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ABSTRACT
Advances in fluorescence microscopy 
approaches have made it relatively easy to 
generate multi-dimensional image volumes 
and have highlighted the need for flexible 
image analysis tools for the extraction of 
quantitative information from such data. Here 
we demonstrate that by focusing on simplified 
feature-based nuclear segmentation and 
probabilistic cytoplasmic detection we can 
create a tool that is able to extract geometry 
based information from diverse mammalian 
tissue images. Our open-source image 
analysis platform, called ‘SilentMark’ can 
cope with noisy images and with crowded 
fields of cells to quantify signal intensity in 
different cellular compartments. Additionally, 
it provides tissue geometry related 
information, which allows one to quantify 
protein distribution with respect to marked 
regions of interest. The lightweight SilentMark 
algorithms have the advantage of not requiring 
multiple processors and graphics cards and 
can be run even with just several hundred 
MB of memory. This makes it possible to use 
the method as a web application, effectively 
eliminating setup hurdles and compatibility 
issues with operating systems. We test this 
platform on mouse pre-implantation embryos, 
embryonic stem cell derived embryoid 
bodies and mouse embryonic heart and 
relate protein localisation to tissue geometry.

INTRODUCTION 
One of the main areas of focus in developmental 
biology is how tissue complexity is generated and 
how diverse cell types are consistently organised 
into a complete organism. A common challenge in 
the field is the three-dimensional spatial analysis 
of protein distribution within tissues and cells (Lu-
engo-Oroz et al., 2011; Schindelin et al., 2012). 
The function of a protein can vary depending on 
the cellular compartment it is localised to and dif-

ferential expression of proteins across tissues dur-
ing development is important in pattering those tis-
sues. Cutting edge optical microscopy and image 
analysis tools are now routinely used for spatial 
analysis of developing tissues from various organ-
isms (Barbier de Reuille et al., 2015; Chickarmane 
et al., 2010; Fernandez et al., 2010; Hodneland et 
al., 2013; Lou et al., 2014; Peng et al., 2010; Steg-
maier et al., 2016). Given the variability of different 
tissues, existing software often have to be opti-
mised to work for specific cases. For example, full 
cell segmentation tools like MorphographX  (Bar-
bier de Reuille et al., 2015) or Packing Analyzer 
(Aigouy et al., 2010) work extremely well with 
samples such as plants and Drosophila, where 
high quality fluorescence signals and low noise 
make it possible to segment complete cell shapes.

As the signal to noise ratio of the image drops or 
features become indistinct, it becomes more diffi-
cult to accurately segment and analyse individu-
al cells. One of the most reliable solutions that is 
still widely used is manual segmentation (Trichas 
et al., 2011; Watanabe et al., 2014), because hu-
mans are adept at feature recognition. However, 
manual outlining is time consuming, which is par-
ticularly a problem for volume or time-lapse data. 
To automate image segmentation, there has been 
a shift towards machine learning segmentation 
approaches. A notable example is RACE (Steg-
maier et al., 2016) which uses machine learning 
for tissue segmentation into individual cells. Argu-
ably, this is one of the most successful approaches 
yet for automated segmentation, especially from 
membrane signals. However, it is still often impos-
sible to correctly segment cells based on their out-
lines alone, because of limitations in image quality. 

Dealing with multiple spatial and fluorescence 
variables raises additional challenges in terms of 
signal normalisation which is crucial in correcting 
for variations due to image acquisition or optical 
heterogeneity within tissues. A commonly used 
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approach involves taking ratios of nearby cellular 
compartments, such as nuclei and cytoplasm. This 
has been previously used for example in investi-
gating the Hippo pathway, where YAP localisation 
could be quantified by taking the ratio of nuclear and 
cytoplasmic fluorescence while at the same time 
normalising the raw signals (Halder et al., 2012).

Even in cases where image quality prevents reli-
able segmentation, the image data often contain 
a great deal of useful quantitative information. 
To extract such information, we have developed 
a novel sampling based approach to measure 
nuclear, cytoplasmic and plasma membrane flu-
orescence levels. Importantly, the localisation 
of these samples within the image volume is re-
tained, which can then be used for detailed sta-
tistical analysis of the spatial distribution of the 
detected proteins. This approach works across 
the scale of individual cells to entire tissues. At the 
level of the cell, it allows us to quantify relative 
protein levels in different cellular compartments, 
while at the level of the tissue it allows us to iden-
tify cell populations based on relative protein ex-
pression, statistically test the difference between 
these populations and analyse how their location 
within the tissue correlates with protein levels.

