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Abstract

Motivation: In the analysis of metabolism using omics data, two distinct and complementary approaches
are frequently used: Principal component analysis (PCA) and Stoichiometric flux analysis. PCA is able to
capture the main modes of variability in a set of experiments and does not make many prior assumptions
about the data, but does not inherently take into account the flux mode structure of metabolism.
Stoichiometric flux analysis methods, such as Flux Balance Analysis (FBA) and Elementary Mode Analysis,
on the other hand, produce results that are readily interpretable in terms of metabolic flux modes, however,
they are not best suited for exploratory analysis on a large set of samples.

Results: We propose a new methodology for the analysis of metabolism, called Principal Metabolic Flux
Mode Analysis (PMFA), which marries the PCA and Stoichiometric flux analysis approaches in an elegant
regularized optimization framework. In short, the method incorporates a variance maximization objective
form PCA coupled with a Stoichiometric regularizer, which penalizes projections that are far from any
flux modes of the network. For interpretability, we also introduce a sparse variant of PMFA that favours
flux modes that contain a small number of reactions. Our experiments demonstrate the versatility and
capabilities of our methodology.

Availability: Matlab software for PMFA and SPMFA is available in https://github.com/
aalto-ics—-kepaco/PMFA.

Contact: sahely@iitpkd.ac.in, juho.rousu@aalto.fi, Peter.Blomberg@vitt.fi, Sandra.Castillo@vtt.fi;
Supplementary information: Detailed results are in Supplementary files. Supplementary data are
available at https://github.com/aalto-ics-kepaco/PMFA/blob/master/Results.zip.

1 Introduction (PC) identifies linear combinations of genes or enzymatic reactions whose
activity changes explain a maximal fraction of variance within the set of
samples under analysis. The main goals of PCA in fluxomic data are (i) to
identify which parts of the metabolism retain the main variability in flux

Principal component analysis (PCA) is one of the most frequently applied
statistical methods in Systems Biology (Ma and Dai, 2011; Yao et al.,
2012; Barrett et al., 2009). PCA is used to reduce the dimensionality of
the data while retaining most of the variation in the data-set (Shlens, 2014).
This reduction is done by identifying directions, i.e. linear combination of

data and (ii) to relate them to the samples, i.e, behaviour of the organism
for particular experimental condition.

variables, called principal components, along which the variation in the However, in the context of fluxomics, PCA has some limitations

data is maximal. By using a few such components, each sample can be
represented by relatively few variables compared to thousands of features.

(Folch-Fortuny et al., 2016). PCA considers reactions independently
without considering any other structure or relationship among reactions,
It also helps us to distinguish between biologically relevant variables and ”.thdmg stoichiometric relatfons implied l'>y metabolic path\ivays. PCA
simply extracts a set of reactions that are important to describe sample
variance. Moreover, the principal components output by PCA are known

to be generally dense, thus including most of the variables, which precludes

noise.
In the context of transcriptomics and fluxomics, PCA has been widely

applied (Yao et al.,2012; Barrett et al., 2009), where a principal component
their interpretation of pathways of any kind. It would be more useful for

modelling and biological interpretation if the sample variance captured
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by the model could be expressed in terms of metabolic pathways or flux
modes.

In this paper we propose a novel method to find metabolic flux modes
that explains the variance in gene expression or fluxomic data collected
from heterogeneous environmental conditions without requiring a fixed
set of predefined pathways to be given. The proposed method is called
as principal metabolic flux mode analysis (PMFA). Here each principal
component, called principal metabolic flux mode (PMF), is found by
selecting a set of reactions which represents a metabolic flux mode which
is approximately in steady state and explains most of the data variability. In
addition, we propose a sparse variant, called Sparse Principal Metabolic
Flux Mode analysis (SPMFA), to further help the interpretation of the
principal components.

Our method differs from existing methods in the literature such as Flux
Balance Analysis (FBA) (Orth et al.,2010) as well as more recent proposals
as our method aims to explain the sample variability, while existing
methods aim to extract flux modes that maximize an objective such as
growth as in FBA, or a dominant flux modes active in a set of samples (von
Stosch et al., 2016; Folch-Fortuny et al., 2016). Related to our approach,
Folch-Fortuny et al. (2015) has previously proposed multivariate curve
resolution-alternating least squares to improve the biological interpretation
of the principal components. Their method incorporates a few constraints
such as non-negativity and selectivity when constructing the output. In
addition, their method requires a fixed set of metabolic pathways to be
defined as a initial step. Very recently, the Principal Elementary Mode
Analysis (PEMA) was proposed (von Stosch et al., 2016; Folch-Fortuny
et al., 2016) where each component or principal elementary mode are
selected from the complete set of elementary modes (EMs) (Pey and
Planes, 2014) of the metabolic network such that the selected EMs are
responsible for expression levels in a global data. This method needs to
derive all possible elementary flux modes explicitly which prevents it to
be applicable to genome-scale networks. Moreover, Folch-Fortuny et al.
(2016, 2015) considered that all fluxes are in steady state, which restricts
the applicability of the method in experiments containing transients or
perturbations (Baxter et al., 2007).

