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Abstract 

DNA modifications such as 5-methylcytosines (5mC) and 5-hydroxymethylcytosines 

(5hmC) are epigenetic marks known to affect global gene expression in mammals(1, 2). Given 

their prevalence in the human genome, close correlation with gene expression, and high chemical 

stability, these DNA epigenetic marks could serve as ideal biomarkers for cancer diagnosis. 

Taking advantage of a highly sensitive and selective chemical labeling technology(3), we report 

here genome-wide 5hmC profiling in circulating cell-free DNA (cfDNA) and in genomic DNA 

of paired tumor/adjacent tissues collected from a cohort of 90 healthy individuals and 260 

patients recently diagnosed with colorectal, gastric, pancreatic, liver, or thyroid cancer. 5hmC 

was mainly distributed in transcriptionally active regions coincident with open chromatin and 

permissive histone modifications. Robust cancer-associated 5hmC signatures in cfDNA were 

identified with specificity for different cancers. 5hmC-based biomarkers of circulating cfDNA 

demonstrated highly accurate predictive value for patients with colorectal and gastric cancers 

versus healthy controls, superior to conventional biomarkers, and comparable to 5hmC 

biomarkers from tissue biopsies. This new strategy could lead to the development of effective 

blood-based, minimally-invasive cancer diagnosis and prognosis approaches. 

 

 

INTRODUCTION 

Cytosine methylation (5mC) is a well-established epigenetic mechanism that affects 

global gene expression. It is extensively remodeled during mammalian development and cell 

differentiation, as well as during cancer initiation, progression, and therapeutic response(4, 5). 

Active demethylation in the mammalian genome is mediated by the TET family of dioxygenases 
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that oxidize the 5mC modification to 5-hydroxymethylcytosine (5hmC)(6, 7), and further to 5-

formylcytosine (5fC), and 5-carboxylcytosine (5caC)(8-10). The “intermediate” 5hmC not only 

marks active demethylation but also serves as a relatively stable DNA mark that plays distinct 

epigenetic roles(2, 11-16). Recent genome-wide sequencing maps of 5hmC in various 

mammalian cells and tissues support its role as a marker for gene expression(17-23); it is 

enriched in enhancers, gene-bodies, and promoters, and changes in 5hmC correlate with changes 

in gene expression levels(23, 24).  

The discovery of cell-free DNA (cfDNA) originating from different tissues in the 

circulating blood has revolutionary potential for the clinic(25). Liquid biopsy-based biomarkers 

and detection tools offer substantial advantages over existing diagnostic and prognostic methods, 

including being minimally invasive, which will promote higher patient compliance, clinically 

convenient, cost-efficient, and enabling dynamic monitoring(26). Tumor-related somatic 

mutations in cfDNA have been shown to be consistent with the tumor tissue, although low 

mutation frequency and the lack of information on tissue of origin hamper the detection 

sensitivity. 5mC and 5hmC in cfDNA from liquid biopsies could serve as parallel or more 

valuable biomarkers for non-invasive diagnosis and prognosis of human diseases because they 

recapitulate gene expression changes in relevant cell states. If these cytosine modification 

patterns can be sensitively detected, disease-specific biomarkers could be identified for effective 

early detection, diagnosis and prognosis.   

High-throughput sequencing is an ideal platform for detecting genome-wide cytosine 

modification patterns. Whole genome bisulfite sequencing or alternative reduced representative 

methods have been applied in biomarker research with cell-free DNA(27-29). Tissue- and 

cancer- specific methylation sites have shown promising performance in tracking tissue-of-origin 
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from circulating blood(27, 29). However, 5mC serves mostly as a repressive mark with a high 

background level in the human genome, and its sequencing with bisulfite treatment has been 

hampered with extensive DNA degradation, in particular with cfDNA. Taking advantage of the 

presence of the hydroxymethyl group, selective chemical labeling can be applied to map 5hmC 

using low-input DNA with high sensitivity. The profiling method is robust and cost-effective for 

large cohort studies and practical applications. Here, we established the 5hmC-Seal technology 

for 5hmC profiling in cell-free DNA. We show that the differentially enriched 5hmC regions in 

cfDNA are excellent markers for solid tumors. 

 

RESULTS 

Overview of the nano-hmC-seal profiling in clinical specimens 

We optimized our previously published profiling method(3) (Fig. 1) for cell-free DNA. 

The adaptor is pre-ligated with barcodes to enhance the library construction efficiency and 

decrease the cross contamination between large cohort of samples. The labeling, binding and 

washing steps are optimized for capturing limited 5hmC-containing cfDNA fragments. We 

profiled 5hmC in plasma cfDNA from cancer patients and healthy controls, as well as in 

genomic DNA (gDNA) isolated from tumors and adjacent healthy tissue including 90 healthy 

individuals, 260 cancer patients, and 71 patients with benign diseases among Chinese 

populations (Table S1, S2). For these patients and healthy controls, the study generated 401 

hmC-Seal libraries from plasma cfDNA and 188 hmC-Seal libraries from tissue gDNA (Table 

S3). The cohort samples were collected and profiled in three batches (Table S3). To minimize 

the influence of experimental batch effect, differential 5hmC between cancers and controls (or 
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between tumors and adjacent tissues) were analyzed with the first (discovery) batch and 

validated in the second (validation) and third (additional validation) batches.  

To validate the 5hmC capture efficiency and reliability of the modified assay, we spiked 

a pair of synthesized 5hmC-containing and non-5hmC-containing DNA probes into plasma 

cfDNA. The 5hmC-Seal capture generated an average of 56-fold 5hmC enrichment of the spike-

in probes compared to control without pull-down (Fig. S1a). Samples with physiologically 

relevant amounts of cfDNA (1, 2, 5, 10, 20 ng) and spike-in 5hmC-containing probes were 

processed and sequenced, respectively. A linear relationship was observed between the 

proportion of 5hmC-containing spike-in readouts and the spike-in concentration within cfDNA 

(r2=0.99, Fig. S1b), confirming a quantitative 5hmC capture even down to 1 ng of input cfDNA.  

 

Global and genomic distribution of 5hmC modifications 

We evaluated the global 5hmC level variation in cancer by using an ultra-sensitive 

capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) method(30). 

Global 5hmC levels of the tumor gDNA markedly decreased compared to the adjacent healthy 

tissue gDNA, with an average of 85% and 64% reduction in colorectal and gastric tumor, 

respectively. The global 5hmC levels of the cancer plasma cfDNA showed a more limited 

decrease compared to control plasma cfDNA, consistent with low proportions of tumor-derived 

DNA in the total cfDNA pool (Fig. S2).  

In plasma cfDNA, 5hmC is enriched within gene bodies and DNase I sensitive peaks, 

while depleted at transcription start sites, CpG islands and transcription factor (TF) binding 

peaks relative to the flanking areas (Fig. S3a-f), suggesting accumulation of 5hmC surrounding 
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TFs at active transcription sites. 5hmC is also enriched in several permissive histone marks such 

as H3K27ac, H3K4me1 and H3K9me1, while repressive markers such as H3K9me3 are 

underrepresented (Fig. S3g-r). The genomic distribution of 5hmC in tissues gDNA is generally 

consistent with that observed in plasma cfDNA samples (Fig. S3). The median distribution of 

5hmC is also similar between disease and healthy samples (Fig. S4). 

