing antigenic evolution, vaccination prolongs its own effectiveness. When vaccination233

cannot affect antigenic evolution, the private benefit decreases by 9.0% per passing year compared to234

only 5.6% per passing year when vaccines can affect evolution (Fig. 4, Table S3). Thus, evolutionary235

effects cause the private benefits of vaccination to decay slower with time. Consequently, ignoring236

the evolutionary effects of vaccines also undervalues the long-term private benefits relative to the237

short-term private benefits.238

3 Discussion239

We found that vaccination against seasonal influenza could hypothetically slow antigenic evolution240

and thereby reduce the disease burden beyond its immediate impact on transmission. Indeed,241

annual vaccination rates as low as 10%, which imply a 28% cumulative vaccine coverage after 4242

years, can reliably eradicate the virus in simulation. This is a previously unrecognized potential243

benefit of widespread vaccination. At a 5% annual vaccination rate (16% cumulative coverage after244

4 years), evolution increases the social benefits of vaccination by 30.4%, which in turn decreases245

the private benefits by 13.5% compared to when evolutionary effects are omitted. Thus, while the246

evolutionary effects of vaccination yield a large social benefit by reducing incidence, they reduce247

the private benefit to vaccinated individuals.248

Though our simulations suggest that a 10% annual vaccination rate could eradicate influenza,249

this prediction may not appear realistic since up to 8% of the global population is vaccinated each250

year [36]. However, vaccination is almost exclusively concentrated in seasonal populations rather251

than in the populations that contribute most to influenza’s evolution [36–38]. For instance, from252

the 2008-2009 season to the 2014-2015 season, seasonal vaccine coverage averaged 43.4% in the253

United States and 13.5% across European countries, but was <1% in China and India [36, 49].254

Moreover, the same people tend to get vaccinated repeatedly, which lessens the accumulation of255

vaccine-induced immunity in the population over time. In the United States, up to 68.4% of256

vaccine recipients get vaccinated every year [50, 51]. Consecutive vaccinations may also reduce257

vaccine effectiveness by interacting with prior immune responses, although these effects are not258

well understood [52–55]. Thus, the effective amount of vaccine-induced immunity in a population259

is potentially lower than vaccine coverage estimates would suggest, implying higher vaccination260

rates might be necessary for eradication.261

The seasonal influenza vaccine is unlikely to cause excessive evolution, assuming that the breadth262

of vaccine-induced immunity is similar to that of natural immunity. In simulations, vaccine-driven263

accelerated antigenic evolution only occurs when the breadth of vaccine-induced immunity is nar-264
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rower than that of natural infection and then only at low vaccination rates. The relative breadths265

of vaccine-induced and and natural immunity are unclear. One difference is that although natural266

infection elicits antibodies that bind both the hemagglutinin and the neuraminidase (NA) anti-267

gens, inactivated vaccines may induce fewer antibodies to NA [56], suggesting that the breadth of268

vaccine-induced immunity could be narrower than that of natural immunity. Host immune his-269

tory also affects the generation of immune responses [57–61], and by extension the breadths of270

vaccine-induced and natural immunity, in ways that are largely unexplored.271

Although our simulations show vaccines typically slow evolution (and drive extinction) in a272

single, closed population (i.e., a global population), other models predict faster evolution or higher273

incidence under particular assumptions. Vaccination accelerates antigenic evolution when stochas-274

tic extinctions in small viral populations are ignored [27]. In contrast, stochastic extinctions in275

our agent based model weaken selection in small viral populations. Vaccines can also accelerate276

antigenic evolution locally when antigenically diverged strains can immigrate re-seed seasonal epi-277

demics [28]. Our model simulates a closed global population where immigration is not a source278

of novel strains and extinct viral populations cannot be re-seeded. Finally, assuming that new279

strains do not appear by mutation, vaccination targeting a single strain potentially increases inci-280

dence when two competing strains co-circulate [62]. In our model, strains emerge dynamically by281

mutation, so the novel strains are less likely to appear when prevalence is low.282

