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Transcriptomic structural variation detection 1 BACKGROUND

Abstract7

Transcripts are frequently modified by structural variations, which leads to a fused transcript of either8

multiple genes (known as a fusion gene) or a gene and a previously non-transcribing sequence. Detecting9

these modifications (called transcriptomic structural variations, or TSVs), especially in cancer tumor10

sequencing, is an important and challenging computational problem. We introduce SQUID, a novel11

algorithm to accurately predict both fusion-gene and non-fusion-gene TSVs from RNA-seq alignments.12

SQUID unifies both concordant and discordant read alignments into one model, and doubles the accuracy13

on simulation data compared to other approaches. With SQUID, we identified novel non-fusion-gene14

TSVs on TCGA samples.15

Keywords: transcriptomic structural variation, RNA-seq, TCGA16

1 Background17

Large-scale transcriptome sequence changes are known to be associated with cancer [1, 2]. Those changes18

are usually a consequence of genomic structural variation (SV). By pulling different genomic regions to-19

gether or separating one region into pieces, structural variants can potentially cause severe alteration to20

transcribed or translated products. Transcriptome changes induced by genomic SVs, called transcriptomic21

structural variants (TSVs), can have a particularly large impact on disease genesis and progression. In some22

cases, TSVs bring regions from one gene next to regions of another, causing exons from both genes to be23

transcribed into a single transcript (known as a fusion gene). Domains of the corresponding RNA or pro-24

teins can be fused, inducing new functions or causing loss of function, or the transcription or translation25

levels can be altered, leading to disease states. For example, BCR-ABL1 is a well-known fusion oncogene26

for chronic myeloid leukemia [3], and the TMPRSS2-ERG fusion product leads to over-expression of ERG27

and helps triggers prostate cancer [4]. These fusion events are used as biomakers for early diagnosis or28

treatment targets [5]. In other cases, TSVs can affect genes by causing a previously non-transcribed region29

to be incorporated into a gene, causing disruption to the function of the altered gene. There are fewer studies30

on these TSVs between transcribed and non-transcribed regions, but their ability to alter downstream RNA31

and protein structure is likely to lead to similar results as fusion gene TSVs.32

Genomic SVs are typically detected from whole-genome sequencing (WGS) data by identifying reads and33

read pairs that are incompatible with a reference genome [e.g., 6–11]. However, WGS data are not com-34
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Transcriptomic structural variation detection 1 BACKGROUND

pletely suitable to infer TSVs since they neither inform which region is transcribed nor reveal how the tran-35

scribed sequence will change if SVs alter a splicing site or the stop codon. In addition, WGS data is more36

scarce and more expensive to obtain than RNA-seq [12] measurements, which target transcribed regions37

directly. RNA-seq is relatively inexpensive, high-throughput, and widely available in many existing and38

growing data repositories. For example, The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov)39

contains RNA-seq measurements from thousands of tumor sample across various cancer types, but 80% of40

tumor samples in TCGA have RNA-seq data but no WGS data (Supplementary Figure S1). While methods41

exist to detect fusion genes from RNA-seq measurements [e.g., 13–21], fusion genes are only a subset of42

TSVs, and existing fusion gene detection methods rely heavily on current gene annotations and are generally43

not able or at least not optimized to predict non-fusion-gene TSV events. The idea of de novo transcript as-44

sembly [e.g., 22–25] followed by transcript-to-genome alignment [e.g., 26–28] is used in some fusion-gene45

detection methods. These approaches rely on annotation-based filtering steps to achieve the high accuracy.46

Although it is possible to extend these approaches to non-fusion-gene TSV detection, the lack of annotation47

information for non-transcribing regions makes these approaches less suitable for finding non-fusion-gene48

TSV. This motivates the need for a method to detect both types of TSVs directly from RNA-seq data.49

We present SQUID, the first computational tool that is designed to comprehensively predict both types50

of TSVs from RNA-seq data. SQUID divides the reference genome into segments and builds a genome51

segment graph from both concordant and discordant RNA-seq read alignments. In this way, it can detect52

both fusion-gene events and TSVs incorporating previously non-transcribed regions into transcripts. Using53

an efficient, novel integer linear program (ILP), SQUID rearranges the segments of the reference genome so54

that as many read alignments as possible are concordant with the rearranged sequence. TSVs are represented55

by pairs of breakpoints realized by the rearrangement. Discordant reads that cannot be made concordant56

through the optimal rearrangement given by the ILP are discarded as false positive discordant reads, likely57

due to misalignments. By building a consistent model of the entire rearranged genome and maximizing the58

number of overall concordant read alignments, SQUID drastically reduces the number of spurious TSVs59

reported compared with other methods.60

SQUID features high accuracy. SQUID is usually > 20% more accurate than applying WGS-based SV61

detection methods to RNA-seq data directly. It is similarly more accurate than the pipeline that uses de novo62

transcript assembly and transcript-to-genome alignment to detect TSVs. We also show that SQUID is able63
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Transcriptomic structural variation detection 2 RESULTS

to detect more TSVs involving non-transcribed regions than any existing fusion gene detection method.64

We use SQUID to detect TSVs within 401 TCGA tumor samples of four cancer types (99–101 samples each65

of breast invasive carcinoma [29], bladder urothelial carcinoma [30], lung adenocarcinoma [31], and prostate66

adenocarcinoma [32]). SQUID’s predictions suggest that breast invasive carcinoma has more samples with a67

larger or smaller number of TSVs / non-fusion-gene TSVs than other cancer types. We also characterize the68

differences between fusion-gene TSVs and non-fusion-gene TSVs. Non-fusion-gene TSVs, for example,69

are more likely to be intra-chromosomal events. We show that breakpoints can occur in multiple samples,70

and among those that do repeatedly occur, their breakpoint partners are also often conserved. Finally, we71

identify several novel non-fusion-gene TSVs that affect known tumor suppressor genes, which may result72

in loss-of-function of corresponding proteins and play a role in tumor genesis.73