We verify our proposed PMFA and SPMFA methods by both
simulation data and real world fluxomic and transcriptomic data-sets. We
demonstrate our model’s flexibility in the analysis of both steady-state and
transient data by a change of one regularization parameter. We further show
that SPMFA is effective in capturing flux models in experiments involving
whole-genome networks.

2 Methods
2.1 Basic methods

Here we shortly review the existing basic methods for the analysis of
fluxomic data.

Principal component analysis: We assume X € RNXNr be the
data matrix of flux of N samples and NV, reactions, with each entry
corresponding to a estimated reaction rate for a particular reaction in a
particular experiment. We assume that all variables have been centered to
have zero empirical mean. The empirical covariance matrix is then given
by ¥ = %XTX. Denoting 31 = X, the 15? principal component (PC)
w1 can be found by solving

w1 = arg mawaElw,
weRNr

st wlz =1 M

Above, ||[w|2 = VwTw is the I norm of the vector w. The second PC
can be found by applying Eq.(1) on updated the covariance matrix using
deflation as o = (1 — wiwT)Z1(1 — wiw?) (Mackey, 2009).

The weights, also called the loadings, of the principal component
w € RV can be interpreted as the importance of reactions in explaining
the variance in fluxomic data. The principal components are generally
dense, containing most of the reactions of the metabolic network. Sparse
PCA (Zou et al., 2006) aims to increase the interpretabilty of PCA by
finding principal components that have a small number of non-zero weights
through solving the following optimization problem

maxw! Sw — A|wlj1, st ||lwl2=1 2)
w

where A is a user defined hyper-parameter which control the degree of
sparsity on PC. However, the principal components extracted by neither
method represent metabolic flux modes, and will not in general adhere to
thermodynamic constraints on reaction directions.

Stoichiometric modelling: The metabolic balance of the metabolic system
is described using the exchange Stoichiometric matrix 8§ € RNm XNr
(Raman and Chandra, 2009) which contains transport reactions for inflow
of nutrients and output flow of products, but does not contain any external
metabolites (as they cannot be balanced). Rows of this matrix represent
the N, internal metabolites, columns present the [V, metabolic reactions
including transport reactions and each element S, shows participation
of the m?" metabolite in the " reaction: Sim,r = 1(or —1)indicates that
reaction r produces (or consumes) the metabolite m. The value S, = 0
indicates metabolite m is not involved in the reaction 7. For a flux vector
w, Sw gives the change of metabolic concentration for all metabolites.
The metabolic steady-state is assured by imposing a constraint Sw = 0.

Elementary modes: The concept of an elementary mode (EM) (Pey and
Planes, 2014) is key for the analysis of metabolic networks. An EM is
defined as a minimal set of cellular reactions able to operate at the steady-
state, with each reaction weighted by the relative flux that they need to carry
for the mode to function. An EM also satisfies the reaction directionality
constraints arising from thermodynamics.

Flux balance analysis (FBA): FBA (Orth et al., 2010) finds steady state
flux modes maximizing objective function. Typically, FBA is done with
an objective of maximizing biomass production by solving following
optimization problem

maxclw st.Sw=0andl<w<u 3)
w

Here c indicates the row from Stoichiometric matrix corresponding to

biomass production.

2.2 Principal Metabolic Flux Mode Analysis (PMFA)

Here we describe our approach, Principal Metabolic Flux Mode Analysis
(PMFA), that combines the PCA and Stoichiometric modelling views of
metabolism.

To obtain meaningful solutions of steady state flux distributions as PC
loading one can impose two additional constraints in PCA formulation:

(1) the weights associated with irreversible reactions should always be
positive, i.e., w; > 0, where ir is an index of an irreversible reaction.

(2) System is in a steady state, where the internal metabolite
concentrations do not change, i.e. the metabolite producing and consuming
fluxes cancel each other out: Sw = 0.

