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Abstract 
 
INTRODUCTION: Various computational methods for gene expression-based subtyping of high-

grade serous (HGS) ovarian cancer have been proposed. This resulted in the identification of 

molecular subtypes that are based on different datasets and were differentially validated, 

making it difficult to achieve consensus on which definitions to use in follow-up studies. We 

assess three major subtype classifiers for their robustness and association to outcome by a 

meta-analysis of publicly available expression data, and provide a classifier that represents their 

consensus. 

 

METHODS: We use a compendium of 15 microarray datasets consisting of 1,774 HGS ovarian 

tumors to assess 1) concordance between published subtyping algorithms, 2) robustness of 

those algorithms to re-clustering across datasets, and 3) association of subtypes with overall 

survival. A consensus classifier is trained on concordantly classified samples, and validated by 

leave-one-dataset-out validation. 

 

RESULTS: Each subtyping classifier identified subsets significantly differing in overall survival, 

but were not robust to re-fitting in independent datasets and grouped only approximately one 

third of patients concordantly into four subtypes. We propose a consensus classifier to identify 

the minority of unambiguously classifiable tumors across multiple gene expression platforms, 

using a 100-gene signature. The resulting consensus subtypes correlate with patient age, 

survival, tumor purity, and lymphocyte infiltration. 

 

CONCLUSIONS: Our analysis demonstrates that most HGS ovarian cancers are not able to be 

subtyped. A minority of tumors can be classified and our proposed consensus classifier 

consolidates and improves on the robustness of three previously proposed subtype classifiers. It 
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provides reliable stratification of patients with HGS ovarian tumors of clearly defined subtype, 

and will assist in studying the role of polyclonality in the majority of tumors that are not robustly 

classifiable. 
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Introduction 
 
Ovarian cancer is a genomically complex disease, for which the accurate characterization of 

molecular subtypes is difficult but is anticipated to improve treatment and clinical outcome1. 

Substantial effort has been devoted to characterize molecularly distinct subtypes of high-grade 

serous (HGS) ovarian cancer (Table 1). Initial large scale efforts to classify HGSC of the ovary 

did not reveal any reproducible subtypes2. Tothill et al3 reported four distinct HGS subtypes: (i) 

an immunoreactive expression subtype associated with infiltration of immune cells, (ii) a low 

stromal expression subtype with high levels of circulating CA125, (iii) a poor prognosis subtype 

displaying strong stromal response, correlating with extensive desmoplasia, and (iv) a 

mesenchymal subtype with high expression of N/P-cadherins. The Cancer Genome Atlas 

(TCGA) project also identified four subtypes characterized by (i) chemokine expression in the 

immunoreactive subtype, (ii) proliferation marker expression in the proliferative subtype, (iii) 

ovarian tumor marker expression in the differentiated subtype, and (iv) expression of markers 

suggestive of increased stromal components in the mesenchymal subtype, but did not report  

differences in patient survival4. Further experimental characterization revealed an increased 

number of samples with infiltrating T lymphocytes for the immunoreactive subtype, whereas 

desmoplasia, associated with infiltrating stromal cells, was found more often for the 

mesenchymal subtype5.  Konecny et al.6, independently evaluated the TCGA subtypes and also 

reported the presence of the four transcriptional subtypes using a de novo clustering and 

classification method.  

 

However, robustness and clinical relevance of these subtypes remain controversial7. The 

previous subtyping efforts have assessed prognostic significance in different patient cohorts, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 12, 2017. ; https://doi.org/10.1101/162685doi: bioRxiv preprint 

https://doi.org/10.1101/162685


and have taken different approaches to validate these subtypes in independent datasets. A 

recent review of ovarian cancer subtyping schemes highlighted the difficulty of comparing 

results of studies that used different subtyping algorithms, and that better general agreement on 

how molecular subtypes are defined would allow more widespread use of expression data in 

clinical trial design.1 364 

 

Assessing the generalizability of subtyping algorithms is challenging as true subtype 

classifications remain unknown. This challenge is evident in the lack of published validation of 

the proposed HGS subtypes. Subsequent efforts have performed de novo clustering of new 

datasets and noted similarity in the clusters identified, but they have not reported quantitative 

measures such as classification accuracy or rate of concordance with previously published 

algorithms. In this article, we address these limitations by re-implementing three major 

subtyping methods3,5,8 and assess between-classifier concordance and across-dataset 

robustness. We show that these subtype classifiers yield significant concordance, and are 

virtually identical for tumors classified with high certainty. Using the core set of tumors 

concordantly classified by each method, we develop consensusOV, a consensus classifier that 

has high concordance with the three classifiers, therefore providing a standardized classification 

scheme for clinical applications. 