2 Results74

2.1 A novel algorithm for detecting TSVs from RNA-seq75

SQUID predicts TSVs from RNA-seq alignments to the genome (Figure 1 provides an overview). To do this,76

it seeks to rearrange the reference genome to make as many of the observed alignments consistent with the77

rearranged genome as possible. Formally, SQUID constructs a graph from the alignments where the nodes78

represent boundaries of genome segments and the edges represent adjacencies implied by the alignments.79

These edges represent both concordant and discordant alignments, where concordant alignments are those80

consistent with the reference genome and discordant alignments are those that are not. SQUID then uses81

a novel integer linear program (Section 4.2) to order and orient the vertices of the graph to make as many82

edges consistent as possible. Adjacencies that are present in this rearranged genome but not present in83

the original reference are proposed as predicted TSVs. The identification of concordant and discordant84

alignments (Section 4.3), construction of the genome segments (Section 4.4), creation of the graph, and the85

reordering objective function (Section 4.1) are described in the Methods section.86
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Figure 1: Overview of the SQUID algorithm. Based on the alignments of RNA-seq reads to the reference
genome, SQUID partitions the genome into segments, connects the endpoints of the segments to indicate
the actual adjacency in transcript, and finally reorders the endpoints along the most reliable path. Each edge
in the final path that comes from discordant read alignments represents a TSV.

2.2 SQUID is accurate on simulation data87

Overall, SQUID’s predictions of TSVs are far more precise than other approaches at similar sensitivity on88

simulated data (Section 4.7). SQUID achieves 60% to 80% percent precision and about 50% percent sensi-89

tivity on simulation data (Figure 2). SQUID’s precision is > 20% higher than several de novo transcriptome90

assembly and transcript-to-genome alignment pipelines (for details see Supplementary Text), and the pre-91

cision of WGS-based SV detection methods on RNA-seq data is even lower. The sensitivity of SQUID is92

similar to de novo assembly with MUMmer3 [26], but a little lower than DELLY2 [6] and LUMPY [7] with93

SpeedSeq [33] aligner. The overall sensitivity is not as high as precision, which is probably because there94

are not enough supporting reads aligned correctly to some TSV breakpoints. The fact that assembly and95

WGS-based SV detection methods achieve similar sensitivity corroborates the hypothesis that it is the data96

limiting the achievable sensitivity.97

The low specificity of the pipeline- and WGS-based methods shows neither of these types of approaches98

are suitable for TSV detection from RNA-seq data. WGS-based SV detection methods are able to detect99

5

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 6, 2017. ; https://doi.org/10.1101/162776doi: bioRxiv preprint 

https://doi.org/10.1101/162776


Transcriptomic structural variation detection 2 RESULTS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.2 0.4 0.6 0.8
specificity

se
ns

iti
vi

ty

sensitivity−specificity with STAR aligner

A

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.2 0.4 0.6 0.8
specificity

se
ns

iti
vi

ty

sensitivity−specificity with SpeedSeq aligner

B

svscale
200
500
800

method
SQUID
DELLY2
LUMPY
TransAbyss+Mummer
TransAbyss+Gmap2
Trinity+Mummer
Trinity+Gmap2

Figure 2: Performance of SQUID and other methods on simulation data. Different number of SVs (200,
500, 800 SVs) are simulated in each dataset. Each simulated read is aligned with both (A) STAR and
(B) SpeedSeq aligner. If the method allows for user-defined minimum read support for prediction, we vary
the threshold from 3 to 9, and plot a curve on sensitivity-specificity curve (SQUID and LUMPY), otherwise
it is shown as a single point

TSV signals, but not able to filter out false positives. Assembly-based approaches require solving the tran-100

scriptome assembly problem which is a harder and more time-consuming problem, and thus errors are more101

easily introduced. Further, the performance of assembly pipelines depends heavily on the choice of software102

— for example, MUMmer3 [26] is better at discordantly aligning transcripts than GMAP [27]. Dissect [28]103

is another transcript-to-genome alignment method that is designed for the case where SVs exist. (Unfortu-104

nately, Dissect did not run to completion on the some of the dataset tested here.) It is possible that different105

combinations of de novo transcript assembly and transcript-to-genome alignment tools can improve the106

accuracy of the pipelines, but optimizing the pipeline is out of scope of this work.107

SQUID’s effectiveness is likely due to its unified model of both concordant reads and discordant reads.108

Coverage in RNA-seq alignment is proportional to the expression level of the transcript, and using one109

read count threshold for TSV evidence is not appropriate. Instead, the ILP in SQUID sets concordant and110

discordant alignments into competition and selects the winner as the most reliable TSVs.111

2.3 SQUID is able to detect non-fusion-gene TSV on two previously-studied cell lines112

Fusion gene events are a strict subset of TSVs where the two breakpoints are each within a gene region and113

the fused sequence corresponds to the sense strand of both genes. Fusion genes thus exclude TSV events114
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where a gene region is fused with a intergenic region or an anti-sense strand of another gene. Nevertheless,115

fusion genes have been implicated (likely because of available methods to detect them) in playing a role in116

cancer.117

To probe SQUID’s ability to detect TSVs from real data, we use two cell lines, HCC1954 and HCC1395, for118

which previous studies have experimentally validated predicted SVs and fusion gene events. Specifically,119

we compile results from Bignell et al. [34], Stephens et al. [35], Galante et al. [36], Zhao et al. [37] and120

Robinson et al. [38] for HCC1954, and results from Stephens et al. [35] and Zhang et al. [13] for HCC1395.121

After removing short deletions and overlapping structural variations among different studies, we have 326122

validated structural variations for HCC1954 cell line, in which 245 of them have at least one breakpoint123

outside a gene region, and the rest (81) have both breakpoints within gene region; we have 256 validated124

true structural variations for HCC1395 cell line, in which 94 have at least one breakpoint outside a gene125

region, while the rest (162) have both breakpoints within gene. For a predicted structural variation to be126

true positive, both predicted breakpoints should be within a window of 30kb of true breakpoints and the127

predicted orientation should agree with the true orientation. We use a relatively large window since the true128

breakpoints can be located within an intron or other non-transcribed region, while the observed breakpoint129

from RNA-seq reads will be at a nearby coding or expressed region.130

We use publicly available RNA-seq data from the NIH Sequencing Read Archive (SRA; accessions:131

