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Abstract7

Transcripts are frequently modified by structural variations, which leads to either a fused transcript8

of two genes (known as fusion gene) or an insertion of intergenic sequence into a transcript. These9

modifications are termed transcriptomic structural variants (TSV), and they can lead to drastic change of10

a downstream translation product. Detecting TSVs, especially in cancer tumor sequencing where they11

are known to frequently occur, is an important and challenging computational problem. This problem is12

made even more challenging in that often only RNA-seq measurements are available from the sample.13

We introduce SQUID, a novel algorithm and its implementation, to accurately and comprehensively14

predict both fusion-gene and non-fusion-gene TSVs from RNA-seq alignments. SQUID takes the unique15

approach of attempting to reconstruct an underlying genome sequence that best explains the observed16

RNA-seq reads. By unifying both concordant alignments and discordant read alignments into one model,17

SQUID achieves high sensitivity with many fewer false positives than other approaches. We detect TSVs18

on TCGA tumor samples using SQUID, and observe that breast cancer samples are more likely to contain19

a large number of TSVs than several other cancer types. We further find that non-fusion-gene TSVs are20

more likely to be intra-chromosomal than fusion-gene TSVs while the breakpoint separation distance21

tends to be larger than that of fusion-gene TSVs in intra-chromosomal case. We also identify several22

novel TSVs involving tumor suppressor genes, which may lead to loss-of-function of corresponding23

genes and play a role in tumorgenesis.24
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1 Introduction25

Large-scale transcriptome sequence changes are known to be associated with cancer [21, 34]. Those changes26

are usually a consequence of genomic structural variation (SV). By pulling different genomic regions to-27

gether or separating one region into pieces, structural variants can potentially cause severe alteration to28

transcribed or translated products. Transcriptome changes induced by genomic SVs, called transcriptomic29

structural variants (TSVs), can have a particularly large impact on disease genesis and progression. In some30

cases, TSVs bring regions from one gene next to regions of another, causing exons from both genes to be31

transcribed into a single transcript (known as a fusion gene). Domains of the corresponding RNA or proteins32

can be fused, inducing new functions or causing loss of function, or the transcription or translation levels can33

be altered, leading to disease states. For example, BCR-ABL1 is a well-known fusion oncogene for chronic34

myeloid leukemia [8], and the TMPRSS2-ERG fusion product leads to over-expression of ERG and helps35

triggers prostate cancer [35]. These fusion events are used as biomakers for early diagnosis or treatment36

targets [36]. In other cases, TSVs can affect genes by causing a previously non-transcribed region to be37

incorporated into a gene, causing disruption to the function of the altered gene. There are fewer studies on38

these TSVs between transcribed and non-transcribed regions, but their ability to alter downstream RNA and39

protein structure is likely to lead to similar results as fusion gene TSVs, and contribute to tumor genesis and40

progression.41

Genomic SVs are typically detected from whole-genome sequencing (WGS) data by identifying reads and42

read pairs that are incompatible with a reference genome [e.g., 5, 14, 17, 27, 28]. However, WGS data are43

not completely suitable to infer TSVs since they neither inform which region is transcribed nor reveal how44

transcribed sequence will change if SVs alter a splicing site or the stop codon. In addition, WGS data is more45

scarce and more expensive to obtain than RNA-seq [31] measurements, which sequence transcribed regions46

directly. RNA-seq is relatively inexpensive, high-throughput, and widely available in many existing and47

growing data repositories. For example, The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov)48

contains RNA-seq measurements from thousands of tumor sample across various cancer types, but 80% of49

tumor samples in TCGA have RNA-seq data but no WGS data (Supp. Figure S1). While methods exist to50

detect fusion genes from RNA-seq measurements [e.g., 7, 15, 20, 26, 41], fusion genes are only a subset51

of TSVs, and existing fusion gene detection methods rely heavily on current gene annotations and are52
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generally not able or at least not optimized to predict non-fusion-gene TSV events. This motivates the need53

for a method to detect all types of TSVs directly from RNA-seq data.54

We present SQUID, the first computational tool that comprehensively and accurately predicts TSVs from55

RNA-seq data. SQUID divides the reference genome into segments and builds a genome segment graph56

from both concordant and discordant RNA-seq read alignments. In this way, it can detect both fusion-gene57

events and TSVs incorporating previously non-transcribed regions into transcripts. Using an efficient, novel58

integer linear program (ILP), SQUID rearranges the segments of the reference genome so that as many59

read alignments as possible are concordant with the rearranged sequence. TSVs are represented by pairs60

of breakpoints realized by the rearrangement. Discordant reads that cannot be made concordant through61

the optimal rearrangement given by the ILP are discarded as false positive discordant reads, likely due to62

misalignments. By building a consistent model of the entire rearranged genome and maximizing the number63

of overall concordant read alignments, SQUID drastically reduces the number of spurious TSVs reported64

compared with other methods.65

SQUID features high accuracy. SQUID is usually > 20% more accurate than applying WGS-based SV66

detection methods to RNA-seq data directly. It is similarly more accurate than a pipeline that uses de novo67

transcript assembly and transcript-to-genome alignment to detect TSVs. We also show that SQUID is able68

to detect more TSVs involving non-transcribed regions than any existing fusion gene detection method.69

We use SQUID to detect TSVs within 401 TCGA tumor samples of four cancer types (99–101 samples each70

of breast invasive carcinoma [22], bladder urothelial carcinoma [23], lung adenocarcinoma [24], and prostate71

adenocarcinoma [25]). SQUID’s predictions suggest that breast invasive carcinoma has more fusion-gene72