 

Differential 5hmC loci associated with colorectal cancer   

The average 5hmC profile of plasma cfDNA is distinct from that of tissue gDNA (Fig. 

2a), which could be due to their distinct cell origins and/or the different DNA degradation 

properties in cell free circulation. Variations attributable to tissue identity (cell free plasma, 

white blood cells, colon and stomach tissues) are dominant over variations attributable to disease 

status (healthy individual versus cancer patient, tumor versus adjacent tissue). In addition, 

plasma cfDNA of colorectal and gastric cancers are more closely related with each other than 

with plasma cfDNA of healthy controls (Fig. 2a), implicating common variations in different 

cancer types.  

We compared 5hmC profiles from plasma cfDNA between 15 colon cancer patients and 

18 healthy controls in the discovery batch to identify differential 5hmC loci. The profiles were 

separated into 18 feature categories: gene bodies, promoters, CpG islands, and cis-regulatory 

elements delineated by the Encyclopedia of DNA Elements (ENCODE)(31). A parallel analysis 

compared 5hmC profiles from gDNA between colorectal tumors and adjacent tissues in 30 

patients in the tissue discovery batch. All feature categories showed enrichment of differential 

5hmC loci (Table S4). Fig. 2b shows a differential locus detected in plasma cfDNA at the SULF1 
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(sulfatase 1) gene. In cancer plasma cfDNA, the 5hmC levels in SULF1 are elevated in both 

exons and introns, with a peak pattern similar to that of tissue gDNA (Fig. S5a). Differential 

5hmC loci across feature categories, particularly gene bodies and histone modification peaks, 

show regionally elevated or decreased 5hmC levels along neighboring loci (Fig. 2c). Indeed, 

correlation of cancer-associated 5hmC changes between neighboring genes is significantly 

higher than a null distribution generated by shuffling gene positions within chromosome (Fig. 

2d). This may suggest that 5hmC modifications occur and change in a relatively long-range, 

region-wise pattern.  

Across the genomic features, the average 5hmC levels normalized by feature length are 

more or less correlated between the cancer plasma cfDNA and tumor gDNA samples 

(Spearman's ρ 0.34-0.84, Fig. S5b). This locus-specific correlation of the 5hmC level is expected 

because of biological constraints. In contrast, we found no correlation between the log2 fold 

change of 5hmC levels in cancer plasma cfDNA and that in tumor gDNA (Fig. S5b). Because 

5hmC levels show greater variations among different tissues than between disease status (Fig. 

2a), when gDNA from tumor tissue is released into plasma and mixed with the vast amount of 

background cfDNA derived from a variety of different tissues, the additional tumor signal 

observed at a given locus would be determined by the order of locus-, tissue- and disease-

specific variations. Consistent with this expectation, we found that genes with 5hmC level 

elevated in cancer patient’s plasma cfDNA were enriched in genes with high 5hmC levels in the 

tumor tissue gDNA (Fig. 2e). Specifically, the top 1% genes with 5hmC level most elevated in 

cancer plasma cfDNA were enriched by over five-fold in the top 1% genes with greatest 5hmC 

levels in tumor and adjacent tissues (Fisher's exact tests P <0.001, Fig. 2f) . Similarly, genes with 

5hmC level decreased in cancer plasma cfDNA were enriched in genes with low 5hmC levels in 
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tumor and adjacent tissues (Fig. 2e, 2f). In contrast, no such enrichment pattern was observed for 

the differential 5hmC loci detected in tumor gDNA (Fig. 2f). To further investigate the tissue 

origin of cancer plasma cfDNA, 5hmC reads from the 15 colorectal cancer patients were 

summed over ENCODE DNase hypersensitivity peaks derived from various tissues of healthy 

individuals. The peaks derived from colon tissue contain the greatest amount of 5hmC 

modifications compared to the peaks derived from other tissues (Fig. 2g), indicating the tissue 

specificity of 5hmC signals in cancer plasma cfDNA . 

 

Classification of colorectal cancer by 5hmC markers derived from plasma cfDNA  

Unsupervised hierarchical clustering using differential 5hmC loci derived from plasma 

cfDNA generally separated colorectal cancer patients from healthy individuals in the validation 

batch (Fig. 3a). Across the various feature categories, the log2 fold change of 5hmC level in gene 

bodies showed greatest correlation between the discovery and validation batches (Spearman's 

ρ=0.79, Fig. 3b), indicating that 5hmC loci in gene bodies are potentially more stable cancer 

biomarkers. We selected 989 differential loci in gene bodies detected at 5% false discovery rate 

(FDR) and 1.2-fold change (increase or decrease in cancer; Table S5) for cancer classification. 

Specifically, a model-based classifier that applies elastic net regularization on logistic regression 

was trained using the discovery samples (15 patients vs. 18 controls) and then tested in the 

validation samples (24 patients vs. 35 controls). Receiver operating characteristic (ROC) curves 

were generated to evaluate the performance using the area under the ROC curve (AUC). The 

prediction algorithm achieved 83% sensitivity and 94% specificity (AUC = 0.95, Fig. 3c) for 

patient classification.  
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An additional validation batch (32 patients vs. 37 controls) was independently collected 

and tested, achieving 88% sensitivity and 89% specificity (AUC = 0.94, Fig. 3d). The classifier 

was further tested on a set of U.S. samples (Table S2), all of European descent, collected at the 

University of Chicago Medical Center. The classifier detected 4 out of 5 patients as cancer 

positive (80% sensitivity) and called 1 out of 6 healthy controls (83% specificity) in this small 

cohort. Therefore, although the classifier was trained on Chinese patients, it could capture a 

general signal of 5hmC changes in plasma cfDNA in colorectal cancer. 

 For comparison, we applied similar approaches to evaluate the performance of 5hmC 

biomarkers derived from colorectal tumor tissues (Table S1). We selected 219 differential loci at 

gene bodies called at 5% FDR and 1.2-fold change between tumor and adjacent tissues (Table S6) 

from 30 patients of the discovery batch. The 5hmC tissue biomarkers showed a sensitivity of 86% 

and a specificity of 100% (AUC = 0.96, Figure 3e) in 14 patients from the tissue validation batch, 

suggesting that the 5hmC biomarkers from plasma cfDNA exhibits performance comparable to 

that from tissue gDNA. 

 

Disease sensitivity and specificity of plasma cfDNA-derived 5hmC markers 

We next assessed the ability of the 5hmC biomarkers derived from plasma cfDNA to 

classify cancer stages in patients with available records. The 5hmC classifier assigned 

incremental numbers of cancer individuals (predicted cancer probability > 0.5) for patients with 

surgery treatment (0/2), patients at cancer stage I (4/6), and patients at stage II and III (38/40) 

(Cochran–Armitage test for trend P = 0.00038, Fig. 3f). The classifier had good but reduced 

power to call Stage IV patients (12/18), who in general suffered from metastasis to various 
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tissues and are expected to have more complex tumor DNA profiles in circulation due to 

metastasis.  