Considering (1) and (2) the modified optimization problem for doing
PCA with structural constraint is as following

max wlZw
w
s.t. Sw = 0 (Stoichiometric steady state)
w; > 0 (irreversible reactions can have only positive flux)

[wil2 =1 @
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The constraint ||w||2 = 1 restricts the spurious scaling up of the weights
in the solution. Here, Sw = 0 is a hard constraint and may impose too
much restriction when the data does not actually arise from steady-state
conditions, e.g. given transients or perturbations of the fluxes during the
experiment. Numerically one needs to solve a set of linear equation of
size Njs X Ng which makes the problem also computationally hard to
solve Eq.(4). Hence instead of considering this hard constraint on the PC
loadings we introduce a soft constraint which penalizes the deviation from
the steady state. Our aim is to find a flux which optimizes a combination of
(1) maximal explained sample variance w”’ Sw and (2) minimal deviation
from a steady-state condition, expressed in the [ norm: ||Sw — 0||2 =
||Sw||2. This entails solving the following optimization problem:

max wlXw — \||Sw||2
w
s.t. Wi Z 0
wll2 =1 ®)

Here X\ imposes the degree of hardness of the steady-state constraint.
For A = 0 the Eq.(5) produces loadings similar to PCA with the
exception of the reaction directionality constraint. The model will be
henceforth denoted as PMFA(2) | If desirable, we can make our model
to disregard reaction directionality simply by dropping the inequality
constraints w;,- > 0. We call this version of the method as rev-PMFA
or reversible-PMFA.

The l2 norm on Sw in Eq.(5) has the tendency to penalize large
steady state deviations in individual reactions, at the cost of favoring small
deviations in many reactions. This is probably the desired behaviour in
case the data comes from conditions where there is no subsystems that is
considerably farther from steady state than other parts of the system. In
order to capture the opposite scenario, where a small subset of reactions
have large deviation from steady state, one can use /1 norm regularizer
on Sw. The I; norm regularizer |Sw||1 in Eq.(5) puts the emphasis
of pushing most of the steady-state deviations to zero, whilst allowing a
few outliers, metabolites that markedly deviate from steady state. Using
11 regularizer and a trade-off parameter A we get to solve the following
optimization problem:

max wlXw — A|Swl||;
w
st. w;- >0
wl2 =1 ©)
Here X\ imposes the degree of hardness of the steady-state constraint.
Similarly to Eq.(5) for A = 0 the Eq.(6) also produces loadings similar

to PCA with selective non-negative constraint. The model will be hence
forth denoted as PMFA (1) |

2.3 Sparse principal metabolic flux model analysis

The above formulation of PCA with Stoichiometric constraint still suffers
from the fact that each principal component is a linear combination of
all possible reaction activities, thus it is often difficult to interpret the
results. This problem can be avoided by a variant of PMFA, the sparse
principal metabolic flux mode analysis (SPMFA) using an /1 regularizer
(Tibshirani, 1996) on w to produce modified principal components with
sparse loadings.

max wlIZw — \||Sw]|«
w
st. Wi >0
[wl=C ™

where || - ||« can be any of the I3 and [; norm and C'is a used defined hyper-
parameter which controls the degree of sparsity in principal metabolic flux

(PMF) loadings. Similarly to PMFA, Sparse PMFA can also be made
consider all reaction reversible by dropping the inequality constraints
w;r > 0. We call this variant rev-SPMFA.

Again, similar to PCA, PMFA aims at explaining the main variability
in data using a few PCs. If the original variables have strongly different
means and/or variances, the PCs may focus on explaining only the variables
with the highest values and/or variances, disregarding the small variance
associated with the rest of variables. Hence before applying PMFA we
need to centralize the expression and fluxomic data.

2.4 Algorithms

The objective function of Eq.(5) can be interpreted as difference of two
differentiable convex function. This type of optimization problem is
known as Difference of Convex functions (DC) program. We used the
convex-concave procedure (CPP), a local heuristic that utilizes the tools of
convex optimization to find local optima of difference of convex functions
(DC) programming problems (Lipp and Boyd, 2016). Using CCP method
we solved Eq.(5) by solving following convex approximation (quadratic
program) in each iteration ¢:

t41

A
w!T" = arg min EHSWTHq - thEEw s.t. Wi >0
w

followed by projecting wit! on ||w||, = C. The norms p,q € {1,2}
are chosen according to the desired model.