SRR2532344 and SRR925710 for HCC1954, SRR2532336 for HCC1395). Because the data are from a132

pool of experiments, the sample from which RNA-seq was collected may be different from those used for133

experimental validation. We align reads to the reference genome using STAR. We compare the result with134

the top fusion-gene detection tools evaluated in Liu et al. [39] and newer software not evaluated by Liu et al.135

[39], specifically, SOAPfuse [20], deFuse [14], FusionCatcher [16], JAFFA [15] and INTEGRATE [15].136

When restricted to fusion gene events, SQUID achieves similar precision and sensitivity compared to fusion137

gene detection tools (Figure 3A). SQUID has the highest accuracy in the HCC1954 cell line, with very138

similar sensitivity as all fusion gene detection tools. For HCC1395, SQUID is in the middle of fusion gene139

detection methods, while INTEGRATE [13] and JAFFA [15] are the best performers on this sample.140

It is even harder to predict non-fusion-gene TSVs accurately, since current annotations cannot be used to141

limit the search space for potential read alignments or TSV events. Only SQUID and deFuse are able to142
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Figure 3: Performance of SQUID and fusion gene detection methods on breast cancer cell lines HCC1954
and HCC1395. Predictions are evaluated by previously validated SVs and fusions. (A) Sensitivity-
specificity of different methods for predicting fusion gene events on both cell lines. (B) Number of correct
non-fusion-gene TSV predictions that correspond to previously validated SVs. (C) Number of correctly
predicted fusion-gene TSVs and non-fusion-gene TSVs from SQUID. Non-fusion-gene TSVs makes up a
considerable proportion of all TSVs.

detect non-fusion-gene events. Between these two methods, SQUID is able to predict more known non-143

fusion-gene TSVs correctly (Figure 3B). At the same time, the precision of SQUID does not decrease144

very much by considering both fusion-gene and non-fusion-gene TSVs (HCC1954: fusion gene specificity145

is 16.28%, and overall specificity is 15.56%; HCC1395: fusion gene specificity is 21.28%, and overall146

specificity is 19.39%). A considerable proportion of validated TSVs are non-fusion-gene TSVs: correctly147

predicted non-fusion-gene TSVs compose almost half of all correct predictions of SQUID (Figure 3C).148

2.4 Charactering TSVs on four types of TCGA cancer samples149

To compare the distributions and characteristics of TSVs among cancer types and between TSV types, we150

applied SQUID on arbitrarily selected 99 to 101 tumor samples from TCGA for each of four cancer types:151

breast invasive carcinoma (BRCA), bladder urothelial carcinoma (BLCA), lung adenocarcinoma (LUAD),152

and prostate adenocarcinoma (PRAD). (for details see Supplementary Text)153

To estimate the accuracy of SQUID’s prediction on selected TCGA samples, we use WGS data of the154

same patients to validate TSV junctions. There are in total 72 WGS experiments available for the 400155

samples (20 BLCA, 10 BRCA, 31 LUAD, 11 PRAD). For each TSV prediction, we extract a 25Kb sequence156

around both breakpoints and concatenate them according to the predicted TSV orientation. We then map the157

WGS reads against these junction sequences using SpeedSeq [33]. If a paired-end WGS read can only be158
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mapped concordantly to a junction sequence but not the reference genome, that paired-end read is marked159

as supporting the TSV. If at least 3 WGS reads support a TSV, the TSV is considered as validated. Using160

this approach, SQUID’s overall validation rate is 88.21%, and this indicates that SQUID is quite accurate161

and reliable on TCGA data.162

We find that most samples have ≈ 15–20 TSVs including ≈ 3–5 non-fusion-gene TSVs among all four163

cancer types (Figure 4A,B). BRCA has a longer tail on both sides of the distribution of TSV counts, where164

more samples contain a larger number of TSVs, and more samples contains a smaller number of TSVs. The165

same trend is observed when restricted to non-fusion-gene TSVs.166

Inter-chromosomal TSVs are more prevalent than intra-chromosomal TSVs for all cancer types (Figure 4C),167

although this difference is much more pronounced in bladder and prostate cancer. Non-fusion-gene TSVs168

are more likely to have intra-chromosomal events than fusion gene TSVs (Figure 4D), and in fact in169

bladder, breast, and lung cancer, we detect more intra-chromosomal non-fusion-gene TSVs than inter-170

chromosomal non-fusion-gene TSVs. Prostate cancer is an exception in that, for non-fusion-gene TSVs,171

inter-chromosomal events are observed more often than intra-chromosomal events. Nevertheless, it also172

holds true that non-fusion-gene TSVs are more likely to be intra-chromosomal than fusion-gene, because173

the percentage of intra-chromosomal TSVs within non-fusion-gene TSVs is higher than that within all TSVs.174

For a large proportion of breakpoints occurring multiple times within a cancer type, their partner in the TSV175

is likely to be fixed and to reoccur every time that breakpoint is used. To quantify this, for each breakpoint176

that occurred ≥ 3 times, we compute the entropy of its partner promiscuity. Specifically, we derive a177

discrete, empirical probability distribution of partners for each breakpoint and compute the entropy of this178

distribution. This measure thus represents the uncertainty of the partner given one breakpoint, with higher179

entropy corresponding to a less conserved partnering pattern. In Figure 4E, we see that there there is a high180

peak near 0 for all cancer types, which indicates that for a large proportion of recurring breakpoints, we181

are certain about its rejoined partner once we know the breakpoint. However, there are also promiscuous182

breakpoints with entropy larger than 0.5.183
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Figure 4: (A,B) Number of TSVs and non-fusion-gene TSVs in each sample in different cancer types.
BRCA has slightly more samples with larger or smaller number of (non-fusion-gene) TSVs, thus showing
a longer tail on both ends of y axis. (C,D) Number of inter-chromosomal and intra-chromosomal TSVs
within all TSVs and within non-fusion-gene TSVs. Non-fusion-gene TSVs contain more intra-chromosomal
events than fusion-gene TSVs. (E) For breakpoints occurring more than 3 times in the same cancer type,
the distribution of the entropy of its TSV partner. The lower the entropy, the more likely the breakpoint has
a fixed partner. The peak near 0 indicates a large portion of breakpoints are likely to be rejoined with the
same partner in TSV. However, there are still some breakpoints that have multiple rejoined partners.
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2.5 Tumor suppressor genes can undergo TSV and generate altered transcripts184