We further assessed disease and tissue specificity of the classifier in patients with colon-

related benign diseases (n=49) and patients with colorectal (n=71), gastric (n=61), liver (n=25), 

pancreas (n=34) and thyroid (n=46) cancer. Compared to the 86% call rate in colorectal cancer 

patients, only 8% of patients with benign colon diseases were predicted as cancer (Fig. 3g). The 

classifier also demonstrated certain tissue specificity, with a decreasing cancer calling rate in 

gastric (85%), liver (44%), pancreatic (29%) and thyroid (28%) cancer patients (Fig. 3g). The 

lower sensitivity in calling the other cancers is not due to intrinsic difficulty in distinguishing 

those cancers, as we achieved much greater sensitivity in liver and pancreatic cancer using 5hmC 

markers derived from plasma cfDNA of liver and pancreatic cancer patients respectively (data 

not shown). These results indicate that distantly related cancers can be readily distinguished 

through joint testing by the corresponding classifiers, while classification of closely related 

cancers such as colorectal and gastric cancer may be facilitated by additional diagnostic criteria.  

A subset of cancer patients had records of classical biomarkers and epidemic factors, with 

which we compared plasma cfDNA-derived 5hmC biomarkers for cancer detection sensitivity. 

The detection sensitivity of carcinoembryonic antigen (CEA, 32%), alpha-fetoprotein (AFP, 0%), 

carbohydrate antigen 125 (CA125, 13%), CA15-3 (0%), CA19-9 (19%), CA72-4 (17%), 

cytokeratin 19 (49%), Neuron-Specific Enolase (NSE, 21%), overweight (body mass index ≥25 

kg/m2, 34%), smoking (9%), alcohol consumption (7%) and previous history of cancer (0%) 

were all less than 50%. By calling cancer if any conventional biomarker or risk factor is positive, 

the upper bound detection sensitivity of the combined classical biomarkers and epidemic factors 

only reached 54%, a sensitivity rate much lower than the 86% that we could achieve using 5hmC 
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markers. In addition, compared with the methylated SEPT9 gene (encoding septin 9), a blood-

based epigenetic biomarker for colon cancer, our cfDNA 5hmC biomarkers registered a 

significantly further improved overall sensitivity (0.86 versus 0.48 based on public data)(32).  

 

5hmC markers derived from plasma cfDNA in gastric cancer 

Next, we analyzed gastric cancer using plasma cfDNA samples. In the discovery batch, 

5hmC loci in 7 gastric cancer patients were compared to 18 healthy controls across genomic 

features (Table S4). Using the top 100 elevated or decreased 5hmC loci, 25 gastric cancer 

patients could be generally separated from 35 healthy individuals in the validation batch (Fig. 

S6a). Again, 5hmC changes in gene bodies showed relatively higher correlation between the 

discovery and validation batches compared to other genomic features (Fig. S6b). A model-based 

classifier was generated using the 1,431 differential loci in gene bodies identified at 5% FDR and 

1.2-fold change in the discovery batch (Table S7), and was applied to the validation batch, 

achieving 92% sensitivity and 91% specificity (AUC = 0.93, Fig. S6c). Further assessment of the 

gastric cancer classifier in an additional validation batch collected independently (29 patients vs. 

37 controls) achieved 90% sensitivity and 97% specificity (AUC = 0.97, Fig. S6d). The 

classification performance of the 5hmC biomarkers derived from cancer cfDNA was comparable 

to that from tumor gDNA samples as well: 161 differential 5hmC loci in gene bodies detected in 

19 pairs of tumors and adjacent tissues in the discovery batch (Table S8) was applied on 33 pairs 

of tissues in the validation batch, achieving 82% sensitivity and 94% specificity (AUC = 0.93, 

Fig. S6e).  
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The 5hmC gastric cancer classifier derived from plasma cfDNA showed a trend of 

increasing cancer calling (predicted cancer probability > 0.5) rate with cancer severity (P = 0.11, 

Fig. S6f). The classifier also demonstrated disease and tissue specificity, with 0% cancer calling 

rate for benign gastric diseases, and with decreasing cancer call rate in patients with colorectal 

(61%), liver (28%), pancreatic (6%) and thyroid (0%) cancer patients (Fig. S6g).  

The detection sensitivity of classical biomarkers and epidemic factors for gastric cancer 

was 13% (CEA), 6% (AFP), 6% (CA125), 3% (CA15-3), 14% (CA19-9), 29% (CA72-4), 36% 

(cytokeratin 19), 13% (NSE), 18% (overweight), 25% (smoking), 10% (alcohol) and 7% 

(previous history of cancer). The upper bound sensitivity combining these markers and factors 

was 70%, which again is lower than the 80% sensitivity observed in our studies.  

 

Tissue origin of the cancer associated 5hmC changes observed in plasma cfDNA 

To demonstrate the tumor relevance of plasma cfDNA, we sought to examine its source 

in patient-derived xenograft (PDX) mouse models. PDX mouse models were derived from 

tumors of three colorectal patients and three gastric patients, each with three independent 

xenograft animals. Plasma cfDNA of PDX mice was collected at 12-15 weeks of age, from 

which the 5hmC-containing fragments were enriched and sequenced using the same protocol as 

with human plasma cfDNA. The proportion of cfDNA derived from the tumor, estimated as the 

proportion of sequencing reads uniquely mapped to the human genome, was significantly 

increased in mice grafted with gastric tumors (P = 0.0020) and showed a trend of increase in 

mice grafted with colorectal tumors with fewer passages (P = 0.16, Fig. 4a). Only the sequencing 

reads mapped to human genome were further analyzed.  
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Pearson's correlation of 5hmC profile between plasma cfDNA of PDX mice and gDNA 

of donor tumors significantly depends on the number of passages (P = 0.037, Fig. 4b). This 

suggests a quantitative relationship between tumor growth and the experimental capturing of 

tumor 5hmC in plasma cfDNA, as the size (P=0.0096) and growth rate (P=0.0080) of tumors 

grafted in PDX mice increase with passage numbers (Fig. 4b). Using the top five genes with the 

greatest 5hmC levels in PDX plasma cfDNA, donor tumor and the derived PDX from the same 

individual patient were clustered together (Fig. 4c), supporting donor tumor tissue as the origin 

of the PDX cfDNA.  

PDX allowed us to study tumor-derived cfDNA without confounding from background 

cfDNA. Genes with greater 5hmC levels in tumor-sourced PDX plasma cfDNA are more likely 

to be the genes with elevated 5hmC level in plasma cfDNA in cancer patients. Indeed, we found 

that genes with 5hmC level increased in patient plasma cfDNA were enriched in those genes 

with greater 5hmC levels in PDX plasma cfDNA, whereas genes with 5hmC level decreased in 

patient plasma cfDNA were enriched in genes with lower 5hmC levels in PDX plasma cfDNA 

(Fisher's exact tests P <1×10-9, Fig. 4d). In contrast, genes with 5hmC level changed between 

tumor and adjacent tissues showed no such enrichment pattern (Fig. 4d).  