Materials and Methods 
Datasets 
 
Analysis was carried out on datasets from the curatedOvarianData compendium9. Datasets 

were additionally processed using  the MetaGxOvarian package10 (Supplementary 

Information). Analysis was restricted to datasets featuring microarray-based whole-

transcriptome studies of at least 40 patients with late stage, high-grade, primary tumors of 
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serous histology. This resulted in 15 microarray studies, providing data for 1,774 patients 

(Supplementary Table 1). Duplicated samples identified by the doppelgangR package were 

removed11. Survival analysis was performed for 13 of these datasets, which included 1,581 

patients with annotated time to death or last time of follow-up.  

 
Implementation of Subtype Classifiers 
 
Subtype classifiers were re-implemented in R12 using original data as described by Konecny6, 

Verhaak5, and Helland8. Implementations were validated by reproducing a result from each of 

the original publications (Supplemental File, Section ‘Reproduction of Published Ovarian Cancer 

Subtype Classifiers’). 

 
Survival Analysis 
 
Subtype calls from all included datasets were combined to generate a single Kaplan-Meier plot 

for each subtyping algorithm (stratified by subtype). Hazard ratios for overall survival between 

subtypes was estimated by Cox proportional hazards, and statistical significance was assessed 

by log-rank test, using the survcomp R package13. Hazard ratios were calculated using the 

lowest-risk subtype as the baseline group.  

 
Prediction Strength 
 
Prediction Strength14 is defined as a measure of the similarity between pairwise co-

memberships of a validation dataset from class labels assigned by (1) a clustering algorithm 

and (2) a classification algorithm trained on a training dataset (Supplementary Figure 6). The 

quantity is an established measure of cluster robustness and its  interpretation is 

straightforward: a value of 0 or below indicates poor concordance, and a value of 1 indicates 

perfect concordance between models specified from training and validation data. Tibshirani and 

Walther14, and subsequent applications of Prediction Strength15, have considered a value of at 
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least 0.8 to be an evidence of robust clusters. Prediction Strength was computed as 

implemented in the genefu Bioconductor package16.  

 

The tumors in each dataset were clustered de novo using our reproduced implementations of 

the algorithms of Konecny, TCGA/Verhaak, and Tothill (Supplemental File, Section 

‘Reproduction of Subtype Clustering Methods’). Each dataset was also classified using 

implementation of the originally published subtype classifiers. This produced two sets of subtype 

labels for each sample in each validation dataset; these labels were used to compute Prediction 

Strength.  

 
Concordance Analysis 
 
For each pair of classifiers, subtypes were mapped across methods based on concordance, i.e., 

proportion of patients that were classified as the same (mapped) subtype. Subtype assignment 

was denoted as concordant only if the pairwise subtype mapping resulted in unique subtypes for 

each classifier. In other words, if ɸij is the mapping of subtypes in classifier i to subtypes in 

classifier j (for i,j  in {1,2,3}), then the following must be satisfied for each subtype :  

ɸ12(ɸ23(ɸ31(s))) = s. For the purpose of this study, we considered three methods, each of which 

strictly classifies the patients into distinct subtypes. For datasets resulting in concordant subtype 

assignments, patients of the same (mapped) subtype across classifiers were assigned to the 

subtype names proposed by Verhaak et al.5. Statistical significance of concordance was 

assessed by Pearson’s Chi-squared test. 

 
Filtering tumors by classification  margin 
 
Each subtype classifier outputs for each patient a real-valued score for each subtype. Marginally 

classifiable tumors were identified based on the difference between the top two subtype scores, 

denoted as the ‘margin’ value. Thus, a higher margin indicates a more confident classification. 
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For each pair of subtype classifiers, classification concordance was assessed on both the full 

dataset and considering only patients classified with margins above a user-defined cutoff. 

Concordance was defined as before (proportion of patients that are classified as the same 

mapped subtype across methods) to calculate concordance between datasets.  