To obtain a multi-factor PMFA model, i.e. a model containing several
PMFs jointly representing the data, we follow a approach similar to some
PCA algorithms, namely the deflation of the covariance matrix. However,
due to additional stoichiometric constraint here we deal with a sequence
of non-orthogonal vectors, [w1,...,wy] hence we must take care to
distinguish between the variance explained by a vector and the additional
variance explained, given all previous vectors. We have used orthogonal
projection for deflating the data matrix (Mackey, 2009). This also maintain
positive definiteness of covariance. For every iteration d+1 we first transfer
already found principal flux modes W € RNR X {0 a set of orthogonal
vectors, {q1,...,q4}-

(I - Qdlezi:l)Wd

qd = ®)
(I - Qa—1QT )wall

where, g1 = wi, and q1, ..., gq form the columns of Q4. q1,...,qq
form an orthonormal basis for the space spanned by w1, ..., wg. Then

the Schur complement deflation of covariance matrix is done by

$d949] Xd
Sg41 =Sq — —m b O)
9y Xdqd

3 Results

We report a comparative study on following methods.

e PCA : Principal component analysis as given by Eq.(1). PCAg;,
denotes the PCA augmented with reaction directionality constraints.

e SPCA : Sparse PCA corresponding to Eq.(2). SPCA 4;,- is the SPCA
augmented with reaction directionality constraints.

e FBA: Flux balance analysis with an objective of maximizing biomass
production given by (3).

e PMFA : Principal Flux Mode Analysis as described in Section 2.2.
PMFA(!2) denotes Iy regularization on the stoichiometric constraint
Eq.(5) while PMFA(1) denotes I3 regularization on stoichiometric
constraint Eq.(6).

e SPMFA
by Eq.(7).

Sparse Principal Flux Mode Analysis as given

Again, SPMFA(2)  denotes lo regularization on
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stoichiometric constraint, while SPMFA (!1) denotes [ 1 regularization
on stoichiometric constraint.

e Principal Elementary Mode Analysis (PEMA) (von Stosch et al., 2016;
Folch-Fortuny et al., 2016): It uses the set of EMs as the candidates
for the PCs. It models the flux matrix X is as follows:

X =APL +E.

Above, Py, is the N x N 7 principal elementary mode matrix,
formed by a subset of Ny EMs from the entire EM matrix; A is the
is the N X Ny non negative weighting matrix; and E is the N X N
residual matrix. Pey, is found by iteratively selecting important EMs.
We only used PEMA on small metabolic networks since as calculation
of all EMs for genome-scale metabolic networks is impractically time
consuming (Pey and Planes, 2014).

Data centralization. PCA, SPCA, PMFA, and SPMFA aim at explaining
the main variability in data using a few PCs. If the original variables have
strongly different means and/or variances, the PCs may focus on explaining
only the variables with the highest values and/or variances, disregarding the
small variance associated with the rest of variables. Hence before applying
all of them, we need to centralize the expression and fluxomic data.

Selection of optimal level of regularization. We selected the optimum
levels of the regularization parameter A for PMFA and SPMFA and level of
sparsity for SPMFA by cross-validation maximizing the fraction of sample
variance captured on test samples

wlsw

Fraction of variance = ———
Trace(X)

which is a classic measure used with PCA and related approaches. Above,
w is the PC computed from the training data, and X is the co-variance
matrix of the test sample. Leave-One-Out (LOO) cross-validation was
used on smaller datasets and 5-fold cross-validation was used on the large
whole genome dataset.

3.1 Datasets

Pichia pastoris simulation case study. This case is based on the metabolic
network of Pichia pastoris, which originates from Tortajada et al. (2010).
It describes the central carbon metabolism of P. pastoris during growth
on glucose, glycerol and methanol, comprising the Embden-Meyerhoff-
Parnas pathway, citric acid cycle, penthose phosphate and fermentation
pathways. It contains 45 compounds (36 of which are internal metabolites,
which can be balanced for growth) and 44 reactions, yielding a total number
of 98 EMs (Tortajada et al., 2010). Flux data were generated simulating
the growth of Pichia pastoris for twelve different cultivation conditions by
choosing appropriate sets of active EMs. The active EMs were assumed
to contribute randomly to the flux pattern. Hence we can compare PMF
identified by PMFA to the ground truth "active EMs" that were used for
data generation.This case study also enables the study of the impact of
noise on the EMs identification and performance. For this study we add
random Gaussian noise to fluxomic data, where noise variances are 2%,
5%, 10% and 20% of original values. From the flux data and the deviation
reported in supplementary material of Quek et al. (2009) we observed that
most the reported fluxes have deviation associated with it and the deviations
are in rage of 2-5% of their reported value along with few reactions with
deviations even more than 12% of their value.

Saccharomyces cerevisiae experimental case study. A metabolic
network for Saccharomyces cerevisiae proposed by Hayakawa et al. (2015)
and fluxome data used in (von Stosch et al., 2016; Hayakawa et al., 2015;
Frick and Wittmann, 2005) was used in this study. The network describes
the central cytosolic and mitochondrial metabolism of S. cerevisiae,

comprising glycolysis, the pentose phosphate pathway, anaplerotic
carboxylation, fermentative pathways, the TCA cycle, malic enzyme and
anabolic reactions from intermediary metabolites into anabolism (von
Stosch et al., 2016). The network contains 42 compounds (30 of which are
internal metabolites, which can be balanced for growth) and 47 reactions.
The objective in this case study is to evaluate the performance of PMFA
Eq.(5) on fluxome data and compare it with PEMA and PCA. For PEMA
we have used 1182 EMs provided by von Stosch et al. (2016).