Our approach uses well defined features such as 
nuclei to perform partial but robust segmentation 
using well established techniques (Hodneland et 
al., 2013; Illingworth and Kittler, 1987). Alterna-
tively, well-resolved membrane signals or man-
ually defined regions can also be used. If nuclei 
are used as points of reference, nearby voxels are 
used to sample nearby nuclear and cytoplasmic 
regions, identified based on nuclear stain inten-
sity. Simultaneous sampling of different cell com-
partments allows us to normalize the data with re-
spect to experimental variation and tissue optical 
heterogeneity. Regions of membrane sampling 
are located by using a combination of detected nu-
clei positions and intensity of a membrane stain. 
Membrane signal quantification can be further im-
proved by using commercially available software 
such as Imaris to manually outline membrane 
regions, which are then automatically partitioned 
by our software into contacting (basolateral), ex-
posed (apical) and junctional domains. Since the 
spatial distribution of proteins is of particular in-
terest to developmental biologists, we have also 
incorporated the ability to define points or regions 
of interest in the image volume, so that the rela-
tive positions of these sampled regions with re-
spect to these points of interest can be recovered.

We have implemented this approach as a soft-
ware package called ‘SilentMark’, designed for 

general use. The package is a standalone GUI-
based application written in Matlab. The algo-
rithm has also been implemented in Python as 
a web application (http://data.dropletgenomics.
com). Some limitations of our sampling based ap-
proach are that it does not provide information on 
cell shape, the total sum of fluorescence or facil-
itate cell tracking. However, the unique aspect is 
that it allows one to process routine lower quality 
images, investigate multiple cell compartments 
and quantify the spatial distribution of fluores-
cence within cells and tissues. Here we demon-
strate the use of our algorithm on mouse pre- and 
post-implantation embryos, as well as mouse 
embryonic stem cell derived embryoid bodies.

RESULTS AND DISCUSSION
To quantify protein levels in different cellular com-
partments and determine the relative proportion of 
the plasma membrane in different domains (apical, 
junctional, basolateral), we developed a sampling 
based algorithm named ‘SilentMark’, implemented 
in Matlab and Python. The overall strategy relies 
on detecting well resolved tissue elements, such 
as nuclei or membranes and then analysing their 
closest environment to take samples of subcellu-
lar region fluorescence. Depending on which cell 
marker is available, the first step is to detect well 
resolved objects such as nuclei or membranes, 
after which their closest environment is analysed.
 
Nucleus based fluorescence sampling
Available nuclear detection techniques differ in 
their accuracy, throughput and noise tolerance. 
One of the fastest and most robust methods for 
spherical object detection is based on Hough 
transform (Illingworth and Kittler, 1987), which is 
a tensor voting technique for the most probable 
circle positions within an image. The original al-
gorithm is developed for 2D image analysis. How-
ever it can be extended for 3D measurements by 
slicing the image into sections, analysing them 
as separate images and then deconvolving into 
3D objects, as done previously (Stegmaier et al., 
2016). In this case, confocal image stacks were 
analysed as separate images to detect circular 
nuclear cross-sections, the coordinates of which 
were then merged to generate a 3D point cloud 
of nuclear centers of mass (Figure 1 A). Using 
these nuclear coordinates as reference points, a 
region from the confocal image is cropped around 
each detected point and classified according to 
the intensity of the nuclear stain as either a cy-
toplasmic or nuclear region. The fluorescence 
from both regions is then averaged with cyto-
plasm pixels being weighed according to their 
distance from the detection point (Figures 1 B 
and 4 A, B). This was done to represent the prob-
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ability that pixels closer to the nucleus are more 
likely to belong to the same cell as the nucleus. 
The fluorescence levels along with the nucle-
ar coordinates were recorded and this formed 
the basis of segmentation and quantification. 

If a membrane stain was available in addition to 
the nuclear stain, it was possible to add another 
fluorescence reading for exposed and contacting 
membranes regions, which is particularly useful 
for looking at membrane localised proteins. To 
detect outside surface, the membrane fluores-
cence marker was thresholded and the outer pix-
els were assigned to the closest nucleus as an 
exposed membrane sample. To detect the con-
tacting membrane samples, a line was drawn 

between two neighbouring nuclei and the highest 
intensity region for membrane fluorescence along 
the line was designated as a contacting mem-
brane sample and was assigned to both nuclei.