 
Building a consensus classifier  
 
The consensusOV classifier was implemented using a Random Forest classifier trained on 

concordant subtypes across multiple datasets. The Random Forest method has previously been 

used for building a multi-class consensus classifier to resolve inconsistencies among published 

colorectal cancer subtyping schemes17. In order to avoid merging expression values across 

datasets, binary gene pair vectors were used as feature space, as recently applied for breast 

cancer subtyping18,19. Since the feature size of this classifier increases quadratically with respect 

to the size of the original gene set, we used the smallest gene set of the original subtype 

classifiers (the gene set of Verhaak et al.5), which contains 100 gene symbols. The 

consensusOV classifier outputs the subtype classification and a real-valued margin score to 

discriminate between patients that are of well-defined or indeterminate subtype. Similarly to 

previously published subtype classifiers, a higher margin score indicates higher confidence of 

classification. 

 
Leave-one-dataset-out cross-validation 
 
Performance of the consensus classifier for identifying concordantly classified subtypes was 

assessed using leave-one-dataset-out cross-validation20. Concordant subtypes were identified 

to train the Random Forest classifier using 14 of the 15 datasets, and subtype predictions were 

tested in the remaining left-out dataset. This process was repeated for all 15 datasets. While 

predicting the samples in any given dataset, the training set was subsetted to contain only the 

concordant subtypes in other datasets. 
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Correlation analysis with Histopathology and Tumor Purity 
 
Subtype calls from the Consensus Classifier were analysed for correlation with histopathology 

and tumor purity in the TCGA dataset. In order to best represent the most confident subtype 

calls, a default cutoff was used to include only the 25% of patients with the largest classification 

margins. Available histopathology variables included lymphocyte, monocyte, and neutrophil 

infiltration. Tumor purity was assessed using the ABSOLUTE algorithm21, which estimates purity 

and ploidy from copy number and SNP allele frequency from SNP genotyping arrays (Synapse 

dataset syn3242754). Significance of associations were tested by one-way ANOVA for patient 

age, purity, and immune infiltration.  

 
Research reproducibility 
 
All results are reproducible using R/Bioconductor22 and knitr23. The code is open source and 

provided in the consensusOV R package (http://www.github.com/bhklab/consensusOV). Literate 

programming output is provided as a Supplemental File. 

Results 
We performed a meta-analysis of three published subtyping algorithms for ovarian cancer 5,6,8 

and developed a new consensus classifier to identify unambiguously classifiable tumors (Table 

1). Each of these algorithms identified four distinct HGS subtypes with specific clinical and 

tumor pathology characteristics (Figure 1). We assessed the algorithms on a compendium of 15 

datasets including over 1,700 HGS patients (Supplemental Table 1) with respect to 

concordance, robustness, and association to patient outcome. By modifying individual 

algorithms to discard tumors of intermediate subtype, we found that concordance between 

algorithms is greatly improved.   
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Concordance of published classifiers 
 
We re-implemented three published ovarian subtype classifiers5,6,8 (Table 1) and  applied these 

methods to new datasets. We ensured correct implementation of classifiers by reproducing 

results from the original papers (Supplementary Information). When applied to independent 

datasets, concordance of the three methods was statistically significant (p < 10-5, Chi-square 

test) with the highest agreement observed for Helland and Konecny subtyping schemes 

(70.9%), followed by Verhaak and Helland (67.4%) and Verhaak and Konecny (58.9%). 

Cramer’s V coefficients24 indicated a strong association between subtypes as identified by the 

different algorithms (>0.5).  

 
Tumors of intermediate subtype 
 
The individual subtyping algorithms calculate numeric scores for each subtype (mesenchymal, 

differentiated, immunoreactive, and proliferative), and assign each tumor to the subtype with the 

highest score. A tumor with a large difference or “margin” between the highest and second 

highest scores can be considered distinctly classifiable, whereas a tumor with two nearly equal 

scores could be considered of intermediate subtype. We examined the effect of modifying the 

individual algorithms to prevent assignment of indeterminate cases at various thresholds. For 

each pair of subtype classifiers, we examined the classification concordance with increasing 

thresholds on the margins.  