Improved understanding of the fine-scale evolutionary and immunological dynamics might shift283

predictions. For instance, the rate of vaccine-driven evolution is sensitive to transmission rates and284

the distribution of mutation sizes. We chose transmission and mutation parameters such that the285

simulated epidemiological and evolutionary dynamics match those of H3N2 [41, 44]. However, in286

this model, increasing the mutation rate, skewing the distribution of mutation sizes toward large287

mutations, or increasing the transmission rate increases the rate of antigenic evolution and the288

tendency for viral populations to diversify [41,44]. Such changes would also increase the probability289

that viral populations survive to evolve further or diversify especially under small amounts of290

vaccination (or vaccines with narrow breadth). Our model assumes that an individual’s immune291

responses against multiple infections or vaccinations are independent, but immunity from prior292

infection or vaccination affects subsequent immune responses [63]. Consistent with this hypothesis,293

there is evidence that vaccination history [52–54] and recipient age (potentially a proxy for infection294

history) [64] affect vaccine efficacy.295

Our results suggest that conventional seasonal influenza vaccines, already have the potential to296

slow antigenic evolution and eradicate seasonal influenza. In theory, universal vaccines that im-297

munize against all strains necessarily slow antigenic evolution by not discriminating between anti-298

genic variants [15]. Increasing seasonal vaccine coverage, especially in populations that contribute299

substantially to influenza’s evolution, would help realize similar evolutionary benefits. However,300

as vaccination further reduces disease burden, people may require more incentives to get vacci-301

nated [34,35,65].302

4 Methods303

4.1 Model overview304

We adapted an individual-based model of influenza’s epidemiological and evolutionary dynamics [41]305

to include vaccination. In each time step of a tau-leaping algorithm, individuals can be born, can die,306

can become infected after contacting other hosts, can recover from infection, or can be vaccinated.307

Transmission occurs by mass action, with the force of infection given by308
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λ(t) = β
I(t)

N
, (1)

where I is the number of infected hosts. For computational efficiency, individuals cannot be coin-309

fected.310

Antigenic phenotypes are represented as points in 2-dimensional Euclidean space, analogous to311

antigenic maps produced using pairwise measurements of serum cross-reactivity [6, 42]. One anti-312

genic unit corresponds to a two-fold antiserum dilution in a hemagglutination inhibition (HI) assay.313

At the beginning of the simulation, a single founding strain is introduced at the endemic equilib-314

rium in the host population. When hosts recover from infection, they acquire lifelong immunity to315

the infecting strain. Upon contact with an infected host, the probability that the susceptible host316

becomes infected is proportional to the distance dn between the infecting strain and the nearest317

strain in the susceptible host’s infection history, with one unit of antigenic distance conferring a318

7% absolute increase in risk (Eq. 3) [1, 41,43].319

Each infection mutates to a new antigenic phenotype at a rate µ mutations per day. The320

mutation’s radial direction is drawn from a uniform distribution, and the size (distance) is drawn321

from a gamma distribution with mean δmean and standard deviation δsd.322

Vaccination occurs at rate r, breadth b (relative to natural immunity), and lag θ (relative to the323

timing of strain selection). The vaccine strain is selected on the first day of each year. By default,324

the vaccine is distributed for 120 days. During the period of vaccine distribution, individuals are325

randomly vaccinated at a constant daily rate according to the specified annual vaccination rate.326

rday = rannual ×
1 year

365 days
(2)

By default, the breadth of vaccine-induced and natural immunity are equal. Thus, a host’s327

probability of infection upon contact is given by328

Risk = P (infection|contact) = min{1, cdn,
cdv
b
} (3)

where dn is the distance between the infecting strain and the nearest strain in the host’s infection329

history, and dv is the distance between the infecting strain and the nearest strain in the host’s330

vaccination history (if the host is vaccinated) and c = 0.07 is a constant for converting antigenic331

distance to a risk of infection [1, 41,43].332

4.2 Simulation of vaccine-independent evolution333

We created a simulation where vaccination could not affect antigenic evolution, the “static” sim-334