Membrane based fluorescence sampling
In cases where nuclear markers are not available 
as a reference, membrane fluorescence, if availa-
ble, can be used to create the points of reference 
for subsequent analysis. To detect membrane 
regions in space, a 3D stack was processed us-
ing contrast limited adaptive histogram normal-
ization (CLAHE) and Gaussian blur to reduce 
noise. Following this, a 3D Canny Edge detector 
(Bähnisch et al., 2009) was applied to find mem-
brane edges, to which spheres were fitted using 
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Figure 1: Schematic illustrating strategy for detecting the coordinates of the nuclear center of mass 
(A) and for extracting nuclear and cytoplasmic fluorescence based on nuclear coordinates (B).

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 9, 2017. ; https://doi.org/10.1101/163147doi: bioRxiv preprint 

https://doi.org/10.1101/163147


an outlier tolerant RANSAC algorithm. The de-
tected membranes were represented by a loca-
tion of the fitted sphere and a vector representing 
membrane curvature and direction (Figure 2 A). 
This information would then be the starting point 
for sampling membrane and cytoplasmic fluores-
cence intensities. The advantage of this method 
is that it looks for fragments of membranes, which 
is more tolerant to noise than other approaches 
that rely on total membrane segmentation. These 
detected membrane regions can now be used as 
sampling masks for membrane and cytoplasmic 
fluorescence. The mask considers a narrow re-
gion in space around the detected point to sam-
ple membrane fluorescence and draws a normal 
to membrane surface to sample cytoplasm on the 
either side. These masks are used on 3D image 
stacks to analyse membrane and cytoplasmic 

fluorescence distribution in space (Figure 2 B). 
Membrane signal quantification can be improved 
by using commercially available software Imaris 
to manually outline membrane regions, which Si-
lentMark then automatically partitions into con-
tacting, exposed and junctional domains (Figure 4 
D), where proteins are likely to play different roles.

Development of ’SilentMark’ software
We have developed these sampling based al-
gorithms into a software package designed for 
general use. The package is a standalone appli-
cation, based on a GUI designed on Matlab. The 
algorithm has also been implemented in Python 
as a web application (http://data.dropletgenom-
ics.com). It accepts 3D images as stacks of tiff 
files or the Zeiss confocal microscopy ‘.lsm’ for-
mat. The user is required to enter two intuitive 
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Figure 2: Schematic illustrating the membrane fragment detection algorithm (A) and analysis of membrane and 
cytoplasmic fluorescence based on membrane fragment detection (B).
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and robust parameters – an estimate of the di-
ameter of the nuclei and an estimate of nuclear 
channel brightness for thresholding. These two 
minimal parameters allow one to work with dif-
ferent types of tissues and image qualities. All 
the remaining parameters needed for the anal-
ysis are derived and optimised by the software. 

The software will output a list (csv format) of de-
tected objects (nuclei or membrane fragments), 
each of which will have a measure of nuclear 
and cytoplasmic fluorescence as well as mem-
brane fluorescence, if it is labeled. The data will 
also contain object coordinates to describe spa-
tial protein distribution, automatically calculated 
distance to exposed surface and distance to re-
gions of interest, if they are designated manual-
ly in 3D. This information can then be processed 
with statistical software tools for further analysis.
 
Method validation with CAD images 
To validate this probabilistic sampling based ap-
proach, we first used computer generated 3D im-
ages to compare the accuracy of our automated 
sampling based approaches against standard 
manual outlining (using Imaris) (Figure 3). Mock-
up tissues composed of several spherical objects 
representing cells were created on Google Sketch-
Up and converted to a stack of images, which were 
then filled with pixels of known brightness. Unsur-
prisingly, manual outlining was the most accurate 
method of image segmentation and in addition to 
quantifying fluorescence intensity, could also be 
used to estimate the proportion of ‘exposed’ cell 
surface, that is, cell surface not in contact with sur-
rounding cells. In general, intensity measurement 
errors were below 10%, except for feature detec-
tion relying on membrane fragments. The most 

likely source of error for membrane based feature 
detection came from the detection algorithm while 
fitting spheres, which is responsible for identifying 
both membrane segment position and orientation.
 
Method validation with pre-implantation 
embryos 
The mouse pre-implantation embryo is a mod-
el system where cell fate is strongly influenced 
by tissue geometry (Sasaki, 2010; Wenneka-
mp et al., 2013) The underlying basis for cell 
type specification in the pre-implantation em-
bryo has been studied in great depth and this 
large amount of existing information makes 
it ideal for validating our analytical approach. 