Saccharomyces cerevisiae gene expression data. The objective of
experiment described in this section is to evaluate the performance of
the proposed PMFA Eq.(5) and SPMFA Eq.(7) on transcriptomic data and
compare it with PCA and SPCA.

For studying applicability of the proposed PMFA (Eq.(5)) in
transcriptomic data where system may not be in steady state, we considered
transcriptomic data both in steady state as well as time series. The steady
state transcriptomic data has been generated by Rintala ez al. (2009) where
Saccharomyces cerevisiae grown in glucose-limited chemostat culture
with 0%, 0.5%, 1.0%, 2.8%, or 20.9% O2 in the inlet gas (D= 0.10 /h,
pHS, 30C) (Wiebe et al., 2008). The normalized transcription data-set is
available in the Gene Expression Omnibus (GEO) database (Barrett et al.,
2011) with the accession number GSE12442. It contains four samples
for 0,0.5,2.8 and 20.9% oxygen and six samples for 1% oxygen and
samples were either from four (0,1,20.9% oxygen) or two independent
cultivations (0.5, 2.8% oxygen). This data-set is combined with time-series
transcriptomic data generated by Rintala et al. (2011) where time series
analysis starting from two (1% and 20.9%) levels of oxygen provision.
Seven time points at 0,0.2,3,8,16,24,72/79 hours from both time
series and two biological replicates from each time point were analysed.
The microarray data can be accessed through GEO accession number
GSE22832 (Barrett et al., 2011). We have used Yeast community model
v. 7.5 (YCM 7.5), which contains 3494 reactions among 2220 compound
and catalysed by 909 genes. We have converted gene expression data to
a expression level per reaction by the method described in the method
section.

Given a gene expression data we have converted it to reaction vs.
sample data-set using the following gene rules. Let us denote X as gene
expression matrix with size N X Ng where N is number of genes and
the g*" column of X G, ng is the expression vector corresponding to gene
g. Then,

e if gene association with reaction r is denoted as g; or g2 then
expression value for reaction r, i.e. B, = ng1 + ngz.
e otherwise if gene association with reaction r is denoted as g1 and g2

G G)

then expression value for reaction 7, i.e. E, = min(xg1 X gy )

3.2 Prediction of active EMs using PFMA

In our first experiment we evaluated the predictive performance the
proposed PMFA and PEMA in correctly retrieving underlying active
elementary flux modes. We used the Pichia pastoris simulation case study
data, where the elementary flux modes that are part of the ground truth are
known. For the evaluation, area under ROC curve (AUC) and area under
precision recall curve (AUPR). The precision/recall metrics, widely used
in information retrieval, is to assess how well the flux modes computed by
PEMA and PMFA correlate with the ground truth active EMs.

For each PMF, we computed its correlation with respect to all 98
elementary flux modes of the Pichia pastoris metabolic network. We
then sort the EMs in descending order of correlation and consider first
i = 1...,98 EMs as the predicted EMs by the model. Precision and
recall is then computed for each 7, by considering ground truth active EMs
within the first ¢ EMs as true positives and other EMs with the top 7 as
false positives. A precision/recall curve can be then plotted by taking the
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precision/recall values for all s, in the order of the descending correlation
in the sorted list. The AUPR is denoted as area under the precision recall
curve and AUC is denoted as area under receiver operating characteristic
curves (Hanley and McNeil, 1983).

In a multi-factor PMFA model, to compute a precision recall value
for a k-factor model we considered the maximum correlation of an EM
with any of the & factors as a final correlation of an EMs with multi-factor
PMFA model. Then, we sorted all EMs according to descending order of
their maximum correlations. With PEMA model we used an analogous
approach: for a k-factor PEMA, for each ¢ we included the top 7 correlated
EMs (according to the maximum correlation of EMs with any of & factors)
as the models prediction and used those for computing the precision/recall
values foreachz = 1,...,98.

pema-1 (3~ pema-5 -] pema-10 - ﬂ - pema-15
Area under precision recall curve 0 8[

0.7

pmfa-1 —¥— pmfa-2 —¥— pmfa-3

08 Area under ROC curve

0 5 10 15 20 0 5 10 15 20
Noise level (%) Noise level (%)

Fig. 1. The graph shows the AUPR (left) and AUC(right) values obtained by different
models for different noise levels.