Tumor suppressor genes (TSG) protect cells from becoming cancer cells. Usually their functions involve185

inhibiting cell cycle, facilitating apoptosis, and so on [40]. Mutations in TSGs may lead to loss of function of186

the corresponding proteins and benefit tumor growth. For example, homozygous loss-of-function mutation187

in p53 is found in about half of cancer samples across various cancer types [41]. TSVs are likely to cause188

loss of function of TSGs as well. Indeed, we observe several TSGs that are affected by TSVs, both of the189

fusion-gene type and the non-fusion-gene type.190

The ZFHX3 gene encodes a transcription factor that transactivates cyclin-dependent kinase inhibitor 1A191

(aka CDKN1A), a cell cycle inhibitor [42]. We find that in one BLCA and one BRCA sample, there are192

TSVs affecting ZFHX3. These two TSVs events are different from each other in terms of the breakpoint193

partner outside of ZFHX3. In the BLCA tumor sample, a intergenic region is inserted after the third exon of194

ZFHX3 (Figure 5A). The fused transcript stops at the inserted region, causing the ZFHX3 transcript to lose195

the rest of its exons. In the BRCA tumor sample, a region of the anti-sense strand of gene MYLK3 is inserted196

after the third exon of ZFHX3 gene (Figure 5B). Because codons and splicing sites are not preserved on the197

anti-sense strand, the transcribed insertion region does not correspond to known exons of MYLK3 gene, but198

covers the range of first exon of MYLK3 and extend to the first intron and 5’ intergenic region. Transcription199

stops within inserted region, and causes the ZFHX3 transcript to lose exons after exon 3, which resembles200

the fusion with intergenic region in BLCA sample.201

Another example is given by the ASXL1 gene, which is essential for activating CDKN2B to inhibit tumor-202

genesis [43]. We observe two distinct TSVs related to ASXL1 from BLCA and BRCA samples. The first203

TSV merges the first 11 exons and half of exon 12 of ASXL1 with a intergenic region on chromosome 4204

(Figure 5C). Transcription stops at the inserted intergenic region, leaving the rest of exon 12 not transcribed.205

The breakpoint within the ASXL1 is before the 3’ UTR, so the downstream protein sequence from exon 12206

will be affected. The other TSV involving ASXL1 is a typical fusion-gene TSV where the first three exons of207

ASXL1 are fused with the last three exons from the PDRG1 gene (Figure 5D). Protein domains after ASXL1208

exon 4 and before PDRG1 exon 2 are lost in the fused transcript.209

These non-fusion-gene examples are novel predicted TSV events that are not typically detectable via tradi-210

tional fusion-gene detection methods using RNA-seq data. They suggest that non-fusion-gene events can211
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Figure 5: Tumor suppressor genes are affected by both fusion-gene and non-fusion-gene TSVs and generate
transcripts with various features. (A) ZFHX3 is fused with a intergenic region after exon 3. The transcript
stops at the inserted region, losing the rest of exons. (B) ZFHX3 is fused with a part of MYLK3 anti-sense
strand after exon 3. Codon and splicing signals are not preserved on anti-sense strand, thus MYLK3 anti-
sense insertion acts the same as intergenic region insertion, and causes transcription stop before reaching the
rest of ZFHX3 exons. (C) ASXL1 is fused with an intergenic region in the middle of exon 12. The resulting
transcript contains a truncated ASXL1 exon 12 and intergenic sequence. (D) The first 3 exons of ASXL1
gene are joined with last 3 exons of PDRG1, resulting in a fused transcript containing 6 complete exons
from both ASXL1 and PDRG1.
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Transcriptomic structural variation detection 3 DISCUSSION

also be involved in tumorgenesis by causing disruption of tumor suppressor genes.212

3 Discussion213

We developed SQUID, the first algorithm for accurate and comprehensive TSV detection that targets both214

traditional fusion-gene detection and the much broader class of general TSVs. SQUID exhibits far higher215

precision at similar sensitivities compared with WGS-based SV detection methods and pipelines of de novo216

transcriptome assembly and transcript-to-genome alignment. In addition, it has the ability to detect non-217

fusion-gene TSVs. These features are derived from its unique approach to predicting TSVs, whereby it218

constructs a consistent model of the underlying rearranged genome that explains as much of the data as pos-219

sible. In particular, it simultaneously considers both concordant and discordant reads, and by rearranging220

genome segments to maximize the number of concordant reads, SQUID generates a set of compatible TSVs221

that are most reliable in terms of the numbers of reads supporting them. Instead of a universal read support222

threshold, the objective function in SQUID naturally balances reads supporting and not supporting a candi-223

date TSV. This design is efficient in filtering out sequencing and alignment noise in RNA-seq, especially in224

the annotation-free context for predicting non-fusion-gene TSV events.225

We use SQUID to analyze TCGA RNA-seq data of tumor samples. We identify BRCA to have a flatter226

distribution of number of per-sample TSVs than the other cancer types studied. We observe that non-fusion-227

gene TSVs are more likely to be intra-chromosomal events than fusion-gene TSVs. This is likely due to228

the different sequence composition features in gene vs. non-gene regions. PRAD also stands out because229

the percentage of inter-chromosomal TSVs is the largest. Overall, these findings continue to suggest that230

different cancer types have different preferred patterns of TSVs, although the question remains whether231

these differences will hold up as more samples are analyzed and whether the different patterns are causal,232

correlated, or mostly due to non-functional randomness.233

We also use SQUID to observe both non-fusion-gene and fusion-gene TSVs involving known tumor sup-234

pressor genes ZFHX3 and ASXL1. In these cases, transcription usually stops within the inserted region of235

the non-fusion-gene TSVs, which causes the TSG transcript to lose some of its exons, reasonably leading to236

downstream loss of function.237

Other important uses and implications for general TSVs have yet to be explored and represent possible238
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directions for future work. TSVs will impact accuracy of transcriptome assembly and expression quantifi-239

cation, and methodological advancements are needed to correct those downstream analyses for the effect240

of TSVs. For example, current reference-based transcriptome assemblers are not able to assemble from241

different chromosomes to handle the case of inter-chromosomal TSVs. In addition, expression levels of242