During the process of the first cell fate decision 
in mammals, the protein YAP shuttles between 
the cytoplasm (where it is inactive) and the nu-
cleus (active), in a tightly regulated manner. The 
differential localisation of YAP protein in outside 
and inside cells ultimately determines cell fate in 
this context and the ratio of nuclear to cytoplas-
mic YAP reflects the position of cells. In outside 
cells, YAP is in the nucleus where it can interact 
with nuclear TEAD4 to drive the expression of 
tissue specific genes such as Cdx2 to give rise 
to the trophectoderm. In inside cells, YAP is ex-
cluded from the nucleus and these cells go on to 
become the pluripotent inner cell mass (Nishio-
ka et al., 2009; Niwa et al., 2005; Sasaki, 2017). 

To estimate the errors resulting from the sampling 
based approach we used manual cell outlining to 
create a ground-truth dataset of pre-implantation 
embryos stained for YAP (n = 67 embryos, com-
prising 20 2-cell, 15 8-cell, 17 16-cell, 12 32-cell 
and, three 64-cell embryos. Examples in Figure 
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Figure 3: Accuracy of sampling based image segmentation. A) A section of a computer generated image for 
testing image analysis methods. B) A 3D rendering of computer generated objects for testing image analysis 
methods. Method accuracy was assessed by comparing measured fluorescence levels to known intensity 
values in computer generated images. Four models each consisting of four to six cells were used in this test.
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Figure 4: Quantifying lineage detreminants during mouse pre-implantation development. A) sampling algorithm 
for detecting three sub-cellular regions; B) 3D rendering of different sampling regions. Red and green are 
exposed and contacting membranes respectively; gray is cytoplasm and; cyan is nucleus. C) 3D rendering 
of a mouse embryo (gray – actin, red – YAP, cyan – DAPI); D) 8-cell embryo in which cell membranes have 
been manually segmented and then membrane regions automatically sub-segmented into ‘exposed’ (blue), 
‘junctional’ (white) and basolateral (red). E) Error distribution of automated sampling based quantitation 
compared with manual segmentation based quantitation. F) Levels of key transcription factors during 
development. G) YAP distribution in the early pre-implantation embryo. H) Spatial YAP patterning during pre-
implantation development. I) YAP and CDX2 relationship in the morula and early blastocyst. Scale bars in all 
panels are 50µm.
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5 and supplementary movie 1). For nuclear and 
cytoplasmic fluorescence measurements mean 
error was lower than 5% (Figure 4 E), which in-
dicates a low bias during automated sampling. 

We used our automated sampling based ap-
proach to explore the relationship between YAP 
and CDX2 levels and the extent to which this 
correlates with a blastomere’s position, as meas-
ured by exposure to the outside or distance of a 
cell from the surface. We used embryos stained 
for YAP, CDX2 and the DAPI. Published single 
cell RNA-seq data on mouse pre-implantation 
embryos (Deng et al., 2014) (GEO accession: 
GSE45719) indicates that Cdx2 becomes upregu-
lated at the 8 cell stage (Figure 4 F, n = four 2-cell, 
four 8-cell, four 16-cell and three 32-cell embry-
os). Our analysis shows that at the 8-cell stage, 
blastomeres begin to show signs of segregating 
into two populations, with high or low nuclear to 
cytoplasmic YAP ratios (Figure 4 G and example 
in Figure 5. N = 20 2-cell, 15 8-cell, 17 16-cell, 12 
32-cell and three 64-cell embryos). More robust 
segregation of these two populations occurs at the 
16-cell stage, approximately 12 hours after Cdx2 
transcript appearance at the 8-cell stage. Analyt-
ical detail makes it possible to demonstrate that 
populations are separated gradually, as YAP trans-
locates to the cytoplasm in inside cells (Figure 4 
H). It is also evident, that the CDX2 – YAP corre-
lation is stronger at the 32-cell stage than the 16-
cell stage (Figure 4 I and example in Figure 5. N = 
seven 8-cell, nine 16-cell and six 32-cell embryos). 
This is consistent with the presence of additional 

stabilizing mechanisms for robust lineage specifi-
cation (Rayon et al., 2014; Ralston et al., 2010).