ulation. We first ran 500 simulations of the model without vaccination. For each simulation, we335

recorded the circulating strains and their relative abundances at each time step to use as reference336

viral populations. The evolution of these reference viral populations is unaffected by vaccination337

since they were obtained from simulations without vaccination.338

To run the static simulation where vaccination could not affect antigenic evolution, we first339

randomly selected one of the reference viral populations. In each time step of the static simulation,340

the composition of the viral population was replaced with that of the reference viral population at341

the matched time step, scaled for prevalence. In this way, vaccination could still alter the overall342

viral abundance, but the rate of antigenic evolution was already previously set by the dynamics of343

the simulation without vaccination. Thus, vaccination was separated from the evolutionary process.344
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4.3 Estimating the private and social benefits of vaccination345

To generate panel data, we ran simulations at four annual vaccination rates r (0%, 1%, 5%, and346

10%) and recorded individual hosts’ dates of infection and vaccination. We randomly sampled347

0.005% of individuals from the host population at the end of the simulation for analysis. We fit348

a linear panel model (equation 4) to the simulated longitudinal vaccination data from multiple349

simulations j. Observations are at host i level in each time period τ (see Table S2 for hypothetical350

example). The dependent variable indicator variable Iijτ = 1 if a host is infected in the current351

season τ , and 0 otherwise. The indicator Vijτ = 1 if a host is vaccinated in the current season.352

Analogously lags Vijτ−k measure vaccination in period τ − k. If the annual vaccination rate in353

the host population is, e.g., 5%, then r5ij = 1. The regression is estimated as a linear probability354

model (with random effects) in order to simplify interpretation of reported coefficients. Standard355

errors are clustered at the simulation-level to account for correlation in outcomes across hosts in a356

simulation. The equation estimated is as follows.357

Iijτ = β0 + β1Vijτ + β2Vijτ−1 + ...+ β5Vijτ−4+

β6r1ij + β7r5ij + β8r10ij + εi + ujτ
(4)

The fitted coefficients estimate the change in probability of infection given an individual’s358

vaccination status (direct effects) and the host population’s vaccination rate (indirect effects). For359

example, the coefficient β1 estimates the absolute change in the probability of becoming infected360

in the current season for a host who has also been vaccinated in the current season. Likewise,361

β2, β3, β4, and β5 estimate the respective changes in the risk of becoming infected in the current362

season given vaccination one, two, three, and four seasons ago. Collectively, β1, · · · , β5 represent363

the direct benefits of vaccination. More formally,
∑5

k=1 βk is the impulse response to vaccination364

over 5 years and measures the total direct protective benefit of vaccination over time.365

The coefficients β6, β7, and β8 estimate the change in an individual’s risk of infection in the366

current season when the population vaccination rate is 1%, 5%, or 10%, respectively. Thus, β6, β7,367

and β8 represent the indirect benefits of vaccination under different vaccination policies.368

To estimate the private benefit (equivalent to vaccine efficacy), the absolute reduction in risk369

can be expressed in terms of a relative risk.370

Private =

[
1− P (I = 1|V = 1)

P (I = 1|V = 0)

]
× 100% (5)

To estimate the social benefit (or a social vaccine efficacy) for a specific vaccination rate R, we371

calculate an analogous relative risk:372

Social =

[
1− P (I = 1|r = R)

P (I = 1|r = 0)

]
× 100% (6)

5 Data and code availability373

The source code of the model can be found at https://github.com/cobeylab/antigen-vaccine.374

All data and code used to generate the results in this manuscript are available at https://github.375

com/cobeylab/vaccine-manuscript.376
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1 Supplementary Information550

1.1 Vaccination and the invasion fitness of mutants551

We use invasion analysis to understand how vaccination affects the invasion fitness of antigenically552

diverged strains by effectively reducing susceptibility. We develop an expression for the fitness of553

an invading mutant strain to explain how the antigenic selection gradient with vaccination.554

Here, S, I, and R represent the fraction of susceptible, infected, and recovered individuals.555