Figure 1 shows total AUPR and total AUC achieved by the different
models for different amount of additional noise. It shows that PMFA is
robust with respect to noise in the fluxomic data, with both AUPR and AUC
metrics only slowly decreasing as a function of increasing noise, until noise
level of 10%. In this regime, adding more factors to PMFA models also
increases performance monotonically both in AUC and AUPR metrics,
showing that the additional factors recover EMs that were not captured
by the first factor. In the high noise regime (> 10%) we observe that the
performance of the 3-factor PMFA model drops suggesting that the last
factor likely starts to capture noise.

In the noise free case, PEMA performs comparatively to PMFA,
especially in terms of the AUC metric and when using a high enough
number of factors in the model. However, the performance of PEMA
deteriorates quickly upon increased noise. The decrease of performance is
particularly apparent in the AUPR metric. Moreover, we note that the
PEMA models do not exhibit as clear monotonic improvement when
adding more and more factors to the model as PMFA, as in Figure 1
the performance curves of the different PEMA models cross each other in
several occasions.

3.3 Explaining test set variance with PMFA

In this experiment we focused on the ability of PMFA to explain variance
on data in a predictive setting, that is, on new data that has not been used
for model estimation. We focused on the amount of variance explained in
the test set in a Leave-One-Out (LOO) cross-validation setting.

We studied the effect of stoichiometric regularization ()\HSWH%)
on the fraction of sample variance captured by PMFA and alternative
models (PEMA, PCA). Figure 2 shows the fraction of sample variance
explained by the first PMFs and PCs as a function of deviation from
steady state (||Sw||3) in test data of two fluxomic data-sets (S. cerevisiae
and P. pastoris). The deviation from the steady-state is controlled by the

[> PCA;, O PCA PMFA - - - - rev-PMFA
P. pastoris (simulated)

-+

PEMA(1) [ PEMA(5) [] PEMA(10)
S. cerevisiea (fluxomic)

o
3

y

S o 9o
> 0o

o
w

.
\

o o

Fraction of variance
Fraction of variance

o
o
[}
o —

005 01 015 01 02 03 04
swii2 nswi2

Fig. 2. Depicted is for two fluxomic data-sets the fraction of variance on test data in LOO
setting as a function of deviation from steady state (|| Swllg) captured by PCA, directional
PCA (PCA 4;,.), 1-, 5- and 10-factor PEMA, as well as PMFA and rev-PMFA using different
amount of Stoicihiometric regularization. The markers ‘*’ and ‘o’ indicate the optimal level
of regularisation for PMFA and rev-PMFA.

regularization parameter A > O: high values of A give low deviation from
steady-state and vice-versa.

In particular on the fluxomic datasets, relatively heavy regularization
can be applied without decrease of variance explained, indicating that the
data can be well explained by steady-state flux modes.

By change of the regularisation parameter ), the statistics of PMFA
exhibit a continuous transition from fully steady state flux modes
(|ISw||2 = 0) to the PCAg;,., ie. PCA augmented with reaction
directionality constraints. The transition for rev-PMFA is not as smooth as
PMFA with directionality constraint. It is evident that the directionality
constraint increases the stability of PMFA without reducing much
explained variance on test data.

Compared to PEMA, The fraction of variance explained the first PMF
from rev-PMFA is higher than 1-, 5- and 10-factor PEMA regardless of the
amount of stoichiometric regularization or application of the directionality
constraints. The amount of variance explained by the first PMF from PMFA
is also much higher than 1-factor PEMA even with high Stoichiometric
regularization, while the 5- and 10-factor PEMA reach the level of PMFA
for both data sets.
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Fraction of variance

] PEMA(10)

o
™

Fraction of variance

0 5 10 15 20
Noise level (%)

Fig. 3. Depicted is for the P. pastoris simulated data-set the fraction of variance on test data
in LOO setting as a function of additional noise level captured by PCA, PCA 4;,- 1-, 5- and
10-factor PEMA, as well as PMFA (with optimum regularization parameter).

Figure 3 shows the explained fraction of variance on test data in
a Leave-One-Out (LOO) cross-validation setting, where both test and
training data is contaminated with various amount of the noise. The test set
variance captured by first component of PMFA only very slightly decreases
upon increasing noise. In contrast, the test set variance captured by PEMA
drops considerably when the noise level increases. Higher order PEMA
models are here somewhat more resistant than the 1-factor PEMA but still
not competitive with PMFA. In addition, we note that PCA is not able to
explain test set variance as well as PMFA regardless of the noise level. To
understand this result, we note that within the training set, by definition
we expect PCA to explain the variance the best. However, when analysing
new data not seen in the training phase, the stoichiometric information
used by PMFA helps to attain a superior predictive performance.
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3.4 Recovery of sparse flux modes from full genome data
by SPMFA
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Fig. 4. Figure shows variance (left) and normalized variance (right) on test data in 5 fold
cross validation setting as a function of steady state deviation (HSWH%) on the whole
genome gene expression data (containing both steady-state and transient samples) for PMFA
SPMFA and FBA. The markers ‘x’ indicate the optimal level of regularisation.