Method validation with ES cell derived 
embryoid bodies
Similar to mouse pre-implantation embryos, 
mouse embryonic stem cell aggregates also dis-
play inside–outside patterning during embryoid 
body (EB) formation in vitro (Doetschman et al., 
1985). The outer layer of cells forms an endoderm 
like layer around an inner core that is epiblast like. 
These aggregates tend to be composed of crowd-
ed cells (Figure 6 A, B) and represent a more 
challenging task for both manual and automated 
segmentation or sampling approaches. To test its 
capabilities, we applied our sampling based im-
age approach to investigate endoderm formation 
during EB differentiation. We stained EB for the 
endoderm marker GATA6 (Figure 6 B) that specifi-
cally stains outside cells and quantified the relative 
levels of nuclear GATA6 expression with respect 
to the surface of EB (n = 6). Quantitative statistical 
analysis (Figure 6 C) shows preferential GATA6 
to the outer layer of the embryoid body (distance 
to outer surface is smaller than two cell radii). 

Method validation with embryonic hearts 
While mouse pre-implantation embryos present 
an ideal case for testing automatic image seg-
mentation, because it is possible to also manu-
ally outline the cells for comparison, they do not 
necessarily represent a typical mammalian tis-
sue. A more representative mammalian tissue is 
the embryonic heart (Figure 6 D-G) with a larg-
er number of cells and closely spaced nuclei. 

To test the ability of our image analysis approach 
for this problem, we examined the localisation of 
NKX2-5 and SRF, two transcription factors impor-
tant for cardiomyocyte differentiation (Schlesing-
er et al., 2011) in 8.0 days post coitum embryos 
(Figure 6 E, F). In order to represent protein levels 
of these two transcription factors we used a ra-
tio of nuclear to cytoplasmic fluorescence, as the 
latter is expected to represent background signal 
for internal normalisation. To reduce the dynam-
ic range of the measurements and normalise the 
distribution of the values, we used a natural loga-
rithm of the ratio. In addition to these normalised 
fluorescence measurements, we also measured 
cell distance to two regions, the head folds and 
cardiac crescent, manually designated using 
our software (green dots and line in Figure 6 G).

The four variables formed a dataset which was 
clustered using partitioning around medoids (PAM, 
R ’Clara’ package) (van der Laan et al., 2002). 
The method was chosen over other clustering ap-

Figure 5: A) an example of a manually segmented 
16-cell mouse embryo, with cell outlines in green and 
nuclei in yellow. B, C and D) Example of a 16-cell 
mouse embryo stained for DAPI, YAP and CDX2. 
In all images cell outlines are in yellow, stained with 
Phalloidin (f-actin). The scale bar is 50 µm.
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proaches (Wiwie et al., 2015) due to computational 
efficiency in dealing with large datasets. The anal-
ysis verified as expected that both proteins were 
preferentially expressed in the heart region and 
there was a region-specific correlation between 
nuclear levels of NKX2-5 and SRF (Figure 6 H). 

In summary, we have presented a sampling based 
3D image analysis approach, designed for relative 
quantification of protein levels in microscopy im-
ages of complex tissues. Our approach is the first 
to simultaneously quantify nuclear, membrane 
and cytoplasmic fluorescence, while also mark-
ing regions of interest to extract spatial informa-

tion relating to the quantified signals. Automation 
of analyses enabled by our program will enable 
high-throughput quantification and statistical anal-
ysis of spatial protein organization. As 3D micros-
copy is versatile and widespread, we expect that 
our publicly available open-source software will 
be useful not only for developmental biology but 
also more broadly, in the context of cell biology.

METHODS
Mouse strains, husbandry and embryo collection
All animal experiments were carried out according 
to UK Home Office project license PPL 30/3155 and 
30/2887 compliant with the UK animals (Scientific Pro-
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Figure 6: Automated quantitative analysis of differentiated mouse stem cell derived embryoid bodies and 
mouse embryonic heart. A and B) Optical sections of a differentiating mouse stem cell embryoid body stained 
with DAPI (A, cell nuclei) and GATA6 (B, marking outer endoderm layer). C) GATA6 localization in the embryoid 
body as a function of distance from exposed surface (n = 6 EBs). The approximately singe cell wide outer layer 
is distinct from the remaining embryoid body. D - F) Optical section of an embryonic heart stained for F-actin 
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marking the head folds and cardiac crescent respectively. H) Localization and correlation of SRF and NKX2.5 
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8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 9, 2017. ; https://doi.org/10.1101/163147doi: bioRxiv preprint 

https://doi.org/10.1101/163147


cedures) Act 1986 and approved by the local Biological 
Services Ethical Review Process. All mice were main-
tained in a 12-hour light-dark cycle. Noon of the day 
finding a vaginal plug was designated 0.5 dpc (days 
post coitum). To obtain embryos, C57BL/6 males were 
crossed with CD1 females (Charles River). Embryos 
of the appropriate stage were dissected in M2 medium 
(Sigma-Aldrich) at room temperature. Pre-implantation 
embryos were collected by oviduct and uterus flushing.