The birth rate ν and the death rate are equal, so the population size is constant. All individuals556

are born into the susceptible class. Transmission occurs at rate β, and recovery occurs at rate γ.557

We vaccinate some fraction p of newborns. In practice, this approximates vaccination of young558

children, who are primarily responsible for influenza transmission. Vaccinated individuals move559

into the recovered class.560

dS

dt
= ν(1− p)− βSI − νS (S1)

dI

dt
= βSI − γI − νI (S2)

dR

dt
= γI − νR+ νp (S3)

The endemic equilibrium of Seq, Ieq, and Req is561

Seq =
γ + ν

β
≡ 1

R0
(S4)

Ieq =
ν(R0(1− p)− 1)

β
(S5)

Req = 1− 1

R0
− ν(R0(1− p)− 1)

β
(S6)

where R0, the basic reproductive number, is the number of secondary infections from a single562

infected individual in a totally susceptible population.563

The disease-free equilibrium (when p > 1− 1
R0

) is564

S[I = 0] = 1− p (S7)

I[I = 0] = 0 (S8)

R[I = 0] = p (S9)

We introduce a single invading mutant I ′ = 1
N . To find the growth rate of the mutant, we565

develop an expression for the amount of immunity against the mutant strain. The single mutant566

has an antigenic phenotype d antigenic units away from the resident. The conversion factor between567

antigenic units and infection risk is notated by c. Thus, the susceptibility to the mutant is given568

by min{cd, 1}, and immunity to the mutant is max{1− cd, 0}. For convenience, we assume cd ≤ 1.569

We can decompose Req into immunity conferred by recovery natural infection Rn and immunity570

conferred by vaccination Rv:571
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Rn = 1− 1

R0
− ν(R0 − 1)

β
(S10)

Rv =
νR0p

β
(S11)

Req = Rn +Rv (S12)

The fraction of the population immune to the invading strain from previous infection is denoted572

R′. Assuming that vaccines confer a breadth of immunity relative to natural immunity b,573

R′ = (1− cd)Rn + (1− cd

b
)Rv (S13)

Note that when the mutant and resident are identical (d = 0), the immunity to the invading strain
is identical to the immunity against R′ = Req. Allowing for coinfection, the fraction susceptible to
the invading strain is

S′ = 1−R′ − 1

N
(S14)

= 1−R′ (S15)

for large N . When the vaccination rate exceeds 1 − 1
R0

, the resident is eradicated and S′ and R′574

are calculated using the disease-free equilibrium.575

The invasion fitness s of the mutant relative to the endemic strain is the difference between the576

per-capita growth rates. Note that since the resident is in equilibrium, dI/dt = 0.577

s =
1

I ′
dI ′

dt
− 1

I

dI

dt
= [βS′ − (γ + ν)]− 0 (S16)

= βS′ − (γ + ν) (S17)

The value of s increases with greater distance between the mutant and resident, but decreases as578

more hosts become vaccinated (Fig. S1A). The expected s can be used to determine the effect of579

vaccine coverage on the expected invasion fitness of the mutant ∂E(s)
∂p . E(s) is a function of the580

expected distance of a mutant E(d). In our model, we assume gamma distributed mutation sizes581

with a mean δmean of 0.3 antigenic units and standard deviation δsd of 0.6 antigenic units (Fig.582

S1C).583
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Figure S1: (A) High vaccination rates decrease the invasion fitness of mutant strains. For a given
vaccination rate, the invasion fitness of a mutant increases with antigenic distance. However, the
invasion fitness of a mutant at a given distance decreases as vaccine coverage increases. An example
profile of invasion fitnesses is shown for d = 0.2 (the red line) in (B). Above the invasion threshold
for the resident (ρ > 1 − 1/R0), the mutant must be increasingly more distant to invade. The
white curve shows the invasion threshold, where the invasion fitness for the mutant strain is zero.
Mutants above the above the curve can invade, while mutants below the curve cannot. (C) Density
of gamma distributed mutations with a δmean = 0.3 and δsd = 0.6.