 

Tumor-associated 5hmC changes in gene regulation 

To investigate the potential functional role of 5hmC in gene regulation, we evaluated the 

relationship between gene expression changes and 5hmC level changes in tumors in two 

colorectal and one gastric cancer patients. We performed the RNA-seq assay in tumor tissues and 

paired adjacent tissues. The log2 fold changes of gene expression and the log2 fold change of 
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5hmC level in tumors relative to adjacent tissues were estimated across the three patients. Gene 

dysregulation and 5hmC changes were then compared across a combined list of 200 differential 

5hmC loci in gene bodies detected in colorectal and gastric tumors in the discovery batches. The 

correlation between gene expression changes and 5hmC changes in tumors is highly significant 

(P = 9.8×10-6,  Fig. S7a). In addition, genes with altered 5hmC level  in cancer plasma cfDNA or 

in tumor gDNA were enriched in cancer- and metastasis-related pathways(33) (Fig. S7b).  

 

DISCUSSION 

5hmC in general marks active loci, as gene activation requires removal of the repressive 

5mC methylations. It occurs in gene bodies of activated genes as well as various enhancers, 

indicating that the genomic locations of 5hmC reflect both gene activation and active chromatin 

state. 5hmC is chemical stable and thus its locations in gDNA can be stored in fragmented 

cfDNA for potential non-invasive detections. Utilizing a robust and highly efficient profiling-

based approach to map 5hmC in plasma cfDNA samples from patients with cancer, we were able 

to identify 5hmC biomarkers that can distinguish cancer patients from healthy individuals with 

high sensitivity and specificity for colorectal (Fig. 3) and gastric (Fig. S6) cancers. Our study 

revealed genome-wide patterns of cancer-associated 5hmC changes in plasma cfDNA (Fig. 2) 

and demonstrated the cancer relevance of cfDNA using PDX models (Fig. 4). We also found a 

strong co-localization between 5hmC and open chromatin at active transcription (Fig. S2) and 

confirmed a noticeable correlation between cancer-associated 5hmC changes and gene 

expression changes (Fig. S7), further supporting 5hmC as a marker for open chromatin state and 

gene activation. The identified 5hmC biomarkers can be cancer type-specific (Fig. 3, Fig. S6): 

optimization of this approach with additional patient studies in the future will further improve 
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performance and expand the application scope to other cancers. The strategy presented here 

provides the foundation for effective future liquid biopsy-based diagnosis and potentially 

prognosis of human diseases using cfDNA.   

The dynamics of cancer cfDNA turnover in circulation is yet largely unknown. Under a 

likely simplified model, gDNA of tumor tissue is released into plasma and undergoes 

degradation with an equilibrium similar to that of background cfDNA from normal healthy 

tissues. Locus-specific 5hmC modification appears to be the primary determinant of 5hmC 

variations, with tissue specificity and then cancer state adding additional layers of variations. 

These tissue-, and to a lesser extent, cancer-specific signals released from tumor tissues slightly 

shift the 5hmC modification profile of background plasma cfDNA toward that of tumor tissue 

gDNA. The more cfDNA released from tumor tissues the greater of the shift and the power to 

discriminate biological variation of the source tumor. Therefore, integration of a panel of 5hmC 

profiles from gDNA of diverse tissue types is critical for future assessment of disease specificity 

in cancer biomarkers. In addition, solid tumors are composed of carcinoma stem cells and 

carcinoma cells, with a microenvironment constituted by leucocytes, cells of mesenchymal 

origin, and extracellular matrix (34). Tumor progression initiates a gradient change in local 

environment characterized by hypoxia and vascularization. Extensive variability may exist 

within a growing tumor and its surrounding cells such that certain types of cells are prone to 

apoptosis and some are more prone to release DNA to circulation. We expect that cancer-

associated 5hmC changes observed in plasma cfDNA were contributed by distinct sets of cells 

within or surrounding tumor tissues. Single-cell or cell-type-specific 5hmC profiling, by 

decomposing tumor tissues and using appropriate cell type markers, would reveal the extent and 

distribution of cell specificity and shed further light on the properties of the source cells that 
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contribute to the cancer-associated 5hmC changes observed in plasma cfDNA. These are future 

directions we wish to pursue.  

 

MATERIALS AND METHODS 

Study Design 

Patient population  
A total of 180 patients older than 18 years with colorectal, gastric cancers and hepatocellular 
carcinoma were diagnosed at 3 different medical centers in Shanghai Huashan Hospital at Fudan 
University, China from September 2015 to July 2016. 80 patients with thyroid cancer and 
pancreatic cancer were diagnosed at Peking Union Medical College Hospital, China during 
2014-2016. The population was socioeconomically diverse, most of whom came from Beijing 
and East China (City of Shanghai, Zhejiang Province, Jiangsu Province and Anhui Province). All 
were collected from patients who were newly diagnosed or with postoperative recurrence, and 2 
patients were postoperative colorectal cancer patients, with confirmation by histological 
evaluation. Patients treated with chemotherapy, radiation therapy, or immunotherapy, were 
excluded from this study. In total, this retrospective cohort study was conducted among 80 
colorectal cancer patients and 75 gastric cancer patients, with an additional 25 hepatocellular 
carcinoma patients, 34 pancreatic cancer patients and 46 thyroid cancer patients to explore 
cancer type-specificity. Whole blood samples from 90 healthy individuals under physical 
examination were also collected at Fudan University, China during September 2015-May 2016 
as healthy controls; these individuals are Chinese and showed no history of cancer and had no 
abnormalities in laboratory examinations. However, the follow-up data for all patients were 
unavailable because of the short follow-up time. Informed consent was obtained from each 
participating subject before the study, which was approved by the Institutional Review Board at 
each collaborating institution. 

Batch design 
To minimize the influence of batch effect, gastrointestinal participants were assigned into 3 
batches according to chronological order. Differential 5hmC between cancer and control was 
analyzed with batch 1 (discovery) and validated in batch 2,3 (validation and additional 
validation).  

Sample overview 
Detailed information of the study subjects is shown in Table S1, S2, including number of 
samples, gender, age, clinical diagnosis, stage classified according to the Tumor, Node and 
Metastasis (TNM) guidelines (version 7), and eight conventional cancer biomarkers were 
measured in patients. The average age of 80 GC patients and 75 CC patients were similar, with 
more male than female cancer patients. 84.4% percent (65 out of 75) of CC and 70.4% percent 
(50 out of 71) of GC were mainly at advanced stages (stage III and IV). The pathological grade 
of 74.6% (51 out of 66) CC patients was moderate, while 73.4% (47 out of 64) GC patients was 
poor differentiation. And 53.8% (35 out of 65) of CC and 62.9% (39 out of 62) of GC patients 
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showed lymph node metastasis. 26.3% (20 out of 76) of CC and 18.3% (13 out of 71) of GC 
patients showed distal metastasis. Four common tumor markers for gastrointestinal cancer 
screening are CEA, AFP, CA19-9 and CA72-4, which were positive in 0, 33.8%, 21.4%, 16.9% 
of CC and 7.5%, 13.6%, 14.3%, 29.0% of GC patients respectively. 