TSVs and more non-fusion-gene TSVs than other cancer types. We also characterize the differences between73

fusion-gene TSVs and non-fusion-gene TSVs. Non-fusion-gene TSVs, for example, are more likely to be74

intra-chromosomal events, and within those intra-chromosomal events the two breakpoints of non-fusion-75

gene TSVs tend to be farther apart from each other than of fusion-gene TSVs. We show that breakpoints76

can occur in multiple samples, and among those that do repeatedly occur, their breakpoint partners are77

also often conserved. Finally, we identify several novel non-fusion-gene TSVs that affect known tumor78

suppressor genes, which may result in loss-of-function of corresponding proteins and play a role in tumor79

genesis.80
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2 Methods81

2.1 The computational problem: rearrangement of genome segments82

We formulate the TSV detection problem as the optimization problem of rearranging genome segments to83

maximize the number of observed reads that are consistent (termed concordant) with the rearranged genome.84

This approach requires defining the genome segments that can be independently rearranged. It also requires85

defining what reads are consistent with a particular arrangement of the segments. We will encode both of86

these (segments and read consistency) within a Genome Segment Graph (GSG). See Figure 1 as an example.87

Definition 1 (Segment). A segment is a pair s = (sh, st), where s represents a continuous sequence in88

reference genome and sh represents its head and st represents its tail in reference genome coordinates. In89

practice, segments will be derived from the read locations (Section 2.4).90

Definition 2 (Genome Segment Graph (GSG)). A genome segment graph G = (V,E,w) is an undirected91

weighted graph, where V contains both endpoints of each segment in a set of segments S, i.e., V = {sh :92

s ∈ S} ∪ {st : s ∈ S}. Thus, each vertex in the GSG represents a location in the genome. An edge93

(u, v) ∈ E indicates that there is evidence that the location u is in fact adjacent to location v. Weight94

function, w : E −→ R+, represents the reliability of an edge. Generally speaking, the weight is the number95

of read alignments supporting, but we allow a multiplier to calculate edge weight which will be discussed96

below. In practice, E and w will be derived from split-aligned and paired-end reads (Section 2.5).97

Defining vertices by endpoints of segments is required to avoid ambiguity. Only knowing that segment i is98

connected with segment j is not enough to recover the sequence, since different relative positions of i and99

j spell out different sequences. Instead, for example, an edge (it, jh) indicates that the tail of segment i is100

connected head of segment j, and this specifies a unique desired local sequence with only another possibility101

of the reverse complement (i.e. it could be that the true sequence is i · j or rev(j) · rev(i); here · indicates102

concatenation and rev(i) is the reverse complement of segment i).103

The GSG is similar to the breakpoint graph [2] but with critical differences. A breakpoint graph has edges104

representing both connections in reference genome and in target genome. While edges in the GSG only105

represents the target genome, and they can be either concordant or discordant. In addition, the GSG does106
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not require that the degree of every vertex is two, and thus alternative splicing and erroneous edges can exist107

in the GSG.108

Our goal is to reorder and reorient the segments in S so that as many edges in G are compatible with the109

rearranged genome as possible.110

Definition 3 (Permutation). A permutation π on a set of segments S projects a segment in S to a set of111

integers from 1 to |S| (the size of S) representing the indices of the segments in an ordering of S. In other112

words, each permutation π defines a new order of segments in S.113

Definition 4 (Orientation Function). An orientation function f maps both ends of segments to 0 or 1:114

f : {sh : s ∈ S} ∪ {st : s ∈ S} −→ {0, 1}

subject to f(sh) + f(st) = 1 for all s = (sh, st) ∈ S. An orientation function specifies the orientations of115

all segments in S. Specifically, f(sh) = 1 means sh goes first and st next, corresponding to forward strand116

of segment, and f(st) = 1 corresponds to the reverse strand of the segment.117

With a permutation π and an orientation function f , the exact and unique sequence of genome is determined.118

The reference genome also corresponds to a permutation and an orientation function, where the permutation119

is the identity permutation, and the orientation function maps all sh to 1 and all st to 0.120

Definition 5 (Edge Compatibility). Given a set of segments S, a genome segment graph G = (V,E,w), a121

permutation π on S, and an orientation function f , an edge e = (ui, vj) ∈ E, where ui ∈ {uh, ut} and122

vj ∈ {vh, vt}, is compatible with permutation π and orientation f if and only if123

1− f(vj) = 1[π(v) < π(u)] = f(ui) (1)

where 1[x] is the indicator function that is 1 if x is true and 0 otherwise. We write e ∼ (π, f) if e is124

compatible with π and f .125

The above two edge compatibility equations (1) require that, in order for an edge to be compatible with126

the rearranged and reoriented sequence determined by π and f , the edge needs to connect the right side127

of the segment in front to the left side of segment following it. As we will see in Section 2.5, edges of128
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GSG are derived from reads alignments. An edge being compatible with π and f is essentially equivalent to129

the statement that the corresponding read alignments are concordant (Section 2.3) with respect to the target130

genome determined by π and f . When (π, f) is clear, we refer to edges that are compatible as concordant131

edges, and edges that are incompatible as discordant edges.132

With the above definitions, we formulate an optimization problem as follows:133

Problem 1. Input: A set of segments S and a GSG G = (V,E,w).134

Output: Permutation π on S and orientation function f that maximizes:135

max
π,f

∑
e∈E

w(e) · 1[e ∼ (π, f)] (2)

This objective function tries to find a rearrangement of genome segments (π, f), such that when aligning136

reads to the rearranged sequence, as many reads as possible will be aligned concordantly. This objec-137

tive function includes both concordant alignments and discordant alignments and sets them in competition,138

which will be effective in reducing false positives when tumor transcripts out-number normal transcripts.139

There is the possibility that some rearranged tumor transcripts are out-numbered by normal counterparts. In140

order to be able to detect TSV in this case, we weight discordant read alignments more than concordant read141

alignments. Specifically, for each discordant edge e, we multiply the weight w(e) by a constant α, which142

represents our estimate of the ratio of normal transcripts over tumor counterparts.143

The final TSVs are modeled as pairs of breakpoints. Denote the permutation and orientation corresponding144

to an optimally rearranged genome as (π∗, f∗) and those that correspond to reference genome as (π0, f0).145