TSV-affected transcripts cannot be quantified if they are not present in the transcript database. Incorporat-243

ing TSVs into transcriptome assembly and expression quantification can potentially improve their accuracy.244

SQUID’s ability to provide a new genome sequence that is as consistent as possible with the observed reads245

will facilitate its use as a pre-processing step for transcriptome assembly and expression quantification,246

though optimizing this pipeline remains a task for future work.247

Several natural directions exist for extending SQUID. First, SQUID is not able to predict small deletions,248

instead, it treats the small deletions the same as introns. This is to some extent a limitation of using RNA-seq249

data: introns and deletions are difficult to distinguish, as both result in concordant split reads or stretched250

mate pairs. The use of gene annotations could somewhat address this problem. Second, when the RNA-251

seq reads are derived from a highly heterogeneous sample, SQUID is likely not able to predict all TSVs252

occurring in the same region if they are conflicting since it seeks a single, consistent genome model. Instead,253

SQUID will only pick the dominating one that is compatible with other predicted TSVs. One approach to254

handle this would be to iteratively re-run SQUID, removing reads that are explained at each step. Again,255

this represents an attractive avenue for future work.256

SQUID is open source and available at http://www.github.com/Kingsford-Group/squid and the scripts to257

replicate the computational experiments described here are available at http://www.github.com/Kingsford-Group/258

squidtest.259

4 Methods260

4.1 The computational problem: rearrangement of genome segments261

We formulate the TSV detection problem as the optimization problem of rearranging genome segments to262

maximize the number of observed reads that are consistent (termed concordant) with the rearranged genome.263

This approach requires defining the genome segments that can be independently rearranged. It also requires264
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defining what reads are consistent with a particular arrangement of the segments. We will encode both of265

these (segments and read consistency) within a Genome Segment Graph (GSG). See Figure 6 as an example.266

1h 1t 2h 2t 3h 3t 4h 4t 5h 5t

Figure 6: Example of genome segment graph. Boxes are genome segments, each of which has two ends
subscripted by h and t. The color gradient indicates the orientation from head to tail. Edges connect ends of
genome segments.

Definition 1 (Segment). A segment is a pair s = (sh, st), where s represents a continuous sequence in267

reference genome and sh represents its head and st represents its tail in reference genome coordinates. In268

practice, segments will be derived from the read locations (Section 4.4).269

Definition 2 (Genome Segment Graph (GSG)). A genome segment graph G = (V,E,w) is an undirected270

weighted graph, where V contains both endpoints of each segment in a set of segments S, i.e., V = {sh :271

s ∈ S} ∪ {st : s ∈ S}. Thus, each vertex in the GSG represents a location in the genome. An edge272

(u, v) ∈ E indicates that there is evidence that the location u is in fact adjacent to location v. Weight273

function, w : E −→ R+, represents the reliability of an edge. Generally speaking, the weight is the number274

of read alignments supporting the edge, but we allow a multiplier to calculate edge weight which will be275

discussed below. In practice, E and w will be derived from split-aligned and paired-end reads (Section 4.5).276

Defining vertices by endpoints of segments is required to avoid ambiguity. Only knowing that segment i is277

connected with segment j is not enough to recover the sequence, since different relative positions of i and278

j spell out different sequences. Instead, for example, an edge (it, jh) indicates that the tail of segment i is279

connected head of segment j, and this specifies a unique desired local sequence with only another possibility280

of the reverse complement (i.e. it could be that the true sequence is i · j or rev(j) · rev(i); here · indicates281

concatenation and rev(i) is the reverse complement of segment i).282

The GSG is similar to the breakpoint graph [44] but with critical differences. A breakpoint graph has edges283

representing both connections in reference genome and in target genome. While edges in the GSG only284

represents the target genome, and they can be either concordant or discordant. In addition, the GSG does285

not require that the degree of every vertex is two, and thus alternative splicing and erroneous edges can exist286
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in the GSG.287

Our goal is to reorder and reorient the segments in S so that as many edges in G are compatible with the288

rearranged genome as possible.289

Definition 3 (Permutation). A permutation π on a set of segments S projects a segment in S to a set of290

integers from 1 to |S| (the size of S) representing the indices of the segments in an ordering of S. In other291

words, each permutation π defines a new order of segments in S.292

Definition 4 (Orientation Function). An orientation function f maps both ends of segments to 0 or 1:293

f : {sh : s ∈ S} ∪ {st : s ∈ S} −→ {0, 1}

subject to f(sh) + f(st) = 1 for all s = (sh, st) ∈ S. An orientation function specifies the orientations of294

all segments in S. Specifically, f(sh) = 1 means sh goes first and st next, corresponding to forward strand295

of segment, and f(st) = 1 corresponds to the reverse strand of the segment.296

With a permutation π and an orientation function f , the exact and unique sequence of genome is determined.297

The reference genome also corresponds to a permutation and an orientation function, where the permutation298

is the identity permutation, and the orientation function maps all sh to 1 and all st to 0.299

Definition 5 (Edge Compatibility). Given a set of segments S, a genome segment graph G = (V,E,w), a300

permutation π on S, and an orientation function f , an edge e = (ui, vj) ∈ E, where ui ∈ {uh, ut} and301

vj ∈ {vh, vt}, is compatible with permutation π and orientation f if and only if302