Embryonic stem cell culture
ES cells were cultured in T-25 flasks coated with 0.1% 
w/v. gelatin and used at passage nr. 50-60. Cell culture 
media consisted of 90% DMEM medium (Gibco), 10% 
fetal calf serum (FCIII, Hyclone), 1mM sodium pyruvate, 
1mM non-essential amino acid mix, 0.1mM beta-mer-
captoethanol, 2mM L-glutamine, and 1000U/mL leu-
kemia inducible factor (LIF). Cells were passaged every 
2 days and seeded at ~400,000 cells per T25 flask. 
Embryoid bodies were formed by aggregating cells in 
hanging drops and culturing for 2 days before fixation.

Antibodies 
Vectashield with DAPI (H-1200) was purchased from 
Vector laboratories, Phalloidin atto647 was purchased 
from Sigma (65906-10MMOL). Mouse anti-YAP mon-
oclonal (sc-101199) and goat anti-Nkx2.5(N-19) (sc-
8697) polyclonal antibodies were purchased from Santa 
Cruz biotech. Rabbit anti-CDX2 (#3977S) monoclonal 
and rabbit anti-pERM(T567) (#3149P) monoclonal an-
tibodies were purchased from Cell Signaling. Rat an-
ti-Uvomorulin/E-cadherin (U3254-100UL) monoclonal 
antibody was purchased from Sigma. Rabbit anti-SRF 
(PA5-27307) polyclonal antibody was purchased from 
Thermo Fischer. We used the following secondary 
antibodies from Life Technologies: goat anti-rabbit Al-
exaFluor 488 (A11008), donkey anti-goat AlexaFluor 
488 (A11055), donkey anti-mouse AlexaFluor 555 
(A31570), donkey anti-rabbit AlexaFluor 647 (A31573).

Immunofluorescence on pre-implantation embryos 
and embryoid bodies
Embryos and EB were fixed for 20 minutes at room tem-
perature in 4% PFA. Samples were then washed 3 times 
in PBT-0.1% for 10 min, permeabilized in PBT-0.25% 
for 40 min and washed again in PBT-0.1%. The tissues 
were transferred to a blocking solution for 1h at 4 oC. 
Primary antibodies were then added to the solution and 
incubated overnight at 4 oC. The embryos were washed 
in PBT-0.1% and incubated for 1h at 4 oC in PBT-0.1% 
with the secondary antibodies, then subsequently 
washed 2 times in PBT-0.1% for 15 min and mounted in 
Vectashield with DAPI at least 6 hours prior to imaging.

Immunofluorescence on post-implantation embryos
Dissected embryos were fixed for 1 hour at room tem-
perature in 4% PFA. The embryos were then washed 
3 times in PBT-0.1% for 15 minutes, permeabilized in 
PBT-0.25% for 40 minures and washed again 3 times 
in PBT-0.1%. The embryos were transferred to block-
ing solution overnight at 4 oC. Primary antibodies were 
then added to the solution and incubated at 4 oC. The 
embryos were washed 3 times in PBT-0.1% and in-

cubated overnight at 4 oC in PBT-0.1% with the sec-
ondary antibodies, then subsequently washed 3times 
in PBT-0.1% for 15 minutes and mounted in Vectash-
ield with DAPI at least 24 hours prior to imaging.

Software and statistics
The software and graphical user interface were writ-
ten on MATLAB (v. 2015b, Mathworks) and compiled 
using the in-built compiler for Mac OSX and Windows 
operating systems. The algorithm has also been im-
plemented in Python as a web application (hosted 
by Droplet Genomics at http://data.dropletgenomics.
com). Source code for Silent Mark is available upon 
request. 3D image visualization was done using Vo-
locity software (Perkin Elmer) and Imaris software 
(v 6.1) was used for manual cell outlining and anal-
ysis. R statistics package alongside ‘cluster’ library 
was used for automatic normalized cluster detec-
tion (PAM algorithm) and cell population analysis.
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