We decompose ∂E(s)
∂p to understand how vaccines affect susceptibility and resistance to change

the invasion fitness of the mutant.

∂E(s)

∂p
=

(
∂E(s)

∂S′

)(
∂S′

∂R′

)(
∂R′

∂Rv

)(
∂Rv

∂p

)
(S18)

= (β)(−1)(1− cE(d)

b
)(
νR0

β
) (S19)

Since 1− cE(d)
b ≥ 0 (i.e. one cannot be more than 100% immune to infection), vaccination must584

decrease the expected invasion fitness of the mutant ∂E(s)
∂p ≤ 0 , slowing evolution. This decrease585

is attributed to vaccination reducing susceptibility to the mutant by increasing immunity ( ∂S
′

∂R′ ≤ 0586

and ∂R′

∂p > 0) against any mutant. Larger breadth of vaccine-induced immunity (b) also decreases587

the expected invasion fitness.588

589

1.2 Model validation without antigenic evolution590

In the main text, we show general agreement between our simulations and observations of in-591

fluenza’s epidemiology and evolution using our parameterization. We further validate the epidemi-592

ological processes of our agent-based model by removing evolution and comparing output against593

analytic solutions to a model using deterministic ordinary differential equations. A simple analytic594

solution to a model with antigenic evolution is intractable.595

Classical SIR models include vaccination of newborns only. In a newborn-only vaccination596

model, the threshold eradication rate pt = 1 − 1/R0 ≡ γ+ν
β . Here, we derive an eradication597

threshold vaccination rate for a model where all hosts are vaccinated at the same rate.598
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dS

dt
= ν − νS − βSI − pS (S20)

dI

dt
= βSI − γI − νI − pI (S21)

dR

dt
= γI − νR− pR (S22)

dV

dt
= p− νV − pV (S23)

At equilibrium:599

dI

dt
= 0 = βS∗I∗ − γI∗ − νI∗ − pI∗ (S24)

S∗ =
γ + ν + p

β
≡ 1

R0
(S25)

We find agreement between the simulated equilibrium fraction susceptible and the theoretical600

S∗ for a range of influenza-like values of R0 (1.2-3.0) S2.601
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Figure S2: Simulated susceptible fraction at the end of 20 years without vaccination. The theoretical
equilibrium fraction susceptible is given by S∗ = 1

R0

We derive a general expression for the eradication threshold first by calculating I∗:602

dS

dt
= 0 = ν − νS∗ − βS∗I∗ − pS∗ (S26)

0 = ν − S∗(ν + βI∗ + p) (S27)

ν
β

γ + ν + p
= ν + p+ βI∗ (S28)

ν
β

γ + ν + p
− ν − p = βI∗ (S29)

I∗ =
ν

β
(Rv − 1)− p

β
(S30)
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The condition for the existence of a disease-free equilibrium is I∗ > 0. We derive an eradication603

threshold pt for which I∗ = 0:604

I∗ =
ν

β
(Rv − 1)− pt

β
= 0 (S31)

ν

β
(Rv − 1)− pt

β
= 0 (S32)

ν(Rv − 1) = pt (S33)

νβ

ν + γ + p
− ν = p (S34)

νβ − ν(ν + γ + p) = p2 + (γ + ν)p (S35)

νβ − ν(ν + γ) = p2 + (γ + 2ν)p (S36)

0 = p2 + (γ + 2ν)p− νβ + ν(ν + γ) (S37)

Since p ≥ 0, we take the nonnegative root.605

p =
−(γ + 2ν)

2
+

√
(γ + 2ν)2 − 4(ν(ν + γ)− νβ)

2
(S38)

=
−(γ + 2ν)

2
+

√
γ2 + 4νγ + 4ν2 − 4ν2 − 4νγ + 4νβ)

2
(S39)

=
−(γ + 2ν)

2
+

√
γ2 + 4νβ

2
(S40)