1− f(vj) = 1[π(v) < π(u)] = f(ui) (1)

where 1[x] is the indicator function that is 1 if x is true and 0 otherwise. We write e ∼ (π, f) if e is303

compatible with π and f .304

The above two edge compatibility equations (1) require that, in order for an edge to be compatible with305

the rearranged and reoriented sequence determined by π and f , the edge needs to connect the right side306

of the segment in front to the left side of segment following it. As we will see in Section 4.5, edges of307

GSG are derived from reads alignments. An edge being compatible with π and f is essentially equivalent to308
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the statement that the corresponding read alignments are concordant (Section 4.3) with respect to the target309

genome determined by π and f . When (π, f) is clear, we refer to edges that are compatible as concordant310

edges, and edges that are incompatible as discordant edges.311

With the above definitions, we formulate an optimization problem as follows:312

Problem 1. Input: A set of segments S and a GSG G = (V,E,w).313

Output: Permutation π on S and orientation function f that maximizes:314

max
π,f

∑
e∈E

w(e) · 1[e ∼ (π, f)] (2)

This objective function tries to find a rearrangement of genome segments (π, f), such that when aligning315

reads to the rearranged sequence, as many reads as possible will be aligned concordantly. This objec-316

tive function includes both concordant alignments and discordant alignments and sets them in competition,317

which will be effective in reducing false positives when tumor transcripts out-number normal transcripts.318

There is the possibility that some rearranged tumor transcripts are out-numbered by normal counterparts.319

In order to be able to detect TSV in this case, depending on the setting, we may weight discordant read320

alignments more than concordant read alignments. Specifically, for each discordant edge e, we multiply the321

weight w(e) by a constant α, which represents our estimate of the ratio of normal transcripts over tumor322

counterparts.323

The final TSVs are modeled as pairs of breakpoints. Denote the permutation and orientation corresponding324

to an optimally rearranged genome as (π∗, f∗) and those that correspond to reference genome as (π0, f0).325

An edge e can be predicted as a TSV if e ∼ (π∗, f∗) and e � (π0, f0).326

4.2 Integer linear programming formulation327

We use integer linear programming (ILP) to compute an optimal solution (π∗, f∗) of Problem 1. To do this,328

we introduce the following boolean variables:329

• xe: xe = 1 if edge e ∼ (π∗, f∗), and xe = 0 if not.330

• zuv: zuv = 1 if segment u is before v in the permutation π∗, and 0 otherwise.331
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• yu: yu = 1 if f∗(uh) = 1 for segment u.332

With this representation, the objective function can be rewritten as333

max
xe,yu,zuv

w(e) · xe (3)

We add constraints to the ILP derived from edge compatibility equations (1). Without loss of generality,334

we first suppose segment u is in front of v in the reference genome, and edge e connects ut and vh (which335

is a tail-head connection). Plugging in ut, the first equation in (1) is equivalent to 1 − 1[π(u) > π(v)] =336

1 − f(ut), and can be rewritten as 1[π(u) < π(v)] = f(uh) = yu. Note that 1[π(u) < π(v)] has the337

same meaning as zuv; it leads to the constraint zuv = yu. Similarly, the second equation in (1) indicates338

zuv = yv. Therefore, xe can only reach 1 when yu = yv = zuv. This is equivalent to the inequalities (4)339

below. Analogously, we can write constraints for other three types of edge connections: tail-tail connec-340

tions impose inequalities (5); head-head connections impose inequalities (6); head-tail connections impose341

inequalities (7):342

xe ≤ yu − yv + 1

xe ≤ yv − yu + 1

xe ≤ yu − zuv + 1

xe ≤ zuv − yu + 1

(4)

xe ≤ yu − (1− yv) + 1

xe ≤ (1− yv)− yu + 1

xe ≤ yu − zuv + 1

xe ≤ zuv − yu + 1

(5)

xe ≤ (1− yu)− yv + 1

xe ≤ yv − (1− yu) + 1

xe ≤ (1− yu)− zuv + 1

xe ≤ zuv − (1− yu) + 1

(6)

xe ≤ (1− yu)− (1− yv) + 1

xe ≤ (1− yv)− (1− yu) + 1

xe ≤ (1− yu)− zuv + 1

xe ≤ zuv − (1− yu) + 1

(7)

We also add constraints to enforce that zuv forms a valid topological ordering. For each pair of nodes u and343

v, one must be in front of other, that is zuv + zvu = 1. In addition, for each triple of nodes, u, v and w, they344

cannot be all in front of another; one must be at the beginning of these three and one must be at the end.345
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Therefore we add 1 ≤ zuv + zvw + zwu ≤ 2.346

Solving an ILP in theory takes exponential time, but in practice, solving the above ILP to rearrange genome347

segments is very efficient. The key is that we can solve for each connected component separately. Because348

the objective maximizes the sum of compatible edge weights, the best rearrangement of one connected com-349

ponent is independent from the rearrangement of another because by definition there are no edges between350

connected components.351

4.3 Concordant and discordant alignments352

Discordant alignments are alignments of reads that contradict library preparation in sequencing. Concordant353

alignments are alignments of reads that agree with the library preparation. Take Illumina sequencing as an354

example. In order for a paired-end read alignment to be concordant, one end should be aligned to the forward355

strand and the other to the reverse strand, and the forward strand aligning position should be in front of the356

reverse strand aligning position (Figure 7A). Concordant alignment traditionally used in WGS also requires357

that a read cannot be split and aligned to different locations. But these requirements are invalid in RNA-seq358

alignments because alignments of reads can be separated by an intron with unknown length.359

We define concordance criteria separately for split-alignment and paired-end alignment. If one end of a360

paired-end read is split into several parts and each part is aligned to a location, the end has split-alignments.361