An edge e can be predicted as a TSV if e ∼ (π∗, f∗) and e � (π0, f0).146

2.2 Integer linear programming formulation147

We use integer linear programming (ILP) to compute an optimal solution (π∗, f∗) of Problem 1. To do this,148

we introduce the following boolean variables:149

• xe: xe = 1 if edge e ∼ (π∗, f∗), and xe = 0 if not.150

• zuv: zuv = 1 if segment u is before v in the permutation π∗, and 0 otherwise.151
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• yu: yu = 1 if f∗(uh) = 1 for segment u.152

With this representation, the objective function can be rewritten as153

max
xe,yu,zuv

w(e) · xe (3)

We add constraints to the ILP derived from edge compatibility equations (1). Without loss of generality,154

we first suppose segment u is in front of v in the reference genome, and edge e connects ut and vh (which155

is a tail-head connection). Plugging in ut, the first equation in (1) is equivalent to 1 − 1[π(u) > π(v)] =156

1 − f(ut), and can be rewritten as 1[π(u) < π(v)] = f(uh) = yu. Note that 1[π(u) < π(v)] has the157

same meaning as zuv; it leads to the constraint zuv = yu. Similarly, the second equation in (1) indicates158

zuv = yv. Therefore, xe can only reach 1 when yu = yv = zuv. This is equivalent to the inequalities (4)159

below. Analogously, we can write constraints for other three types of edge connections: tail-tail connec-160

tions impose inequalities (5); head-head connections impose inequalities (6); head-tail connections impose161

inequalities (7):162

xe ≤ yu − yv + 1

xe ≤ yv − yu + 1

xe ≤ yu − zuv + 1

xe ≤ zuv − yu + 1

(4)

xe ≤ yu − (1− yv) + 1

xe ≤ (1− yv)− yu + 1

xe ≤ yu − zuv + 1

xe ≤ zuv − yu + 1

(5)

xe ≤ (1− yu)− yv + 1

xe ≤ yv − (1− yu) + 1

xe ≤ (1− yu)− zuv + 1

xe ≤ zuv − (1− yu) + 1

(6)

xe ≤ (1− yu)− (1− yv) + 1

xe ≤ (1− yv)− (1− yu) + 1

xe ≤ (1− yu)− zuv + 1

xe ≤ zuv − (1− yu) + 1

(7)

We also add constraints to enforce that zuv forms a valid topological ordering. For each pair of nodes u and163

v, one must be in front of other, that is zuv + zvu = 1. In addition, for each triple of nodes, u, v and w, they164

cannot be all in front of another; one must be at the beginning of these three and one must be at the end.165
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Therefore we add 1 ≤ zuv + zvw + zwu ≤ 2.166

Solving an ILP in theory takes exponential time, but in practice, solving the above ILP to rearrange genome167

segments is very efficient. The key is that we can solve for each connected component separately. Because168

the objective maximizes the sum of compatible edge weight, the best rearrangement of one connected com-169

ponent is independent from the rearrangement of another because by definition there are no edges between170

connected components.171

2.3 Concordant and discordant alignments172

Discordant alignments are alignments of reads that contradict library preparation in sequencing. Concordant173

alignments are alignments of reads that agree with the library preparation. Take Illumina sequencing as an174

example. In order for a paired-end read alignment to be concordant, one end should be aligned to the forward175

strand and the other to the reverse strand, and the forward strand aligning position should be in front of the176

reverse strand aligning position (Figure 2a). Concordant alignment traditionally used in WGS also requires177

that a read cannot be split and aligned to different locations. But these requirements are invalid in RNA-seq178

alignments because alignments of reads can be separated by an intron with unknown length.179

We define concordance criteria separately for split-alignment and paired-end alignment. If one end of a180

paired-end read is split into several parts and each part is aligned to a location, the end has split-alignments.181

Denote the vector of the split alignments of an end to be R = [A1, A2, · · · , Ar] (r depends on the number182

of splits). Each alignment R[i] = Ai is comprised of 4 components: chromosome (Chr), alignment starting183

position (Spos), alignment ending position (Epos) and orientation (Ori, with value either + or −). We184

require that the alignmentsAi are sorted by their position in read. A split-aligned endR = [A1, A2, · · · , Ar]185

is concordant if all the following conditions hold:186

Ai.Chr = Aj .Chr ∀i, ∀j

Ai.Ori = Aj .Ori ∀i, ∀j

Ai.Spos < Aj .Spos if Ai.Ori = + for all i < j

Ai.Spos > Aj .Spos if Ai.Ori = − for all i < j

(8)

Note that if the end is not split, but continuous aligned, the alignment automatically satisfy equation (8).187
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Denote the alignments of R’s mate as M = [B1, B2, · · · , Bm]. An alignment of the paired-end read is188

concordant if the following conditions all hold:189

Ai.Chr = Bj .Chr

Ai.Ori 6= Bj .Ori

A1.Spos < Bm.Spos if A1.Ori = +

Am.Spos > B1.Spos if A1.Ori = −

(9)

We only require the left-most split of the forward read R be in front of the left-most split of the reverse read190

M since the two ends in a read pair may overlap. In order for a paired-end read to be concordant, each191

end should satisfy split-read alignment concordance (8), and the pair should satisfy paired-end alignment192

concordance (9).193

2.4 Splitting the genome into segments S194

We use a set of breakpoints to partition the genome. The set of breakpoints contains two types of positions:195

(1) the start position and end position of each interval of overlapping discordant alignments, (2) an arbitrary196

position in each 0-coverage region.197

Ideally, both ends of a discordant read should be located in separate segments, otherwise, the discordant198

read contained in a single segment will always be discordant no matter how the segments are rearranged.199