Again, we find agreement between the simulated and theoretical eradication threshold vacci-606

nation rates over a range of influenza-like values of R0 (Figs. S3, S4). Because we initialize the607

simulations at the endemic equilibrium without vaccination, some damped oscillation is to be ex-608

pected, which may cause eradication at slightly lower vaccination rates than expected by theory609

(Fig. S5). For instance, at R0 = 1.8, theory predicts eradication at p = 0.0267 day−1, while610

simulation achieves extinction in 20/20 simulations within 20 years at p = 0.024 (Fig. S5).611
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Figure S3: With vaccination, the simulated eradication thresholds agree with analytic predictions.
The simulated threshold is the minimum vaccination rate where 40/40 simulations go extinct within
20 years. Error bars show the sampling resolution (Fig. S4). Simulations were initialized at the
analytically derived equilibrium S, I, and R with vaccination (equation S40).
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Figure S4: Estimation of simulated eradication thresholds without evolution, starting at the equi-
librium S, I, and R with vaccination. To generate response curves, we ran 40 replicate simulations
for each combination of R0 and vaccination rate and calculated the fraction of extinct simulations.
The simulated eradication threshold is the minimum vaccination rate that causes 40/40 simulations
to go extinct within 20 years. When the analytic equilibrium I was nonnegative, we initialized the
simulation with a single infection.

Figure S5: Simulated timeseries without evolution, starting at the endemic equilibrium without
vaccination (i.e., S0 = 1/R0 ≡ γ+µ+p

β , as in the manuscript, but in contrast to Appendix Figures 2
and 3). Because the population starts away from the vaccinated equilibrium, the system experiences
damped oscillations, which increase the probability of stochastic extinction. Thus, we observe
extinction even when the vaccination rate is slightly below the expected eradication threshold.
Vaccination remains pulsed in 9-month periods, as in the model. Frequencies of susceptible (S),
infected (I), recovered (R), and vaccinated (V ) individuals are shown for 20 replicate simulations.
The left y-axis shows the frequencies of S (blue), R (green), and V (purple). The right y-axis shows
the number of infections (red). The dashed lines shows the expected equilibrium frequencies for
each class.
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2 Supplementary tables and figures612

Table S1: Parameters

Parameter Value Reference

Intrinsic reproductive number (R0) 1.8 [66,67]

Duration of infection 1/γ 5 days [68]

Population size N 50 million (see text)

Birth/death (turnover) rate ν 1/30 year−1 [69]

Mutation rate µ 10−4 day−1 (see text)

Mean mutation step size δmean 0.6 antigenic units (see text)

SD mutation step size δsd 0.3 antigenic units (see text)

Infection risk conversion c 0.07 [1, 41,43]

Duration of simulation 20 years

Annual vaccination rate r 0.0-0.2 year−1

Breadth of vaccine-induced immunity b 100%

Temporal lag between vaccine strain selection and distribution θ 300 days
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Table S2: Sample panel data

Identifier Data Interpretation

τ i j Iijτ Vijτ−1 Vijτ−2 Vijτ−3 Vijτ−4 r1ij r5ij r10ij
1 1 1 1 0 1 0 0 0 1 0 The host was in-

fected this season
(1) and only vac-
cinated 2 seasons
ago. The popu-
lation vaccination
rate is 5%

1 2 1 0 1 0 0 1 0 1 0 Host not infected
this season (1).
Host vaccinated
this season and
4 seasons ago.
Population vac-
cination rate is
5%

...

10 1 2 1 0 0 0 1 0 0 1 Host infected this
season (10). Host
vaccinated 4 sea-
sons ago. Popu-
lation vaccination
rate is 10%
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Figure S6: (A) Vaccine coverage and (B) effective vaccine-induced immunity over time calcu-
lated from simulations. (A) The fraction of individuals who have been vaccinated at least once
accumulated over time and saturates at 50%. (B) The effective amount of vaccine-induced immu-
nity in the population is calculated using the mean antigenic distance between circulating strains
and the vaccinated hosts’ vaccine strains. At any given time, the effective vaccine immunity is
1
N