In this experiment, we evaluated the Sparse Principal Metabolic Flux
Mode Analysis, SPMFA, in discovery of sparse flux modes. We focus
on the full genome data, i.e., all steady-state and transient samples of S.
cerevisiae containing a total of 3494 reactions for, making dense principal
components and flux modes difficult to interpret. To quantify the fraction
of explained variance normalized by the complexity of the extracted flux
mode, we measure the normalized fraction of variance, calculated as

Fraction of variance captured

Normalized variance =
lIwllo/Nor

Above, ||w||o denotes the lg norm , i.e. the cardinality of non-zero
elements of w Figure 4 shows variance (left) and normalized variance
(right) as the function of deviation from steady state (||Sw/||3).

At the maximum, PMFA captures slightly more explained variation
than SPMFA at (Figure 4, left). Correspondingly, SPMFA is vastly more
effective in capturing normalized variance, achieving more than double the
rate of PMFA at any level of deviation from steady state ((Figure 4, right).
SPMFA statistics can be seen to smoothly approach the (directional) sparse
PCA statistics when the deviation from steady-state is let to increase.

The variant SPMFA (11) which is regularized by the I; stoichiometric
regularizer (]|Sw/||1), also exhibit a smooth transition, but captures less
variance at the maximum, albeit the fraction of normalized variance
captured is similar to SPMFA. PMFA(1) exhibits a phase change,
following PMFA at high steady state distances (small A) but switching
to SPMFA regime as regularization is increased. This reflects the fact that
with small X the model is not yet sparse but sparsity quickly emerges once
A is increased.

It is notable that on this large heterogeneous dataset, all methods fail to
capture meaningful amounts of normalized sample variance in the vicinity
the steady state (||Sw]||2 = 0). This is also true for FBA, which we
have included as a comparison (maximum biomass production as the FBA
objective). The FBA solution is sparse but the fraction of variance captured
is very small, causing as the normalized variance captured by FBA to be
small compared to SPMFA solution when the stoichiometric regularization
is relaxed. This illustrates the importance of being able to relax the steady-
state assumption when analyzing real-world experiments.

3.5 Analysis of SPMFA on S. cerevisiae oxygen series
gene expression data-set

In this section we analyze the principal flux modes found by SPMFA (/2)
(Eq.(7)) separately on gene expression data of (a) transient time-series

samples and (b) steady state samples (c.f. Section 3.1) on a whole-genome
metabolic network of S. cerevisiae. In section 3.3, we have observed that
both PMFA and SPMFA explain similar amount of sample variance but
SPMFA is vastly more effective in terms of normalized fraction of variance.
We have also found that, each of the first few PMFs selects more than
thousand reactions, while each SPMF has only around 300 active reactions.
For better interpretation we select SPMFA for this study.

SS1 87

reac-
tions

reactions 167

210
common
reactions

common
reactions 144

T2 reactions T1

Fig. 5. Figure shows a Venn-diagram of reactions selected by SS1(28.45% variance
captured ),SS2(8.67%).T1(28.34%) and T2(1.45%). It shows that 176 reactions are
common in SS1 and T2 while 210 reactions are common in SS2 and T1.

Table 1. Description of the seven metabolic flux modes we recovered from four
SPMFs of both the data-sets, i.e., T1 and T2 for time-series data-set and SS1
and SS2 for steady-state data-set. It also contains the flux mode of T3 or SS3.

Content

PPP, malate-shuttle
sterol transporters,
deoxyribonucleotides

Subset
Mode 1: Reactions only in T1

Mode 2: Reactions only in T2

Mode 3: Reactions in T1 TCA, glycogen, heme, nucleotides,

and SS2 and translation = growth

Mode 4: Reactions in T2 Peroxisome, spermidine, thiamine,
and SS1 ACP and translation = growth
Mode 5: Reactions in T1, T2, | Biotin synthesis and

SS1 and SS2 nitrogen reallocation transporters

Mode 6: Reactions only in SS1
Mode 7: Reactions only in SS2 | Shikimate, isoprenoids, NAD
translocation, and NADPH shuttle
cell envelope