Denote the vector of the split alignments of an end to be R = [A1, A2, · · · , Ar] (r depends on the number362

of splits). Each alignment R[i] = Ai is comprised of 4 components: chromosome (Chr), alignment starting363

position (Spos), alignment ending position and orientation (Ori, with value either + or −). We require364

that the alignments Ai are sorted by their position in read. A split-aligned end R = [A1, A2, · · · , Ar] is365

concordant if all the following conditions hold:366

Ai.Chr = Aj .Chr ∀i, ∀j

Ai.Ori = Aj .Ori ∀i, ∀j

Ai.Spos < Aj .Spos if Ai.Ori = + for all i < j

Ai.Spos > Aj .Spos if Ai.Ori = − for all i < j

(8)

If the end is not split, but continuous aligned, the alignment automatically satisfies equation (8). Denote the367
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alignments of R’s mate as M = [B1, B2, · · · , Bm]. An alignment of the paired-end read is concordant if368

the following conditions all hold:369

Ai.Chr = Bj .Chr ∀i, ∀j

Ai.Ori 6= Bj .Ori ∀i, ∀j

A1.Spos < Bm.Spos if A1.Ori = +

Am.Spos > B1.Spos if A1.Ori = −

(9)

We only require the left-most split of the forward read R be in front of the left-most split of the reverse read370

M since the two ends in a read pair may overlap. In order for a paired-end read to be concordant, each371

end should satisfy split-read alignment concordance (8), and the pair should satisfy paired-end alignment372

concordance (9).373

4.4 Splitting the genome into segments S374

We use a set of breakpoints to partition the genome. The set of breakpoints contains two types of positions:375

(1) the start position and end position of each interval of overlapping discordant alignments, (2) an arbitrary376

position in each 0-coverage region.377

Ideally, both ends of a discordant read should be located in separate segments, otherwise, the discordant378

read contained in a single segment will always be discordant no matter how the segments are rearranged.379

Assuming discordant read alignments of each TSV pile up around the breakpoints and do not overlap with380

discordant alignments of other TSVs, we set a breakpoint on the start and end positions of each contiguous381

interval of overlapping discordant alignments.382

For each segment that contains discordant read alignments, it may also contain concordant alignments that383

connect the segment to its adjacent segments. To avoid having all segments in GSG connected to their384

adjacent segments and thus creating one big connected component, we pick the starting point of each 0-385

coverage region as a breakpoint. By adding those breakpoint, different genes will be in separate connected386

components unless some discordant reads support their connection. Overall, the size of each connected387

component is not very large: the number of nodes generated by each gene is approximately the number of388

exons located in them and these gene subgraphs are connected only when there is a potential TSV between389
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them.390

4.5 Defining edges in the genome segment graph391

In a GSG, an edge is added between two vertices when there are reads supporting the connection. For each392

read spanning different segments, we build an edge such that when traversing the segments along the edge,393

the read is concordant with the new sequence (equations (8) and (9)). Examples of deriving an edge from a394

read alignment are given in Figure 7. In this way, concordance of an alignment and compatibility of an edge395

with respect to a genome sequence is equivalent.396

(A) Paired-end Reads from Target Genome

target u · · · v

(B) Concordant Alignment
tail-head connection, concordant edge

reference u · · · v

edge u · · · v
w(e)

(C) Inversion
tail-tail connection, discordant edge

reference u · · · rev(v)

edge u · · · rev(v)

w(e)

(D) Inversion
head-head connection, discordant edge

reference rev(u) · · · v

edge rev(u) · · · v

w(e)

(E) Duplications/transpositions
head-tail connection, discordant edge

reference v · · · u

edge v · · · u

w(e)

Figure 7: Constructing edges from alignment. (A) Read positions and orientations generated from the target
genome. (B) If the reference genome does not have rearrangements, the read should be concordantly aligned
to reference genome. An edge is added to connect the right end of u to the left end of v. Traversing the two
segments along the edge reads out u · v, which is the same as reference. (C) Both ends of the read align to
forward strand. An edge is added to connect the right end of u to the right end of rev(v). Traversing the
segments along the edge reads out sequence u · rev(rev(v)) = u · v, which recovers the target sequence
and the read can be concordantly aligned to. (D) If both ends align to the reverse strand, an edge is added to
connect the left end of front segment to the left end of back segment. (E) If two ends of a read point out of
each other, an edge is added to connect the left end of front segment to the right end of back segment.

The weight of a concordant edge is the number of read alignments supporting the connection, while the397

weight of a discordant edge is the number of supporting alignments multiplied by discordant edge weight398
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coefficient α. Edges with very low read support are likely to be a result of alignment error, therefore we filter399

out edges with weight lower than a threshold θ. Segments with too many connections to other regions are400

likely to have low mappability, so we also filter out segments connecting to more than γ other segments. The401

parameters α, θ, and γ are the most important user-defined parameters to SQUID (Supplementary Table S1402

and Supplementary Figure S2).403

4.6 Identifying TSV breakpoint locations404

Edges that are discordant in the reference genome indicate potential rearrangements in transcripts. Among405

those edges, some are compatible with the permutation and orientation from ILP. These edges are taken to be406

the predicted TSVs. For each edge that is discordant initially but compatible with the optimal rearrangement407

found by the ILP, we examine the discordant read alignments to determine the exact breakpoint located408

within related segments. Specifically, for each end of a discordant alignment, if there are 2 other read409

alignments that start or end in the same position and support the same edge, then the end of the discordant410

alignment is predicted to be the exact TSV breakpoint. Otherwise, the boundary of the corresponding411

segment will be output as the exact TSV breakpoint.412

4.7 Simulation methodology413

Simulations with randomly added structural variations and simulated RNA-seq reads were used to evalu-414

ate SQUID’s performance in situations with a known correct answer. RSVsim [45] was used to simulate415

SV on the human genome (Ensembl 87 or hg38) [46]. We use the 5 longest chromosomes for simulation416

(chromosome 1 to chromosome 5). RSVsim introduces 5 different types of SVs: deletion, inversion, inser-417

tion, duplication, and inter-chromosomal translocation. To vary the complexity of the resulting inference418

problem, we simulated genomes with 200 SVs of each type, 500 SVs of each type, and 800 SVs of each419

type. We generated 4 replicates for each level of SV complexity (200, 500, 800). For inter-chromosomal420

translocations, we only simulate 2 events because only 5 chromosomes were used.421