∑Np
i min {0, 1− cdxvi}, where N is the host population size, p is the fraction of vaccinated, vi

is the vaccine strain received by individual i, x is the average circulating strain, d is the antigenic
distance between the strains, and c is a constant that converts between antigenic distance and risk.
The horizontal line indicates the theoretical eradication threshold in an antigenically homogenous
population 1− 1/R0.
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Figure S7: High vaccination rates increase the probability of extinction and shorten the average
time to extinction. (A) Points show the fraction of simulations where the viral population went
extinct before 20 years. (B) Density of times to extinction. The solid white line shows the average
time to extinction across these simulations. Lines reflect 500 total simulations for each vaccination
rate with excessively diverse simulations (TMRCA > 10 years) excluded, leaving ∼ 300 − 400
simulations.
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Figure S8: With no temporal lag between vaccine strain selection and distribution, increasing the
vaccination rate quickly decreases the average amount of (A) cumulative antigenic evolution (A)
and (B) incidence. The solid white line shows a LOESS fit to cumulative antigenic evolution and
incidence across all simulations. The dotted white line shows a LOESS fit to cumulative antigenic
evolution and incidence for simulations where the viral population did not go extinct. Shaded areas
show 95% confidence intervals.

Figure S9: Increasing the vaccination rate increases the probability that the viral population will
go extinct (B) and decreases the probability of exhibiting influenza-like dynamics (A) or excessive
diversification (TMRCA > 10 years) (C). Lines are colored according to the breadth of the vac-
cine. Data are collected from 500 replicate simulations per unique combination of vaccination rate
and vaccine immune breadth with excessively diverse simulations (TMRCA > 10 years) excluded,
leaving ∼ 300− 400 simulations per parameter combination.
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Figure S10: Across all simulations (A&B), vaccination decreases the average (A) cumulative
antigenic evolution and (B) incidence regardless of breadth. In the subset of simulations where
the viral population does not go extinct (C&D), vaccines with narrow breadth are associated with
greater average antigenic evolution (C) and incidence (D), but these increases are not necessarily
caused by vaccination (see Fig. S13. Lines are colored according to the breadth of vaccine-induced
immunity. The grey dashed lines indicate the average amount of antigenic evolution (A,C) or
incidence (B,D) without vaccination. Points indicate significant decrease (below the dashed line)
or increase (above the dashed line) compared to no vaccination according to a Wilcoxon rank-
sum test (p < 0.05) performed on at least 5 replicate simulations. Complete data are shown in
Figures S11 and S14 Data are collected from 500 replicate simulations per unique combination of
vaccination rate and vaccine immune breadth with excessively diverse simulations (TMRCA > 10
years) excluded, leaving ∼ 300− 400 simulations per parameter combination.
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Figure S11: Density plots of complete simulation data corresponding to Figure S10. The solid white
lines show a LOESS fit to cumulative antigenic evolution or incidence across all simulations. The
dotted white lines show a LOESS fit to cumulative antigenic evolution or incidence for simulations
where the viral population did not go extinct. Shaded areas show 95% confidence intervals Data
are collected from 500 replicate simulations per unique combination of vaccination rate and vaccine
immune breadth with excessively diverse simulations (TMRCA > 10 years) excluded, leaving ∼
300− 400 simulations per parameter combination.
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Figure S12: With no temporal lag between vaccine strain selection and distribution, lower vacci-
nation rates are needed to achieve the same reductions in (A) cumulative antigenic evolution and
(B) cumulative incidence compared to when vaccines are distributed 300 days after strain selection
(Fig. S10). The solid lines show averages across all simulations, while dotted lines show averages
over simulations where the viral population did not go extinct. Lines are colored according to the
breadth of vaccine-induced immunity. Data are collected from 500 replicate simulations per unique
combination of vaccination rate and vaccine immune breadth with excessively diverse simulations
(TMRCA > 10 years) excluded, leaving ∼ 300− 400 simulations per parameter combination.
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Figure S13: Vaccination almost always reduces the rate of antigenic evolution. The subplots show
the number of simulations (out of 1000 replicates for each unique combination of parameters) that
demonstrate excessive evolution for each vaccination rate and breadth b. Here, excessive evolution
is defined by either more than 21 antigenic units of cumulative evolution or a TMRCA > 10 years.
Black lines show the number of simulations that evolve excessively without vaccination (the null
expectation if vaccines do not drive faster evolution). Red bars show significantly more counts of
excessive evolution compared to unvaccinated simulations (p < 0.05, Pearson’s χ2 test).
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Figure S14: The distributions of cumulative antigenic evolution are profiles along each vaccination
rate shown in figure S11. Data are collected from 500 replicate simulations per unique combination
of vaccination rate and vaccine immune breadth with excessively diverse simulations (TMRCA >
10 years) excluded, leaving ∼ 300− 400 simulations per parameter combination.
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Table S3: Private and social benefits of vaccination. In the static model, vaccination cannot affect
antigenic evolution. In the dynamic model, vaccination can affect antigenic evolution. Statistics
are computed using a linear panel model on longitudinal panel data of simulated hosts’ infection
and vaccination histories. Robust standard errors shown in brackets are clustered by simulation.