Assuming discordant read alignments of each TSV pile up around the breakpoints and do not overlap with200

discordant alignments of other TSVs, we set a breakpoint on the start and end positions of each contiguous201

interval of overlapping discordant alignments.202

For each segment that contains discordant read alignments, it may also contain concordant alignments that203

connect the segment to its adjacent segments. To avoid having all segments in GSG connected to their204

adjacent segments and thus creating one big connected component, we pick the starting point of each 0-205

coverage region as a breakpoint. By adding those breakpoint, different genes will be in separate connected206

components unless some discordant reads support their connection. Overall, the size of each connected207

component is not very large: the number of nodes generated by each gene is approximately the number of208

exons located in them and these gene subgraphs are connected only when there is a potential TSV between209
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them.210

2.5 Defining edges in the genome segment graph211

In a GSG, an edge is added between two vertices when there are reads supporting the connection. For each212

read spanning different segments, we build an edge such that when traversing the segments along the edge,213

the read is concordant with the new sequence (equations (8) and (9)). Examples of deriving an edge from a214

read alignment are given in Figure 2. In this way, concordance of an alignment and compatibility of an edge215

with respect to a genome sequence is equivalent.216

The weight of a concordant edge is the number of read alignments supporting the connection, while the217

weight of a discordant edge is the number of alignments supporting multiplied by discordant edge weight218

coefficient α. Edges with very low read support are likely to be a result of alignment error, therefore we filter219

out edges with weight lower than a threshold θ. Segments with too many connections to other regions are220

likely to have low mappability, so we also filter out segments connecting to more than γ other segments. The221

parameters α, θ, and γ are the most important user-defined parameters to SQUID (Supplementary Table 1222

and Supplementary Figure S2).223

2.6 Identifying TSV breakpoint locations224

Edges that are discordant in the reference genome indicate potential rearrangements in transcripts. Among225

those edges, some are compatible with the permutation and orientation from ILP. These edges are taken to be226

the predicted TSVs. For each edge that is discordant initially but compatible with the optimal rearrangement227

found by the ILP, we examine the discordant read alignments to determine the exact breakpoint located228

within related segments. Specifically, for each end of a discordant alignment, if there are 2 other read229

alignments that start or end in the same position and support the same edge, then the end of the discordant230

alignment is predicted to be the exact TSV breakpoint. Otherwise, the boundary of the corresponding231

segment will be output as the exact TSV breakpoint.232
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2.7 Simulation methodology233

Simulations with randomly added structural variations and simulated RNA-seq reads were used to evalu-234

ate SQUID’s performance in situations with a known correct answer. RSVsim [3] was used to simulate235

SV on the human genome (Ensembl 87 or hg38) [40]. We use the 5 longest chromosomes for simulation236

(chromosome 1 to chromosome 5). RSVsim introduces 5 different types of SVs: deletion, inversion, inser-237

tion, duplication, and inter-chromosomal translocation. To vary the complexity of the resulting inference238

problem, we simulated genomes with 200 SVs of each type, 500 SVs of each type, and 800 SVs of each239

type. We generated 4 replicates for each level of SV complexity (200, 500, 800). For inter-chromosomal240

translocations, we only simulate 2 events because only 5 chromosomes were used.241

In the simulated genome with SVs, the original gene annotations are not applicable, and we cannot simulate242

gene expression from the rearranged genome. Therefore, for testing purposes, we interchange the role243

of the reference (hg38) and rearranged genome, and use the new genome as the reference genome for244

alignment, and hg38 with the original annotated gene positions as the target genome for sequencing. Flux245

Simulator [12] was used to simulate RNA-seq reads from the hg38 genome using the Ensembl annotation246

version 87 [1].247

After simulating SVs on genome, we need to transform SVs into a set of TSVs, because not all SVs affect248

transcriptome, and thus not all SVs can be detected by RNA-seq. To derive the list of TSVs, we compare249

the positions of simulated SVs with the gene annotation. If a gene is affected by an SV, some adjacent250

nucleotides in the corresponding transcript may be located far part in the RSVsim-generated genome. The251

adjacent nucleotides can be consecutive nucleotides inside an exon if the breakpoint breaks the exon, or the252

end points of two adjacent exons if the breakpoint hits the intron. So for each SV that hits a gene, we find253

the pair of nucleotides that are adjacent in transcript and separated by the breakpoints, and converted them254

into coordinate of the RSVsim-generated genome, thus deriving the TSV.255

Since there are no existing methods for annotation-free TSV detection, we compare SQUID to the pipeline256

of de novo transcriptome assembly and transcript-to-genome alignment. We also use the same set of simu-257

lations to test whether existing WGS-based SV detection methods can be directly applied to RNA-seq data.258

For the de novo transcriptome assembly and transcript-to-genome alignment pipeline, we use all combi-259

nations of the existing software Trinity [11], Trans-ABySS [29], GMAP [37] and MUMmer3 [16]. For260
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WGS-based SV detection methods, we test LUMPY [17] and DELLY2 [28]. We test both STAR [9] and261

SpeedSeq [6] (which is based on BWA-MEM [18]) to align RNA-seq reads to the genome. LUMPY is only262

compatible with SpeedSeq output, so we do not test it with STAR alignments.263

3 Results264

3.1 SQUID is accurate on simulation data265

Overall, SQUID’s predictions of TSVs are far more precise than other approaches at similar sensitivity266

on simulated data (Section 2.7). SQUID achieves 60% to 80% percent precision and about 50% percent267

sensitivity on simulation data (Figure 3). SQUID’s precision is ≈ 40% higher than all combinations of268

de novo transcriptome assembly and transcript-to-genome alignment pipeline, and the precision of WGS-269

based SV detection methods on RNA-seq data is even lower. The sensitivity of SQUID is similar to de novo270

assembly with MUMmer3, but a little lower than DELLY2 and LUMPY with SpeedSeq aligner. The overall271

sensitivity is not as high as precision, which is probably because there are not enough supporting reads272

aligned correctly to some TSV breakpoints. The fact that assembly and WGS-based SV detection methods273

achieve similar sensitivity corroborates the hypothesis that it is the data limiting the achievable sensitivity.274