In the simulated genome with SVs, the original gene annotations are not applicable, and we cannot simulate422

gene expression from the rearranged genome. Therefore, for testing purposes, we interchange the role423

of the reference (hg38) and rearranged genome, and use the new genome as the reference genome for424

alignment, and hg38 with the original annotated gene positions as the target genome for sequencing. Flux425
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Simulator [47] was used to simulate RNA-seq reads from the hg38 genome using the Ensembl annotation426

version 87 [48].427

After simulating SVs on genome, we need to transform the SVs into a set of TSVs, because not all SVs affect428

transcriptome, and thus not all SVs can be detected by RNA-seq. To derive the list of TSVs, we compare429

the positions of simulated SVs with the gene annotation. If a gene is affected by an SV, some adjacent430

nucleotides in the corresponding transcript may be located far part in the RSVsim-generated genome. The431

adjacent nucleotides can be consecutive nucleotides inside an exon if the breakpoint breaks the exon, or the432

end points of two adjacent exons if the breakpoint hits the intron. So for each SV that hits a gene, we find433

the pair of nucleotides that are adjacent in transcript and separated by the breakpoints, and convert them into434

coordinate of the RSVsim-generated genome, thus deriving the TSV.435

We compare SQUID to the pipeline of de novo transcriptome assembly and transcript-to-genome alignment.436

We also use the same set of simulations to test whether existing WGS-based SV detection methods can be437

directly applied to RNA-seq data. For the de novo transcriptome assembly and transcript-to-genome align-438

ment pipeline, we use all combinations of the existing software Trinity [23], Trans-ABySS [22], GMAP [27]439

and MUMmer3 [26]. For WGS-based SV detection methods, we test LUMPY [7] and DELLY2 [6]. We440

test both STAR [49] and SpeedSeq [33] (which is based on BWA-MEM [50]) to align RNA-seq reads to the441

genome. LUMPY is only compatible with SpeedSeq output, so we do not test it with STAR alignments.442

Abbreviations ILP: integer linear programming; SV: structural variation; TSV: transcriptomic structural443

variation; TCGA: The Cancer Genome Atlas; WGS: whole genome sequencing.444
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Supplementary Text594

All experiments here are performed with SQUID version 1.0.595

Using de novo assembly and transcript to genome alignment to predict TSV596

For the pipeline of de novo transcriptome assembly and transcript-to-genome alignment, the direct output is597

a series of alignment pieces for each assembled transcript. To derive TSV from the pieces of alignment of598

each transcript, we still need to use the split-read alignment concordance criteria (8) and the edge-building599

approach. In the case of no TSV, equation (8) still holds, since a transcript is generated from one strand of600

one chromosome, without rearrangements but only deletion of introns. Any violation of (8) is treated as a601

TSV. Here TSVs are still able to be represented by edges in GSG, where segments are the intervals of each602

piece of alignment, and edges are added in the same principle that traversing segments along the edges will603

result in a concordant alignment of the assembled transcript. The positions of both breakpoints in a TSV are604

exactly the two positions linked by the discordant edge, and the orientations corresponds to the connection605

type of the edge.606

Processing TCGA RNA-seq data607

We use STAR aligner [49] to align TCGA RNA-seq reads to Ensemble genome 87 [46] with the corre-608

sponding gene annotation. STAR aligner [49] is set with the option of outputting chimeric alignments with609

hanging length 15bp. The chimeric alignments generated by STAR [49] are further filtered out if the paired-610

end reads can be aligned concordantly by SpeedSeq aligner [33] SQUID is applied to concordant alignment611

generated by STAR [49] and filtered chimeric alignment. The discordant edge weight coefficient α is set to612

be 1, that is, we require tumor transcripts to dominate normal transcripts in order to predict corresponding613

TSVs.614

A large number of fusions between immunoglobulin genes are predicted by SQUID. However, there is615

possibility that B cells are in the mixture of sequencing and have very high expression of immunoglobulin616

genes (Ig). We cannot tell whether Ig rearrangements are generated by tumor cells or B cells. Therefore, we617

exclude Ig TSVs during post-processing and exclude them from the descriptive statistics. Note that SQUID618

does not exclude Ig TSVs internally, because Ig expression and VDJ recombination have been observed to619
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exist in tumor cells, and revealing the role of Ig in tumor can deepen our understanding of cancer. When620

normal cells are removed from tumor samples, using SQUID to predict Ig TSV will help the study of Ig and621

tumor.622

SQUID parameters623

Table S1: Value of SQUID’s parameters used in experiments

Symbol Description Value

γ segment degree threshold 4
θ edge weight threshold 5
α discordant edge weight coefficient 8 (simulation and HCC cell line), 1 (TCGA)
mq minimum mapping quality 255 (STAR), 1 (SpeedSeq)
pq low Phred quality threshold 4 (p = 10−0.4)
l maximum allowed low Phred quality length 10

Note: mq, pq and l are controls for sequencing quality and mapping quality. If mapping quality of a read is624

less then threshold mq, the read will not be used in edge building. If the read has a low sequencing, in terms625

of having more than l bases of sequencing quality lower than pq, the read will not be used in edge building.626
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Supplementary Figures627
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Figure S1: Number of samples with RNA-seq or WGS data in TCGA
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Figure S2: Specificity and sensitivity of SQUID against different value of discordant edge weight coefficient.
(A) HCC1954 cell line. Sensitivity does not change when increasing discordant edge weight coefficient,
indicating rearranged tumor transcripts out-number their normal counterparts. Specificity decreases slightly
because SQUID predicts more as discordant edge weight coefficient increases. (B) HCC1395 cell line.
Sensitivity and specificity reach the highest at discordant edge weight coefficient 8 and remain unchanged at
9 and 10. Some normal transcripts out-number the rearranged tumor transcripts, increasing this parameter
allows SQUID to capture these TSVs.
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