Probability of infection in the current season (τ)

Static (×10−2) Dynamic (×10−2)

Constant 9.91*** 9.94***
[0.35] [0.23]

Vaccinated in current season (τ) -4.65*** -3.34***
[0.20] [0.32]

Vaccinated 1 season ago (τ -1) -3.62*** -2.78***
[0.18] [0.33]

Vaccinated 2 seasons ago (τ -2) -2.65*** -2.05***
[0.13] [0.24]

Vaccinated 3 seasons ago (τ -3) -1.47*** -1.74***
[0.19] [0.22]

Vaccinated 3 seasons ago (τ -4) -1.28*** -1.08***
[0.20] [0.16]

Vaccination rate = 1% -0.95** -0.93**
[0.46] [0.47]

Vaccination rate = 5% -2.75*** -5.75***
[0.50] [0.65]

Vaccination rate = 10% -2.42***
[0.35]

Observations 1,627,500 987,500
Number of hosts 140,000 87,500
Vaccine efficacy (%) 46.95 33.58
Vaccine efficacy (%, social r = 1%) 9.28 9.36
Vaccine efficacy (%, social r = 5%) 27.4 57.8
Vaccine efficacy (%, social r = 10%) 24.1 –
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Table S4: Private and social benefits of vaccination for a vaccine that provides half the immune
breadth of natural immunity (b = 0.5). In the static model, vaccination cannot affect antigenic
evolution. In the dynamic model, vaccination can affect antigenic evolution. Statistics are computed
using a linear panel model on longitudinal panel data of simulated hosts’ infection and vaccination
histories. Robust standard errors shown in brackets are clustered by simulation.

Probability of infection in the current season (τ)

Static (×10−2) Dynamic (×10−2)

Constant 9.63*** 9.84***
[0.25 ] [0.44]

Vaccinated this season (τ) -3.48*** -3.22***
[0.19 ] [0.22]

Vaccinated 1 seasons ago (τ -1) -2.00*** -1.72***
[0.16 ] [0.22]

Vaccinated 2 seasons ago (τ -2) -0.88*** -0.82***
[0.14 ] [0.19]

Vaccinated 3 seasons ago (τ -3) -0.08 0.26
[0.15 ] [0.19]

Vaccinated 4 seasons ago (τ -4) 0.19 0.27
[0.19 ] [0.20]

Vaccination rate = 1% 0.68 -0.20
[0.44 ] [0.53]

Vaccination rate = 5% -1.50*** -0.34
[0.41 ] [0.50]

Vaccination rate = 10% -0.91 -4.85***
[0.88] [1.11]

Observations 1,727,500 927,500
Number of hosts 155,000 82,500
Vaccine efficacy (%, private) 36.10 32.68
Vaccine efficacy (%, social r = 1%) -9.24 2.03
Vaccine efficacy (%, social r = 5%) 1.34 3.05
Vaccine efficacy (%, social r = 10%) 7.27 49.3
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