The low specificity of the pipeline- and WGS-based methods shows neither of these types of approaches275

are suitable for TSV detection from RNA-seq data. WGS-based SV detection methods are able to detect276

TSV signals, but not able to filter out false positives. Assembly-based approaches require solving the tran-277

scriptome assembly problem which is a harder and more time-consuming problem, and thus errors are more278

easily introduced. Further, the performance of assembly pipelines depends heavily on the choice of software279

— for example, MUMmer3 is better at discordantly aligning transcripts than GMAP.280

SQUID is likely effective due to its unified model of both concordant reads and discordant reads. Coverage281

in RNA-seq alignment is proportional to the expression level of the transcript, and using one read count282

threshold for TSV evidence is not appropriate. Instead, the ILP in SQUID sets concordant and discordant283

alignments into competition and selects the winner as the most reliable TSVs.284
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3.2 SQUID is able to detect non-fusion-gene TSV on two previously-studied cell lines285

Fusion gene events are a strict subset of TSVs where the two breakpoints are each be within a gene region286

and the fused sequence corresponds to the sense strand of both genes. Fusion genes thus exclude TSV events287

where a gene region is fused with a intergenic region or an anti-sense strand of another gene. Nevertheless,288

fusion genes have been implicated (likely because of available methods to detect them) in playing a role in289

cancer.290

To probe SQUID’s ability to detect this subclass of TSVs, we use two cell lines, HCC1954 and HCC1395, for291

which previous studies have experimentally validated predicted SVs and fusion gene events. Specifically,292

we compile results from Bignell et al. [4], Galante et al. [10], Stephens et al. [33], Zhao et al. [42] and293

Robinson et al. [30] for HCC1954, and results from Stephens et al. [33] and Zhang et al. [41] for HCC1395.294

After removing short deletions and overlapping structural variations among different studies, we have 326295

validated structural variations for HCC1954 cell line, in which 245 of them have at least one breakpoint296

outside gene region, and the rest 81 have both breakpoints within gene region; we have 256 validated297

true structural variations for HCC1395 cell line, in which 94 have at least one breakpoint outside gene298

region, while the rest 162 have both breakpoints within gene. For a predicted structural variation to be299

true positive, both predicted breakpoints should be within a window of 30kb of true breakpoints and the300

predicted orientation should agree with true orientation. We use a relatively large window since the true301

breakpoints can be located within an intron or other non-transcribed region, while the observed breakpoint302

from RNA-seq reads will be at a nearby coding or expressed region.303

We use publicly available RNA-seq data from the NIH Sequencing Read Archive (SRA; accessions:304

SRR2532344 and SRR925710 for HCC1954, SRR2532336 for HCC1395). Because the data are from305

an pool of experiments, the sample from which RNA-seq was collected may be different from those used306

for experimental validation. We align reads to the reference genome using STAR.307

When restricted to fusion gene events, SQUID achieves similar precision and sensitivity compared to fusion308

gene detection tools (Figure 4A). SQUID has the highest accuracy in HCC1954 cell line, with very similar309

sensitivity as all fusion gene detection tools. For HCC1395, SQUID is in the middle of fusion gene detection310

methods, while INTEGRATE and JAFFA are the best performers on this sample.311
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For non-fusion-gene TSVs, it is even harder to predict them accurately, since current annotations cannot be312

used to limit the search space for potential read alignments or TSV events. Only SQUID and deFuse are313

able to detect non-fusion-gene events. Between these two methods, SQUID is able to predict more known314

non-fusion-gene TSVs correctly (Figure 4B). By considering both fusion-gene and non-fusion-gene TSVs315

in SQUID predictions, the number of correct predictions greatly increases compared to considering fusion-316

gene TSVs only, since a considerable proportion of validated TSVs are non-fusion-gene TSVs. At the same317

time, precision does not decrease very much by considering both fusion-gene and non-fusion-gene TSVs.318

3.3 Charactering TSVs on four types of TCGA cancer samples319

To compare the distributions and characteristics of TSVs among cancer types and between TSV types, we320

arbitrarily selected 99 to 101 tumor samples from TCGA for each of four cancer types: breast invasive321

carcinoma (BRCA), bladder urothelial carcinoma (BLCA), lung adenocarcinoma (LUAD), and prostate322

adenocarcinoma (PRAD).323

To estimate the accuracy of SQUID’s prediction on selected TCGA samples, we use WGS data of the324

same patients to validate TSV junctions. There are in total 72 WGS experiments available for the 400325

samples (20 BLCA, 10 BRCA, 31 LUAD, 11 PRAD). For each TSV prediction, we extract a 25Kb sequence326

around both breakpoints and concatenate them according to the predicted TSV orientation. We then map327

the WGS reads against these junction sequences using SpeedSeq. If a paired-end WGS read can only be328

mapped concordantly to a junction sequence but not the reference genome, that paired-end read is marked329

as supporting the TSV. If at least 3 WGS reads support a TSV, the TSV is considered as validated. Using330

this approach, SQUID’s overall validation rate is 88.21%, and this indicates that SQUID is quite accurate331

and reliable on TCGA data.332

We find that most samples have ≈ 15− 20 TSVs including ≈ 3− 5 non-fusion-gene TSVs among all four333

cancer types (Figure 5A,B). BRCA has more samples with a larger number of TSVs: there are 37 BRCA334

samples with more than 20 TSVs, while for other cancer types there are at most 26 samples with> 20 TSVs.335

The same trend is observed when restricted to non-fusion-gene TSVs, where there are 29 BRCA samples336

with more than 8 non-fusion-gene TSVs, while any of the other cancer types has at most 11 samples with337