Additional U.S. samples for validation 
Five patients with colorectal cancer were diagnosed at the University of Chicago Medical Center 
from September 2015 to July 2016. All samples were collected from patients who were newly 
diagnosed and had no distal metastasis at the time of blood draw. Whole blood samples from 6 
healthy individuals under physical examination were also collected at the University of Chicago 
Medical Center during September 2015-May 2016 as healthy controls; these individuals are non-
Hispanic or Latino individuals of European ancestry. Informed consent was obtained from each 
participating subject before the study, which was approved by the Institutional Review Board at 
the University of Chicago. 

Preparation of cfDNA Samples. cfDNA samples were prepared from peripheral blood collected 
from patients and healthy controls. Briefly, 4ml of peripheral blood was collected from each 
subject using EDTA anticoagulant tubes, and the plasma sample was prepared within 6h by 
centrifuging twice at 1,350g for 12min, and then centrifuging at 13,500g for 12min. The 
prepared plasma samples (about 2ml/subject) were immediately stored at -80°C. The plasma 
cfDNA was isolated using the QIAamp Circulating Nucleic Acid Kit (Qiagen) according to the 
manufacturer's protocol. Within each experimental batch, samples were randomized on disease 
status in the following library preparation and sequencing profiling. 

Isolation of Genomic DNA from Tissues. Tissue samples, including tumor and adjacent tissue 
samples, from patients were stocked at -80°C after surgical operation. 10-25 mg tissue was 
collected using a scalpel after sample unfreezing. Genomic DNA from tissues was isolated using 
the ZR Genomic DNA-Tissue Kits (Zymo Research) according to the manufacturer's protocol.  

5hmC-Seal-seq Library Preparation and Sequencing. Seal-seq libraries for 5hmC profiling 
were prepared following our previously patented technology(3). In this method, the T4 
bacteriophage β-glucosyltransferase is used to transfer an engineered glucose moiety containing 
an azide group onto the hydroxyl group of 5hmC across the human genome. The azide group is 
then chemically modified with biotin for affinity enrichment of 5hmC-containing DNA 
fragments. First, the genomic DNA is fragmented using an enzymatic reaction. Next, the 
fragmented genomic DNA or the cfDNA were repaired and installed with the Illumina 
compatible adaptors. The glucosylation reactions were performed in a 25 μL solution containing 
50 mM HEPES buffer (pH 8.0), 25 mM MgCl2, purified DNA, 100 μM N3-UDP-Glc, and 1 μM 
βGT, at 37°C for 1 hr. The reaction was purified by Micro Bio-Spin 30 Column (Bio–Rad) into 
ddH2O. After that, 1 μL DBCO-PEG4-DBCO (Click Chemistry Tools, 4.5 mM stock in DMSO) 
was added to the reaction mixture. The reactions were incubated at 37°C for 2 hr. Next, the DNA 
was purified by Micro Bio-Spin 30 Column (Bio-Rad). The purified DNA was incubated with 5 
µL C1 Streptavidin beads (Life Technologies) in 2X buffer (1X buffer: 5 mM Tris pH 7.5, 0.5 
mM EDTA, 1 M NaCl) for 15 min according to the manufacturer's instruction. The beads were 
subsequently washed eight times for 5 min with 1X buffer. All binding and washing was done at 
room temperature with gentle rotation. The captured DNA fragments were amplified with 14-16 
cycles of PCR amplification. The PCR products were purified using AMPure XP beads 
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according to the manufacturer's instructions. DNA concentration of each library was measured 
with a Qubit fluorometer (Life Technologies) and sequencing was performed on the Illumina Hi-
Seq or NextSeq 500 platform. 

RNA-seq library Preparation and Sequencing. Tumor and adjacent samples including two 
colon samples and one stomach sample were collected to isolate RNA using ZR-Duet 
DNA/RNA Miniprep kit (Zymo Research). Total isolated RNA was utilized to construct the 
library by NEBNext Ultra RNA Library Prep Kit for Illumina following the manufacture's 
protocol. Sequencing reactions were executed on the NextSeq 500 platform using paired-end 
mode, yielding at least 32 M reads per sample. 

PDX Preparation and Samples Collection. Establishment of patient-derived tumor xenografts: 
The animal protocol for this study was reviewed and approved by the Ethical Committee of 
Medical Research, Huashan Hospital of Fudan University. BALB/c nu/nu mice were 6–8 weeks 
old and weighed 16–20 g at reception (SLAC LABORATORY ANIMAL, Inc.). The fresh 
pathological tissue fragments were placed in sterile tissue culture medium on ice and brought 
immediately to the animal facility. Tumor-graft samples were cut into multiple 1x1x1 mm 
fragments in complete media. Tumor was implanted into female BALB/c nu/nu mice under 
isoflurane anesthesia, and all efforts were made to minimize suffering. A skin incision (0.3cm) 
was subsequently made on the right mid-back. One tumor piece (1–3mm) was inserted into each 
pocket and the skin was closed. Mice were regularly checked. When tumor diameter reached 
1.5cm, mice were euthanized and tumors were excised, cut into 1x1x1mm fragments again, and 
passaged to successive generations of 3 mice. The remaining tumor was snap frozen in liquid 
nitrogen and stored at –80°C, and the plasma was separated from the blood sampled via the 
mouse eyeball. In this study, the gastric cancer and colorectal cancer patient-derived tumor 
xenografts were randomly selected in our existing PDX model library, while the control group 
was BALB/c nu/nu mice 12–14 weeks old.  

5hmC Enrichment Analysis. We designed two similar spike-in probes with unique sequences, 
named 5hmC spike-in and no5hmC spike-in.  

5hmC spike-in: 

5-
CTGTCATGGTGACAAAGGCATCC*GGCAGAAATGCCCACACAGCCTCTTTAACCAGC
ACGCCAACCGCCTCTGCTTCGGCCCTGGTCACGCAGCTGACAAGGTCTTCATAATAG
AGAAATCCTG-3',  C* – 5hmC modifications. 

no5hmC spike-in:  

5'-
CTGTCATGGTGACAAAGGCATCGCAGCGAAATGCCCACACAGCCTCTTTAACCAGC
ACGCCAACCGCCTCTGCTTCGGCCCTGGTCACGCAGCTGACAAGGTCTTCATAATAG
AGAAATCCTG-3' 

These sequences cannot map to the human reference genome. Six cfDNA sequencing libraries 
were constructed from the same cfDNA (10 ng) sample, which were divided into control and 
experiment groups, each having three duplicates. 100 million copies of 5hmC and no5hmC 
spike-ins were then mixed with the experiment sample before library preparation. The control 
group did not include the 5hmC pull-down step while the experiment group included the 5hmC 
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pull-down procedure. After sequencing, we extracted spike-in reads and calculated the 
enrichment ratios. The average ratio of 5hmC spike-in to no5hmC spike-in in the control group 
was 0.72, while the ratio in the experiment group was 40.36. 