 

For all pairs of subtype classifier, classification concordance increased as additional marginal 

cases are removed, approaching 100% concordance once the majority of tumors are left 

unclassified (Figure 2B). Three-way concordance followed the same trend with lower overall 

concordance: a minimum of 23% for the proliferative subtype and maximum of 45% for the 

immunoreactive subtype when all tumors are classified. Restricting the concordance analysis to 

the top 50% of tumors by margin value resulted in an increased overlap between 35% 
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(proliferative) and 65% (immunoreactive). At a strict threshold of where only 10% of tumors are 

classified, 88% of tumors overall are concordantly classified by all three published subtyping 

algorithms (Figure 2C). This large gain in concordance results from large reductions in both 

singleton calls - tumors assigned to one subtype by one algorithm, but not by the other two 

algorithms - and in 2-to-1 calls, tumors assigned to one subtype by two algorithms, but not by 

the third (Figure 2D). This indicates that tumors distinctly classifiable by a single algorithm are 

more likely to be concordantly classified by the other algorithms, and conversely, tumors that 

appear ambiguous to one algorithm are less likely to be classified in the same way by the other 

algorithms. 

 
Survival Analysis 
 
All proposed subtyping algorithms classified patients into groups that significantly differed in 

overall survival (Figure 3A, p < 10-5 for each subtyping algorithm, log-rank test). Comparing low-

risk to high-risk subtypes for each algorithm, the hazard ratios increase from approximately 1.5 

as marginal cases are removed (Figure 3B), suggesting that marginal cases may contribute to 

the intermediate survival profiles between subtypes.  

 
Robustness of the Classifiers 
 
Robust molecular subtyping should be replicable in multiple datasets. We performed de novo 

clustering in 15 independent ovarian datasets using the authors’ original gene lists and 

clustering methods. We compared these de novo clusters to the labels from our implementation 

of the published classifiers to assess robustness using the Prediction Strength (PS) statistic14. 

For PS estimation, we included validation datasets with at least 100 HGS tumors. Overall we 

observed low robustness for all classifiers, with PS values under 0.6 for the three algorithms 

across datasets (Supplementary Figure 7), none meeting the 0.8 threshold typically indicating 

robust classes14,15.  
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To assess whether low confidence predictions are driving the PS estimation, we re-computed 

the robustness of each algorithm set to classify varying fractions of the tumors with the highest 

margins. We used the largest dataset available, the TCGA dataset, as the validation set, and 

varied margin cutoffs of the Tothill and Konecny classifiers to require them to classify between 

25% and 100% of the cases. From 10 random clustering runs, we report the median PS for the 

dataset. Clustering was performed on the full TCGA dataset and tumors of low margin values 

were removed subsequent to clustering and after the classifier was fully defined, in order to 

avoid optimistically biasing the apparent strength of clusters. We observed that the robustness 

of each algorithm is substantially improved by allowing them to refuse to classify ambiguous 

cases. The Tothill algorithm achieved almost perfect robustness (PS = 0.96) when allowed to 

leave 75% of cases unclassified (Figure 4).  

 
Consensus Classifier 
 
To maximize concordance across classifiers, we developed consensusOV, a consensus 

subtyping scheme facilitating classification of tumors of well-defined subtypes (Figure 5). This 

classifier uses binary gene pairs18,19 to support application across gene expression platforms. 

The consensusOV classifier exhibits overall pairwise concordance of 67 - 78% with each of the 

other three algorithms, when classifying all tumors; and 94% concordance with tumors that are 

concordantly classified by the other three algorithms (Figure 5A). The margins of consensusOV 

are higher for concordantly classified cases than for non-concordantly classified cases, and this 

difference in margins is greater than for any of the other three classifiers (Figure 6A). 

Accordingly, consensusOV was also most effective in identifying concordantly classified cases, 

although it was similar to the Konecny classifier in this respect (AUC = 0.76, Figure 6B). As 

expected, differences in survival of subsets identified by consensusOV are similar to those 

identified by previous classifiers. The highest risk subtypes are proliferative (HR=1.44, 95% CI: 
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1.07−1.94) and mesenchymal (HR=1.97, 95% CI: 1.46−2.67) when removing 75% of 

indeterminate low-margin tumors, with similar hazard ratios for the concordant cases (Figure 

5B).  

Discussion 
The existence of four distinct and concordant molecular subtypes of HGOC has been reported 

in several studies of large patient cohorts4–6,8, but also called into question by another effort2 that 

could not identify subtypes, and by an independent validation effort that reported only two or 

three reproducible subtypes25. Meanwhile, significant effort is being expended to translate these 

subtypes to clinical practice, for example to predict response to the angiogenesis inhibitor 

bevacizumab in the ICON7 trial26,27. This article pursues three major objectives: (1) reproduction 

of published subtype classification algorithms as an easily usable open-source resource; (2) 

evaluation of the robustness and prognostic value of each proposed subtyping scheme in 

independent data; and (3) consolidation of proposed subtyping schemes into a consensus 

algorithm.  