> 8 non-fusion-gene TSVs. This observation agrees with Yang et al. [39], where they observe BRCA has338

more somatic SVs than PRAD.339
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Inter-chromosomal TSVs are more prevalent than intra-chromosomal TSVs for all cancer types (Figure 5C),340

although this difference is much more pronounced in bladder and prostate cancer. Non-fusion-gene TSVs341

are more likely to have intra-chromosomal events than fusion gene TSVs (Figure 5D), and in fact in342

bladder, breast, and lung cancer, we detect more intra-chromosomal non-fusion-gene TSVs than inter-343

chromosomal non-fusion-gene TSVs. Prostate cancer is an exception in that for non-fusion-gene TSVs,344

inter-chromosomal events are observed more often than intra-chromosomal events. Nevertheless, it also345

holds true that non-fusion-gene TSVs are more likely to be intra-chromosomal than fusion-gene, because346

the percentage of intra-chromosomal TSVs within non-fusion-gene TSVs is higher than that within all TSVs.347

For a large proportion of breakpoints occurring multiple times within a cancer type, their partner in the TSV348

is likely to be fixed and to reoccur every time that breakpoint is used. To quantify this, for each breakpoint349

that occurred ≥ 3 times, we compute the entropy of its partner promiscuity. Specifically, we derive a350

discrete, empirical probability distribution of partners for each breakpoint and compute the entropy of this351

distribution. This measure thus represents the uncertainty of the partner given one breakpoint, with higher352

entropy corresponding to a less conserved partnering pattern. In Figure 5E, we see that there there is a high353

peak near 0 for all cancer types, which indicates that for a large proportion of recurring breakpoints, we are354

certain about its rejoined partner once we know the breakpoint. However, there are promiscuous breakpoints355

with entropy larger than 0.5.356

Finally, we consider the span of distance between breakpoints of intra-chromosomal TSVs. We find that357

generally the two breakpoints are most likely to be separated by between 105 − 107 nt. The separation358

distance for non-fusion-gene breakpoints, tends to be on the higher end of this range (≈ 107 nt). The full359

distributions of breakpoint separation for intra-chromosomal TSVs are given in Figures 5F and 5G. There360

are some differences among cancer types in these distributions. In BLCA, BRCA, and LUAD, breakpoints361

of intra-chromosomal TSVs are more likely to be separated by around 105 nt than 107 nt, while when only362

looking at non-fusion-gene events, number of TSVs with distance 107 nt is greater than or equal to the363

number of events with distance 105. Thus for these three cancer types, non-fusion-gene TSVs occur more364

at longer distances while fusion-gene TSVs more at shorter distances. PRAD behaves differently, where for365

both overall TSV events and non-fusion-gene events, the distance is most likely to be around 107 nt rather366

than 105 nt.367
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3.4 Tumor suppressor genes can undergo TSV and generate altered transcript368

Tumor suppressor genes (TSG) protect cells from becoming cancer cells. Usually their functions involve369

inhibiting cell cycle, facilitating apoptosis, and so on [32]. Mutations in TSGs may lead to loss of function of370

the corresponding proteins and benefit tumor growth. For example, homozygous loss-of-function mutation371

in p53 is found in about half of cancer samples across various cancer types [13]. TSVs are likely to cause372

loss of function of TSGs as well. Indeed, we observe several TSGs that are affected by TSVs, both of the373

fusion-gene type and the non-fusion-gene type.374

The ZFHX3 gene encodes a transcription factor that transactivates cyclin-dependent kinase inhibitor 1A375

(aka p21CIP1), a cell cycle inhibitor [19]. We find that in one BLCA and one BRCA sample, there are376

TSVs affecting ZFHX3. These two TSVs events are different from each other in terms of the breakpoint377

partner outside of ZFHX3. In the BLCA tumor sample, a intergenic region is inserted after the third exon of378

ZFHX3 (Figure 6A). The fused transcript stops at the inserted region, causing the ZFHX3 transcript to lose379

the rest of exons. In the BRCA tumor sample, a region of the anti-sense strand of gene MYLK3 is inserted380

after the third exon of ZFHX3 gene (Figure 6B). Because codons and splicing sites are not preserved on the381

anti-sense strand, the transcribed insertion region does not correspond to known exons of MYLK3 gene, but382

covers the range of first exon of MYLK3 and extend to the first intron and 5’ intergenic region. Transcription383

stops within inserted region, and causes the ZFHX3 transcript to lose exons after exon 3, which resembles384

the fusion with intergenic region in BLCA sample.385

Another example is given by the ASXL1 gene, which is essential for activating INK4B to inhibit tumor-386

genesis [38]. We observe two distinct TSVs related to ASXL1 from BLCA and BRCA samples. The first387

TSV merges the first 11 exons and half of exon 12 of ASXL1 with a intergenic region on chromosome 4388

(Figure 6C). Transcription stops at the inserted intergenic region, leaving the rest of exon 12 not transcribed.389

The breakpoint within the ASXL1 is before the 3’ UTR, so the downstream protein sequence from exon 12390

will be affected. The other TSV involving ASXL1 is a typical fusion-gene TSV where the first three exons391

of ASXL1 are fused with the last three exons from the PDRG1 gene (Figure 6D). Protein domains after392

ASXL1 exon 4 and before PDGR1 exon 2 are lost in the fused transcript.393

These examples are novel predicted TSV events that are not typically detectable via traditional fusion-gene394

detection methods using RNA-seq data. They suggest that non-fusion-gene events can also be involved in395
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tumorgenesis by causing disruption of tumor suppressor genes.396