Technical Stability Analysis for 5hmC Seal-seq Library Preparation. The designed spike-in 
probes were utilized to improve the robustness and sensitivity of hmC-Seal. 20 thousand copies 
of 5hmC and no5hmC spike-ins were pre-mixed and then added into the same cfDNA samples 
before library constructions. Different spike-in samples were designed as follows: 20 ng cfDNA 
with 2 repeats, 10 ng cfDNA with 10 repeats, 5 ng cfDNA with 2 repeats, 2 ng cfDNA with 2 
repeats, 1 ng cfDNA with 2 repeats.  

Total 5hmC quantification in cfDNA and genomic DNA. The enzymatic digestion protocol 
for each genomic DNA and cfDNA sample was the same. Genomic DNA or cfDNA (all in 8 μL 
H2O) was first denatured by heating at 95°C for 5 min and then transferred into ice water, 
cooling for 2 min. After that, 1 μL of 10 × S1 nuclease buffer (30 nM CH3COONa, pH 4.6, 260 
mM NaCl, 1 mM ZnSO4) and 180 units (1 μL) of S1 nuclease were added into the DNA solution. 
The mixture (10 μL) was then incubated at 37 ºC for 4 hours. Then 34.5 μL of H2O, 5 μL of 10 × 
alkaline phosphatase buffer (50 mM Tris-HCl, 10 mM MgCl2, pH 9.0), 0.5 μL of alkaline 
phosphatase were added into the DNA digestion solution. The incubation was continued at 37 ºC 
for an additional 4 hours.  

The CE-ESI-MS experiments were carried out with CESI-8000 capillary electrophoresis (CE) 
system from Beckman Coulter (Brea, California, USA) coupled with a Sciex Tripel Quad 5500 

Mass Spectrometer (Sciex, USA) through a modified NanosprayedⅡinterface. Bare fused-silica 
capillaries etched with a porous tip were made available by Beckman Coulter (Brea, California, 
USA), which could be inserted into the sheathless nanospray interface. The separation capillary 
was 100 cm long with an internal diameter of 30 μm and an outside diameter of 150 μm. The 
capillary was flushed with methanol for 10 min at 100 psi, followed by water, 0.1 M sodium 
hydroxide, 0.1 M hydrochloric acid and water for 10 min each at 100 psi, and finally by the 
background electrolyte (BGE) of 10 % acetic acid (pH 2.2) for 10 min at 100 psi before first 
used. The BGE was also used as conductive liquid in the conductive liquid capillary. Before each 
run, the conductive liquid capillary was rinsed with BGE for 5 min at 100 psi. Samples for 

detection were stored at 5℃ in the CE system. Hydrodynamic injections were used in this study, 
and about 100 nL sample was injected into the separation system for each analysis. A voltage of 
+25 kV was applied during the separation and the current was between 3.0 to 3.2 μA. The 
electrospray voltage was optimized to get the best nanospray stability and efficiency and +1.7 kV 
was good enough for this study. The quantification calibration curves of 5'-dC, 5'-mdC and 5'-
hmdC were constructed using mixture solution of their standards in different concentration. 
(Parameters of each calibration curve were shown in Table 3) The resulting solutions of our 
DNA samples were directly measured by CE-ESI-MS. The concentrations of these three 
nucleosides in each sample were calculated based on the calibration curves. And the 5'-mdC / dC 
and 5'-hmdC / (dC + 5'-mdC) results of each sample were then calculated. 

Sequencing Data Processing and Detection of Differential Loci. Read-through sequences 
within raw sequencing reads were trimmed using Trimmomatic version 0.35(35). Low quality 
bases at the 5' (Phred quality score <5) and 3' (5bp-sliding window Phred score< 15) were also 
trimmed. Reads with a minimum length of 50bp were aligned to the human genome assembly 
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GRCh37 using Bowtie2 version 2.2.6(36) with end-to-end alignment mode. For paired-end 
sequencing data, read pairs were concordantly aligned with fragment length <500bp and with up 
to 1 ambiguous base and four mismatched bases per 100bp length. Alignments with Mapping 
Quality Score (MAPQ) ≥10 were counted for overlap with genomic features using featureCounts 
of subread version 1.5.0-p1(37), without strand information. Autosomal feature counts with >10 
mean counts across samples were then normalized and compared between-group using DESeq2 
version 1.12.3(38). Since gender is not a significant covariate for both autosomal gene 
expression(39) and DNA methylation(40), while aging has been linked to DNA methylation(41), 
age at sample collection/surgery was included as a categorical variable (<20, 20-55, >55 yr) in 
the negative binomial generalized linear model implemented in DESeq2. As for the experimental 
batch (discovery, validation or additional validation), samples were processed <1 week by 1-3 
technicians, the identity of the technician was included in the model to adjust for potential 
technical correlation. When comparing tumor and adjacent tissues, patient identity was nested 
under technician identity. A FDR(42) of 5% was used to identify differential 5hmC loci. For 
PDX mouse plasma cfDNA data, sequencing reads were trimmed and aligned to a composite 
assembly of mixed human and mouse (GRCm38) genome. Unique alignments (MAPQ ≥10) 
were separated to human and mouse reads by chromosome name.  

For RNA-seq data, sequencing reads were trimmed and aligned to GRCh37 annotated with 
GENCODE release 19, using STAR version 2.5.1b(43). Unique alignments with ≥90% match 
over reads were summarized by featureCounts. For correlation analysis in Fig.S7a, 5hmC data 
were also summarized over exon regions as in RNA data. For genes having >10 mean counts 
across samples, log2 fold change between tumor and adjacent tissues were estimated by DESeq2 
adjusting for patient identity. 

Refining CpG Biomarkers and Evaluating Performance. Cancer prediction models were 
trained using the differential 5hmC loci detected in the discovery batch. We applied elastic net 
regularization on a logistic linear regression model(44), using the glmnet library in the R 
Statistical Package(44):   
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Where � is a  � � �1 � �
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, where !� is the blend of the ridge (% 	 0
 and the lasso �$ 	 1
 penalty. The parameter & 
controls for the overall strength of penalty, while the parameter α controls for the relative 
proportion between the ridge and lasso penalty.  For a given α, & is estimated by cross-validation 
and selected as the largest & at which the mean cross-validated error is within one standard error 
of the minimum. As we expect that 5hmC loci with larger effect size are more robustly detected 
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by the assay and therefore more reproducible across experiments, we included in the model a 
penalty factor #
  so that  

#
 	 1
|'
| 

, where '
 is the log2 fold change of gene � estimated in the training batch.  

The parameter α reflects the model assumption (i.e., a large number of small effects or a small 
number of large effects). In small datasets like our discovery batch, the selection of α based on 
residual errors may lead to an over-fitted model. Instead, our model assumption was guided by 
the validation batch, so that α was searched to maximize AUC in the validation batch over a grid 
of values from 0.05 to 0.95. The model, derived from the training batch using the selected α, was 
applied in all classifications as described in Fig. 3 and Fig. S6.  