Reactions in T3 and SS3

Henceforth, we will denote the first three components of SPMFA for
time-series data-set as T1, T2 and T3 respectively. Similarly, the first
three components of SPMFA for steady-state data-set will be denoted
as SS1, SS2 and SS3. We have found that the principal components
T3 (time-series SPMF3) and SS3 (steady-state SPMF3) are effectively
identical and contain only reactions pertaining to the cell envelope, which
is a well-known response to variable oxygen levels. We also observe that
many reactions are common in different SPMFs of time-series and steady-
state data-set. Figure 5 shows a Venn diagram for set of the reactions
selected by different flux modes. The sparse principal metabolic flux
mode T2 (time-series SPMF2) and SS1 (steady-state SPMF1) have 167
reactions in common and again the sparse principal metabolic flux mode
T1 (time-series SPMF1) and SS2 (steady-state SPMF2) have 210 reactions
in common.

Furthermore, the four principal components have a few reactions
in common. Therefore, we define seven metabolic modes from four
SPMFs. Table 1 presents a description of these seven metabolic
modes. The reactions in Mode 1 included cytosolic NADPH-production
by the oxidative pentose phosphate pathway, NADPH-consuming
dehydrogenases, and NADH-transport from cytosol to mitochondria
via the malate-shuttle. Mode 2 represents down-regulation of many
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sterol transporters, and up-regulatation aldehyde dehydrogenases and
ribonucleotide reductases for the biosynthesis of DNA nucleotides. Mode
3 contains many biosynthetic pathways such as chorismate, heme,
glutamate, nucleotide, and glycogen biosynthesis. It also contains
sugar transporters, lower glycolysis, oxidative TCA cycle, and several
tRNA loading enzymes. Therefore, Mode 3 is strongly associated with
growth. Mode 4 contains biosynthetic pathways for spermidine, acyl-
carrier protein (ACP), and phosphoribosyl diphosphate (PRPP). PRPP
is a precursor for histidine and nucleotides. Mode 4 represents up-
regulation of thiamine, glycerol, and nucleotide transporters. It also
picks up upregulation peroxisomal enzymes, tRNA loading enzymes,
and enzymes in lower glycolysis. Mode 4 can thus be considered
growth with the peroxisome active. Mode 5 contains biotin synthesis,
triose phosphate isomerase, and transporters for serine, aspartate,
glutamate, phosphate, glycine, and ammonia. Mode 5 is unique in that
upregulation/downregulation directions which are opposite to thatin Mode
3 and Mode 4. Mode 7 contains biosynthesis pathways for shikimate and
isoprenoids, NAD translocation to mitochondria, and a shuttle for NADPH
from cytosol to mitochondria via aldehyde dehydrogenases.

4 Discussion

In this paper we have proposed a novel method for the analysis of metabolic
networks, called the Principal Metabolic Flux Analysis, PMFA, through
the combination of stoichiometric flux analysis and principal component
analysis, finds flux modes that explain most of the variation in fluxes in
a set of samples. Unlike most stoichiometric modeling methods, PMFA
is not tied to the steady-state assumption, but can automatically adapt—
by the change of a single regularization parameter—to deviations from
the stoichiometric steady-state, whether they are due to measurement
errors, biological variation, or other causes. Our experiments showed that
the method is more robust to the steady-state violations than competing
approaches, and can compactly capture the variation in the data by a few
factors. For the analysis of whole-genome metabolic networks, we further
proposed Sparse Principal Flux Mode Analysis, SPMFA that allows us to
discover flux modes with a small fraction of reactions activated, thus could
be interpreted as pathways. Our experiments showed that our methods
are more efficient in capturing the variance in sets of experiments than
methods based on elementary flux mode analysis or flux balance analysis.
The efficient Concave Convex Procedure optimization allows the method
to scale up to whole-genome models unlike methods based on search in
the space of elementary flux modes.

Analysis of cultivation data on the whole-genome metabolic network of
Saccharomyces cerevisiae showed that SPMFA was able to identify many
pathways responsive to changes in oxygenation, including well-known
pathways such as cell envelope, PPP, TCA, glycolysis, sterol transport,
hexose transport, heme, nucleotides, peroxisome, spermidine, thiamine,
biotin, shikimate, and isoprenoid pathways. In addition, the analysis
grouped these pathways in new subsets which may lead to novel insight.
In particular, the existence of two growth modes; one with lower and one
with higher peroxisomal activity, is interesting from an engineering point
of view when pathways utilizing peroxisomal proteins are used in novel
synthetic pathways. This analysis reveals a potentially novel shuttle for
NADPH from cytosol to mitochondria via aldehyde dehydrogenases.
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