4 Discussion397

We developed SQUID, the first algorithm for accurate and comprehensive TSV detection, spanning both398

traditional fusion-gene detection and the much broader class of general TSVs. SQUID exhibits far higher399

precision at similar sensitivities compared with WGS-based SV detection methods and pipeline of de novo400

transcriptome assembly and transcript-to-genome alignment. In addition, it has the ability to detect non-401

fusion-gene TSVs. These features are derived from its unique approach to predicting TSVs, whereby it402

constructs a consistent model of the underlying rearranged genome that explains as much of the data as pos-403

sible. In particular, it simultaneously considers both concordant and discordant reads, and by rearranging404

genome segments to maximize the number of concordant reads, SQUID generates a set of compatible TSVs405

that are most reliable in terms of the numbers of reads supporting them. Instead of a universal read support406

threshold, the objective function in SQUID naturally balances reads supporting and not supporting a candi-407

date TSV. This design is efficient in filtering out sequencing and alignment noise in RNA-seq, especially in408

the annotation-free context for predicting non-fusion-gene TSV events.409

We use SQUID to analyze TCGA RNA-seq data of tumor samples. We identify BRCA to have more TSVs410

within a typical sample than the other cancer types studied. We observe that non-fusion-gene TSVs are411

more likely to have intra-chromosomal TSVs but the intra-chromosomal breakpoint distance tends to be412

larger than fusion-gene TSVs. This is likely due to the different sequence composition features in gene vs.413

non-gene regions. PRAD also stands out because the percentage of inter-chromosomal TSVs is the largest,414

and it is the least likely to have breakpoint distances less than 105. Overall, these findings continue to415

suggest that different cancer types have different preferred patterns of TSVs, although the question remains416

whether these differences will hold up as more samples are analyzed and whether the different patterns are417

causal, correlated, or mostly non-functional randomness.418

We also use SQUID to observe both non-fusion-gene and fusion-gene TSVs involving known tumor sup-419

pressor genes ZFHX3 and ASXL1. In these cases, transcription usually stops within the inserted region420

of the non-fusion-gene TSVs, which causes TSG transcript to lose some of its exons, reasonably leading421

to downstream loss of function. These non-fusion-gene TSVs related to TSG may provide an alternative422
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reason or contributor to tumor genesis.423

Other important uses and implications for general TSVs have yet to be explored and represent possible424

directions for future work. TSVs will impact accuracy of transcriptome assembly and expression quantifi-425

cation, and methodological advancements are needed to correct those downstream analyses for the effect426

of TSVs. For example, current reference-based transcriptome assemblers are not able to assemble from427

different chromosomes to handle the case of inter-chromosomal TSVs. In addition, TSV-affected transcripts428

cannot be quantified if they are not present in the transcript database. Incorporating TSVs into transcriptome429

assembly and expression quantification can potentially improve their accuracy. SQUID’s ability to provide a430

new genome sequence that is as consistent as possible with the observed reads will facilitate its use as a pre-431

processing step for transcriptome assembly and expression quantification, though optimizing this pipeline432

remains a task for future work.433

Several natural directions exist for extending SQUID. First, SQUID is not able to predict small deletions,434

instead, it treats the small deletions the same as intron-splitting events. This is to some extent a limitation of435

using RNA-seq data: introns and deletions are difficult to distinguish, as both result in concordant split reads436

or stretched mate pairs. The use of gene annotations can somewhat address this problem. Second, when437

the RNA-seq reads are derived from a highly heterogeneous sample, SQUID is likely not able to predict438

all TSVs occurring in the same region if they are conflicting since it seeks a single, consistent genome439

model. Instead, SQUID will only pick the dominating one that is compatible with other predicted TSVs.440

One approach to handle this would be to iteratively re-run SQUID, removing reads that are explained at each441

step. Again, this represents an attractive avenue for future work.442

SQUID is open source and available at http://www.github.com/Kingsford-Group/squid.443
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Main Figures567

1h 1t 2h 2t 3h 3t 4h 4t 5h 5t

Figure 1: Example of genome segment graph. Boxes are genome segments, each of which has two ends
subscripted by h and t. The color gradient indicates the orientation from head to tail. Edges connect ends of
genome segments.

target u · · · v

(a) Paired-end Reads from Target Genome

reference u · · · v

edge u · · · v
w(e)

(b) Concordant Alignment
tail-head connection, concordant edge

reference u · · · rev(v)

edge u · · · rev(v)

w(e)

(c) Inversion
tail-tail connection, discordant edge

reference rev(u) · · · v

edge rev(u) · · · v

w(e)

(d) Inversion
head-head connection, discordant edge

reference v · · · u

edge v · · · u

w(e)

(e) Duplications/transpositions
head-tail connection, discordant edge

Figure 2: Constructing edges from alignment. (a) Read positions and orientations generated from the target
genome. (b) If the reference genome does not have rearrangements, the read should be concordantly aligned
to reference genome. An edge is added to connect the right end of u to the left end of v. Traversing the two
segments along the edge reads out u · v, which is the same as reference. (c) Both ends of the read align to
forward strand. An edge is added to connect the right end of u to the right end of rev(v). Traversing the
segments along the edge reads out sequence u · rev(rev(v)) = u · v, which recovers the target sequence
and the read can be concordantly aligned to. (d) If both ends align to the reverse strand, an edge is added to
connect the left end of front segment to the left end of back segment. (e) If two ends of a read point out of
each other, an edge is added to connect the left end of front segment to the right end of back segment.
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Figure 3: Performance of SQUID and other methods on simulation data. Different number of SVs (200,
500, 800 SVs) are simulated in each dataset. Each simulated read is aligned with both (A) STAR and
(B) SpeedSeq aligner. If the method allows for user-defined minimum read support for prediction, we vary
the threshold from 3 to 9, and plot a curve on sensitivity-specificity curve (SQUID and LUMPY), otherwise
it is shown as a single point