The normalization of data in cancer classification adopts the regularized log transformation 
implemented in DESeq2, which estimates a global mean-dispersion trend to shrink the variance 
at low count genes that are associated with high Poisson noise, so that variance is stabilized 
across genes in the log transformed data. In Fig. 3 and Fig. S6, data from the validation batches 
were all normalized to the reference distribution derived from the training batch and used 
directly in cancer classification, i.e., we essentially ignored any remaining batch effect which 
could be resulted from library preparation and sequencing run. This is because that under a real 
clinical setting, batch effect estimated between testing samples and training samples will 
generally be biased, due to highly unbalanced case/control proportion in testing samples (low 
incidence of cancers). Batch effect may introduce some deviation from the 0.5 probability cutoff 
in cancer calling. External spike-in may be used to estimate batch effect in future investigations. 

Receiver operating characteristic (ROC) curves(45) were generated to evaluate the performance 
of a prediction algorithm, using the pROC(46) library in the R package. Sensitivity and 
specificity were estimated at the score cutoff that maximizes the sum of sensitivity and 
specificity using the ROCR(45) library in the R package.  

Statistical Analyses. For Fig. 4a, P-value was estimated by a linear mixed effects model: 
proportion of human reads (square root transformed) ~ xenograft status (none | colorectal | 
gastric) + γ (tumor donor identity) + �, random effect γ was introduced to control for correlation 
among replicate xenografts. For Fig. 4b, P-value was estimated by a linear mixed effects model: 
Pearson's r with tumor donor ~ number of passages + γ (tumor donor identity) + �.  

Annotating CpG sites with Genomic Features and Functional Analysis. The genomic 
features analyzed included promoters (3kb upstream of gene start), gene bodies (gene start to 
stop sites annotated by GENCODE release 24)(47), CpG islands (annotated CpG islands by 
UCSC Table Browser plus +/- 1kb region) and the Encyclopedia of DNA Elements 
(ENCODE)(31) features (DNase I hypersensitive sites, transcription factor binding sites, and 
histone modifications)(31). Each type of ENCODE features from the profiled ENCODE cell 
lines was integrated into a single list of features by collapsing overlapped and nearby (<150bp) 
peaks. The ENCODE features analyzed in the 5hmC genomic distribution (Fig. S2, S3) were as 
originally annotated without collapsing, with 20,000 features randomly sampled in the 
interquartile size distribution for each feature category. Pathway enrichment analysis of genes 
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with cancer patient-associated 5hmC loci were explored based on the Kyoto Encyclopedia of 
Genes and Genomes (KEGG)(48) using the NIH/DAVID tool(49).  

Supplementary Materials 

Fig. S1. Technical validation of the modified hmC-Seal assay using spike-in. 

Fig. S2. Global 5hmC levels in plasma cfDNA and tissue gDNA. 

Fig. S3. Genomic distribution of 5hmC detected in plasma cfDNA and tissue gDNA. 

Fig. S4. The median distribution of 5hmC is similar between cancer and control. 

Fig. S5. Differential 5hmC loci detected in cancer plasma cfDNA and tumor gDNA. 

Fig. S6. Performance of 5hmC biomarkers for gastric cancer patients. 

Fig. S7. Tumor associated 5hmC changes in gene regulation. 

Table S1. Clinical characteristics of colorectal and gastric cancer patients and healthy controls. 

Table S2. General characteristics of hepatocellular carcinoma, pancreatic cancer, thyroid cancer, 
gastric benign diseases, colorectal benign diseases, US colorectal cancer patients, and US healthy 
controls. 

Table S3. Summary of samples used in 5hmC profiling. 

Table S4. Summary of differential 5hmC loci in colorectal and gastric cancer detected for each 
feature type.   

Table S5. Differential 5hmC loci in gene bodies detected at 5% FDR and 1.2 fold-change in the 
plasma cfDNA from discovery batch of colorectal cancer. 

Table S6. Differential 5hmC loci in gene bodies detected at 5% FDR and 1.2 fold-change in the 
tumor gDNA from discovery batch of colorectal cancer. 

Table S7. Differential 5hmC loci in gene bodies detected at 5% FDR and 1.2 fold-change in the 
plasma cfDNA from discovery batch of gastricl cancer patients. 

Table S8. Differential 5hmC loci in gene bodies detected at 5% FDR and 1.2 fold-change in the 
tumor gDNA from discovery batch of gastric cancer patients. 
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FIGURES 

 
Figure 1. Detecting 5hmC biomarkers in cfDNA of human cancers. a, Workflow of 5hmC-Seal 
profiling from cfDNA is shown. Purified cfDNA is ligated with standard sequencing adaptors. 5hmC-
containing cfDNA fragments are selectively labeled with a biotin group. The biotin-labeled fragments are 
captured on the avidin beads, followed by PCR amplification and next-generation sequencing (NGS). b, 
Cancers of different origins may release cfDNA decorated with distinct 5hmC modification patterns. 
Unique 5hmC signatures specific for different cancer types could be detected as biomarkers for diagnosis 
and prognosis. c, Schematic overview of sample collection, data generation and analysis. 
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Figure 2. Differential 5hmC loci associated with cancer. a, Average 5hmC levels in gene body across 
healthy controls (health) and cancer patients (colon and stomach), estimated for plasma cfDNA (plasma 
cf), white blood cell genomic DNA (wbc) and tissue genomic DNA (tumor and adjacent), were clustered 
by correlation distance. b, Counts per million reads at SULF1 gene (plus +/-20kb region) in plasma 
cfDNA of the 15 healthy controls and 18 colorectal cancer patients. The moving averages at 0.01 
smoother span are shown. c, The distribution of colorectal cancer-associated 5hmC loci detected at 5% 
false discovery rate in plasma cfDNA. The color key indicates relative change. d, Pearson's correlation of 
log2 fold changes between analyzed genes and their neighboring genes was plotted against the null 
distribution of correlation between genes and their 1st neighboring genes, generated by shuffling gene 
positions for 1000 times. Blue and orange points denote data from plasma cfDNA and tissue gDNA, 
respectively, for colorectal cancer. In c and d chromosome 1 are shown for an example. e, The average 
5hmC levels in gene bodies in tumor gDNA were plotted against the log2 fold change of 5hmC levels in 
colorectal cancer plasma cfDNA. Orange points denote analyzed genes and blue points denote differential 
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genes called at 5% FDR and 1.2 fold change, color intensity representing data density. f, Enrichment of 
genes with cancer-associated 5hmC level increase (or decrease) in genes with high (or low) 5hmC levels 
in tissues (tumor and adjacent). The 1st, 5th and 10th percentile genes in descending or ascending order of 
the log2 fold change were compared against the corresponding percentile genes in descending or 
ascending order of the average 5hmC levels. Cancer cf: differential genes detected in cancer plasma 
cfDNA; tumor: differential genes detected in tumor tissue. Dashed line denotes no enrichment. g, 5hmC 
reads from plasma cfDNA of 15 colorectal cancer patients were summed over ENCODE DNase broad 
peaks derived from various tissues. Tissues were ordered by the 1st percentile of fragments per kilo-bases 
per million (fpkm)  in descending order. For each tissue, 20000 DNase peaks were randomly sampled 
from one ENCODE tissue sample with good sequencing quality.  
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Figure 3. Performance of 5hmC biomarkers for colorectal cancer patients.  a, The heatmap shows 
clustering using the 50 most up-regulated and 50 most down-regulated 5hmC loci from the discovery 
batch across cfDNA samples from both the discovery and validation batches. Diagnostic results using 
classical biomarkers are also shown. HEA: healthy individuals; CAC: cancer patients; nse: neuron 
specific enolase; CEA: carcinoembryonic antigen; CA125/19-9/72-4: carbohydrate antigen 125/19-9/72-4. 
b, Correlation of 5hmC variation in cancer between the discovery and validation batches of samples is 
higher in plasma cfDNA (cancer patients vs. healthy individuals) than in tissue genomic DNA (tumors vs. 
adjacent tissues), especially for 5hmC loci in gene bodies. c-d, Classifying two independent validation 
batches using 5hmC classifier derived from plasma cfDNA from the discovery batch. e, Classifying an 
independent set of colon cancer tumor tissues using 5hmC biomarkers detected from the discovery batch 
of tissue samples (tumors vs. adjacent tissues). AUC: area under curve. f, The predicted probability (score) 
of a cancer patient based on 5hmC biomarkers from plasma cfDNA shows a significant trend associated 
with clinical stage. Patients after surgery show predicted scores undistinguishable from healthy 
individuals. g, The 5hmC biomarkers detected in plasma cfDNA from colorectal cancer patients are 
potentially cancer type-specific, showing differential predictive performance in plasma cfDNA from 
stomach, liver, pancreatic and thyroid cancer patients. HEA: healthy control; NOR: patient with benign 
tumor; CAC: cancer patient.  
 