 

We find that while the proposed 4-subtype classifications demonstrate significant concordance 

and association with patient survival, none are robust to re-training in new datasets. By 

modifying any of these algorithms to refuse to identify tumors of ambiguous subtype, robustness 

and concordance of subtyping algorithms improve dramatically. We propose a “consensus” 

classifier for 25% of tumors that can be classified with high confidence regardless of training 

dataset, although a continuous trade-off exists between classifying more tumors versus having 

greater confidence in those classified. 

 

Ambiguity in tumor classification might arise from a heterogeneous admixture of different 

subtypes, or from a more homogeneous composition of indeterminate subtype. This distinction 
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has implications for the therapeutic value of the proposed subtypes. Lohr et al. estimated that 

90% of tumors in the TCGA HGS dataset are polyclonal28 , and clonal spread of HGS ovarian 

cancer has been directly inferred from single-nucleus sequencing29. However, it remains unclear 

whether multiple clones in a tumor are consistently classifiable to the same subtype. If a tumor 

consists of multiple clones of different subtypes, then a subtype-specific therapy will likely lead 

to relapse as other clones survive and continue to grow. If this situation is common, even 

unambiguously classifiable tumors might be contaminated by small amounts of another subtype 

that could lead to relapse after subtype-specific therapy. This question could not be resolved by 

the current datasets, but may eventually be addressed by single-cell RNA sequencing30 which is 

expected to further improve precision HGS molecular subtyping. 

 

Several findings stand out in the validation of published subtyping algorithms. First, although 

previous studies reported inconsistent findings on whether subtypes differ by patient survival, 

our analysis in independent data showed clear survival differences. The 5-year survival rate for 

patients with different subtypes ranged from as low as 20% to as high as 50%. Second, 

published algorithms do not meet previously defined standards of robustness in terms of 

Prediction Strength, a measure of consistency between subtype classifiers trained in 

independent datasets. Finally, the concordance of three algorithms, established independently 

by different research groups from different patient cohorts, is only moderate but can be greatly 

improved by modifying the original algorithms to allow them to leave ambiguous tumors 

unclassified. In their original forms, all-way concordance of the four defined classes occurs in 

23% to 45% of tumors. As the individual algorithms are modified to leave ambiguous cases 

unclassified, the minority of tumors remaining can be classified with over 90% concordance 

between the three algorithms. Unfortunately, these ambiguous cases account for up to 75% of 

HGSC of the ovary. This has important implications for the clinical application of subtypes in 

ovarian cancer.  
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Moving forward, general agreement on how molecular subgroups are defined is expected to 

facilitate the use of expression data in clinical trial design, thereby improving prognosis as well 

as treatment benefit31.  We introduced the subtype classifier consensusOV, which represents 

the consensus of published HGS subtype classifiers. By training on multiple datasets, using 

binary (pairwise greater-than or less-than) relationships between pairs of genes, and using a 

relatively small gene set, consensusOV is designed to be applicable across gene expression 

platforms and datasets, making it effective for benchmarking and meta-analysis. The algorithm 

provides subtype-specific scores, margin values, and an option to leave tumors of intermediate 

subtype unclassified. Identifying tumors of distinct subtype is an important step towards defining 

robust and therapeutic phenotypes.  
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TABLES 
 

Citation Probe / gene 
filtering for 
Clustering 

Clustering 
Algorithm 

Probe / gene 
filtering for 
classification 

Subtype 
Classifier 

 
Tothill/ Helland3,8 

Probes with at 
least one 
sample 
expressed 
above 7.0, and 
global variance 
above 0.5 

Consensus 
k-means; 
diagonal 
LDA and 
kNN 

Gene ranking by 
differentially 
expressed genes 
between groups 

Linear subtype 
scores 

TCGA/Verhaak4,5 Filter to genes 
that correlate 
above 0.7 
between three 
platforms to 
unified estimate; 
then take top 
1500 genes by 
median absolute 
deviation (MAD) 

Non-
negative 
Matrix 
Factorization 

Filter patients by 
silhouette width; 
correlation-based 
feature subset 
selection 