0.025

0.050

0.075

0.100

0.0 0.1 0.2 0.3
specificity

se
ns

iti
vi

ty

method
SQUID (fg)
SQUID (all)
ChimeraScan
deFuse
FusionCatcher
JAFFA
INTEGRATE

cell line
HCC1395
HCC1954

Overall sensitivity−specificity of prediction

A

2

4

6

8

HCC1395 HCC1954

nu
m

be
r 

co
rr

ec
t p

re
di

ct
io

ns

SQUID
ChimeraScan
deFuse
FusionCatcher
JAFFA
INTEGRATE

Number of correct non−gene fusion predictions

B

Figure 4: Performance of SQUID and fusion gene detection methods on breast cancer cell lines HCC1954
and HCC1395. Predictions are evaluated by previously validated SVs and fusions. (A) Sensitivity-
specificity of different methods on both cell lines. SQUID (fg) represents the sensitivity and specificity
when restricting SQUID prediction result to be fusion-gene TSVs. SQUID (all) is the performance of
SQUID when considering all predictions. (B) Number of correct non-fusion-gene TSV predictions that
correspond to previously validated SVs.
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Figure 5: (A,B) Number of TSVs and non-fusion-gene TSVs in each sample in different cancer types.
BRCA has slightly more samples with larger number of (non-fusion-gene) TSVs, thus showing a longer tail
on y axis. (C,D) Number of inter-chromosomal and intra-chromosomal TSVs within all TSVs and within
non-fusion-gene TSVs. Non-fusion-gene TSVs contain more intra-chromosomal events than fusion-gene
TSVs. (E) For breakpoints occurring more than 3 times in the same cancer type, the distribution of the
entropy of its TSV partner. The lower the entropy, the more likely the breakpoint has a fixed partner. The
peak near 0 indicates a large portion of breakpoints are likely to be rejoined with the same partner in TSV.
However, there are still some breakpoints that have multiple rejoined partners. (F,G) Distance between the
pair of breakpoints in a TSV for intra-chromosomal TSV. Overall, breakpoint distance of intra-chromosomal
TSVs is likely to have magnitude of 105 or 107; but non-fusion-gene TSVs contribute more to peak 107 than
fusion-gene TSVs.
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Figure 6: Tumor suppressor genes are affected by both fusion-gene and non-fusion-gene TSVs and generate
transcripts with various features. A. ZFHX3 is fused with a intergenic region after exon 3. Transcript stops
at the inserted region, and losing the rest of exons. B. ZFHX3 is fused with a part of MYLK3 anti-sense
strand after exon 3. Codon and splicing signals are not preserved on anti-sense strand, thus MYLK3 anti-
sense insertion acts the same as intergenic region insertion, and cause transcription stop before reaching
the rest of ZFHX3 exons. C. ASXL1 is fused with intergenic region in the middle of exon 12. Resulting
transcript contains a truncated ASXL1 exon 12 and intergenic sequence. D. First 3 exons of ASXL1 gene
is joined with last 3 exons of PDRG1, resulting in a fused transcript containing 6 complete exons from both
ASXL1 and PDRG1.
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Supplementary Text568

Using de novo assembly and transcript to genome alignment to predict TSV569

For the pipeline of de novo transcriptome assembly and transcript-to-genome alignment, the direct output is570

a series of alignment pieces for each assembled transcript. To derive TSV from the pieces of alignment of571

each transcript, we still need to use the split-read alignment concordance criteria (8) and the edge-building572

approach. In the case of no TSV, equation (8) still holds, since a transcript is generated from one strand of573

one chromosome, without rearrangements but only deletion of introns. Any violation of (8) is treated as a574

TSV. Here TSVs are still able to be represented by edges in GSG, where segments are the intervals of each575

piece of alignment, and edges are added in the same principle that traversing segments along the edges will576

result in a concordant alignment of the assembled transcript. The positions of both breakpoints in a TSV are577

exactly the two positions linked by the discordant edge, and the orientations corresponds to the connection578

type of the edge.579

Processing TCGA RNA-seq data580

In order to be cautious about TSV prediction, we reprocess RNA-seq alignment data in the following way.581

We use STAR aligner to align TCGA RNA-seq reads to Ensemble genome 87 with corresponding gene582

annotation. STAR aligner is set with the option of outputting chimeric alignments with hanging length583

15bp. The chimeric alignments generated by STAR are further filtered out if the paired-end reads can be584

aligned concordantly by SpeedSeq aligner.585

SQUID is applied to concordant alignment generated by STAR and filtered chimeric alignment. The dis-586

cordant edge weight coefficient α is set to be 1, that is, we require tumor transcripts to dominate normal587

transcripts in order to predict corresponding TSVs. Only when reads supporting one TSV compose more588

than 50% of reads at the junction, can the TSV be treated as a candidate.589

A large number of fusions between immunoglobulin genes are predicted by SQUID. However, there is590

possibility that B cells are in the mixture of sequencing and have very high expression of immunoglobulin591

genes (Ig). We cannot tell whether Ig rearrangements are generated by tumor cells or B cells. Therefore, we592

exclude Ig TSVs during post-processing, and exclude them from the descriptive statistics. Note that SQUID593
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does not exclude Ig TSVs internally, because Ig expression and VDJ recombination have been observed to594

exist in tumor cells, and revealing the role of Ig in tumor can deepen our understanding of cancer. When595

normal cells are removed from tumor samples, using SQUID to predict Ig TSV will help the study of Ig and596

tumor.597

SQUID parameters598

Table 1: Value of SQUID’s parameters used in experiments

Symbol Description Value

γ segment degree threshold 4
θ edge weight threshold 5
α discordant edge weight coefficient 8 (simulation and HCC cell line), 1 (TCGA)
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Supplementary Figures599
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Figure S1: Number of samples with RNA-seq or WGS data in TCGA

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 10

Discordant edge weight coefficient (HCC1954)

A

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10

Discordant edge weight coefficient (HCC1395)

B

Sensitivity Specificity

Figure S2: Specificity and sensitivity of SQUID against different value of discordant edge weight coefficient.
(A) HCC1954 cell line. Sensitivity does not change when increasing discordant edge weight coefficient,
indicating rearranged tumor transcripts out-number their normal counterparts. Specificity decreases slightly
because SQUID predicts more as discordant edge weight coefficient increases. (B) HCC1395 cell line.
Sensitivity and specificity reach the highest at discordant edge weight coefficient 8 and remain unchanged at
9 and 10. Some normal transcripts out-number the rearranged tumor transcripts, increasing this parameter
allows SQUID to capture these TSVs.
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