Single-sample 
Gene Set 
Enrichment 
Analysis 

Konecny6 Top 2500 
probes by MAD, 
then keep 1850 
unique gene 
symbols 

Non-
negative 
Matrix 
Factorization 

Prediction Analysis 
of Microarrays with 
thresholds 
determined by 10-
fold cross validation 

Nearest Centroid 
with Spearman’s 
rho 

consensusOV 100 Genes 
provided by 
Verhaak5; 
convert the 
features space 
into binary 
matrix of gene-
pair associations  

Random 
Forest using 
unanimously  
classified 
tumors 
across the 
methods 

100 gene symbols 
given in Verhaak5 

Random Forest 
classifier 

 
 
Table 1: Subtyping methodology of the algorithms reviewed.  
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FIGURES 
 

 
 
Figure 1: Properties of Subtypes identified by Consensus Classifier. Subtype associations 

with patient age and overall survival were assessed across our compendium of microarray 

datasets; association with tumor purity and immune cell infiltration was assessed using the 

TCGA dataset. Tumor purity was estimated from genotyping data in TCGA; lymphocyte 

infiltration was based on pathology estimates from TCGA. Patient age (p < 0.001), overall 

survival (p < 0.005), and ABSOLUTE purity (p < 0.001) were statistically significant across 

subtypes. When compared to all other groups, the Immunoreactive subtype had elevated 

infiltration of lymphocytes (p < 0.05) and neutrophils (p < 0.10). Mean monocyte infiltration was 

less than 5% across all subtypes, and was excluded from this analysis. Classification was 

performed using default parameters, and mean values of each variable are shown.  
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Figure 2: Concordance Analysis. (A) Contingency table showing concordance of subtypes 

while comparing the methods pairwise (B) Pairwise concordance between the methods versus 

percentage of the dataset with samples of lower subtype margins removed, (C) three-way 

overall concordance between the methods and that of the individual subtypes versus 

percentage removed, (D) The classification of patients by three published algorithms as a Venn 

diagram for each of the four subtypes. Each area shows percentages of patients when all 

patients are classified (below, in parentheses) and after refusing to classify 75% of the most 
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marginally classified tumors by any of the three methods (above). Thus, the numbers on the top 

of the three-way intersection are the concordant tumors according to the three original 

algorithms. Bottom numbers indicate relatively unambiguous subtype predictions by all three 

algorithms and which are also concordant with the others.   
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Figure 3: Survival Analysis. (A) Kaplan-Meier curves of subtypes of the 1581 patients with 

survival data under different methods. (B) Hazard ratios and 95% confidence intervals of the 

lowest-risk subtype (Konecny and Verhaak) or two subtypes (Helland) compared to the 

remaining subtypes.  
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Figure 4: Robustness Analysis of published classifiers, by Prediction Strength. In each 

dataset, concordance was calculated between the published classifier and a classifier re-trained 

on the validation dataset. The TCGA dataset also classified using the published classifiers of 

Helland and Konecny (no re-training was done for the classifiers). The TCGA dataset was also 

clustered using the methods of Tothill and Konency (in red and blue respectively). Samples 

were removed from Prediction Strength calculations starting with the most ambiguous samples 

(with the smallest difference between the top subtype prediction and runner-up subtype 

prediction); the x-axis shows the percent removed before computing prediction strength. Each 
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algorithm improves in robustness when allowed to leave ambiguous samples, that it is less 

certain in its classification, unclassified. 
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Figure 5: Concordance and Survival Stratification of consensusOV. (A) Contingency plots 

showing concordance of subtype classification between consensusOV and the classifiers of 

Helland, Verhaak, Konecny. To address  differences in gene expression scales due to different 

experimental protocols, consensusOV standardizes genes in each dataset to the same mean 

and variance, and computes binary gene pairs. The fourth (bottom-right) plot shows the 

concordance between the consensus classifier and the patients concordantly classified between 
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the three classifiers. (B) Survival curves for the pooled dataset provided by consensusOV. 

Classification was performed using leave-one-dataset-out validation. For the bottom two figures, 

classification with consensusOV was performed with the default cutoff, in which 75% of patients 

with the lowest margin are not classified. 
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Figure 6: Margin Analysis. (A) Boxplots indicating the margin values assigned by each 

classifier to concordant and discordant cases. All statistical tests were performed using the 

Wilcoxon rank-sum test. (B) ROC curve for assessing the ability of margin values to discriminate 

between concordant and discordant cases. 
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