 
 
 
 
 
 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/163204doi: bioRxiv preprint 

https://doi.org/10.1101/163204


31 

 

 
Figure 4. The origin of cancer associated 5hmC changes observed in plasma cfDNA. a, The 
proportions of human reads in plasma cfDNA captured with hmC-Seal are shown for PDX mice grafted 
with tumor from three gastric cancer patients (stomach_1 to 3), three colorectal cancer patients (colon_1 
to 3) and for PDX mice without graft (control_1 to 3). Vertical bars represent standard deviation 
estimated from three replicate PDX mice for each patient. The PDX mice grafted with gastric tumor had 
greater number of passages (6-10) than those grafted with colorectal tumor (2-5). b, The correlation of the 
5hmC profile between tumor-derived, PDX plasma cfDNA and donor tumor gDNA depends on the 
number of passages of the PDX mouse. The size of the points is proportional to the size of grafted tumor 
and the density of color denotes the growth rate of the grafted tumor. c, Using the correlation distance of 
the top five genes that had the greatest 5hmC level in PDX plasma cfDNA, donor tumor gDNA and PDX 
plasma cfDNA from the same individual patient were clustered together. d, Directional enrichment of 
genes with altered 5hmC levels in cancer plasma cfDNA or in tumor tissue gDNA in genes with high or 
low 5hmC levels in PDX plasma cfDNA. The top 5% genes in descending or ascending order of the log2 
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fold change were compared against the corresponding top 5% genes in descending or ascending order of 
the average 5hmC levels across three PDX replicates, derived from one gastric cancer patient (10 
passages) and one colorectal cancer patient (5 passages). Dashed line denotes no enrichment. 

 

Supplementary Materials: 

 

Figure S1. Technical validation of the modified hmC-Seal assay using spike-in probes containing 
5hmC. a, Enrichment of 5hmC by the pull-down assay. b, Different amounts of cfDNA with fixed spike-
in probes. The log2 cfDNA concentration and the mean log2 spike-in copy number at each concentration 
was close to a complete correlation (r2=0.99). Note that technical replicates, including 10 spike-in 
replicates with 2.6fg spike-in probes and 10 ng cfDNA performed by different individuals using different 
reagent batches, constituted 12% of total variance, further validated the robustness of this 5hmC-based 
approach using plasma cfDNA.  In a and b, cfDNAs of assay samples were derived from the same 
biological sample. Equal copies of two spike-in probes (5hmC-containing spike-in and control non-5hmC 
spike-in) were added to each assay sample. cfDNA together with spike-in probes were sequenced on 
NextSeq 500 using paired-end 150 bp mode. The number of reads mapped to the sequence of the 5hmC-
containing spike-in probe (blue) and control non-5hmC spike-in probe (orange) were counted. 
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Figure S2. Global 5hmC levels in plasma cfDNA and tissue gDNA. P values were estimated for 
percent hmdC / (mdC+dC) in cancer cfDNA versus control cfDNA, by a linear model:  % hmdC / 
(mdC+dC) ~ cancer type (none | colorectal | gastric | liver) + age + gender + cfDNA concentration + 
experimental batch + �. TI: tumor adjacent tissue; TU: tumor.  
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Figure S3. Genomic distribution of 5hmC detected in plasma cfDNA and tissue gDNA. The pooled 
results from the discovery batch of colorectal and gastric cancer patients as well as healthy controls are 
analyzed and shown. (a-r) shows the distribution of each feature category, respectively, for plasma 
cfDNA samples (upper panels) and tissue gDNA samples (lower panels). a, Gene bodies, defined by gene 
start (GS) and end (GE) sites, were divided to 20 positional bins; b, Regions flanking transcription start 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/163204doi: bioRxiv preprint 

https://doi.org/10.1101/163204


35 

 

(TS) or end (TE) sites; c, CpG islands; d, DNase I hypersensitivity peaks; e, Formaldehyde-assisted 
isolation of regulatory elements; f, Transcription factor binding peaks; g, H2A.Z variant; h, H3K27ac; i, 
H3K27me3; j, H3K36me3; k, H3K4me1; l, H3K4me2; m, H3K4me3; n, H3K79me2; o, H3K9ac; p, 
H3K9me1; q, H3K9me3; and r, H4K20me1. In c-r, equal-sized bins were centered at the feature center 
and extended to up- and down-stream. 
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Figure S4. The median distribution of 5hmC is similar between cancer and control. (a-q) shows the 
distribution of each feature category, respectively, for plasma cfDNA samples (upper panels) and tissue 
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gDNA samples (lower panels). a, Gene bodies, defined by gene start (GS) and end (GE) sites, were 
divided by 20 positional bins; b, Regions flanking transcription start (TS) or end (TE) sites; c, CpG 
islands; d, DNase I hypersensitivity regions; e, Formaldehyde-assisted isolation of regulatory elements; f, 
Transcription factor binding peaks; g, H2A.Z variant; h, H3K27ac; i, H3K27me3; j, H3K36me3; k, 
H3K4me1; l, H3K4me2; m, H3K4me3; n, H3K79me2; o, H3K9ac; p, H3K9me1; q, H3K9me3; and r, 
H4K20me1. In c-r, equal-sized bins were centered at the feature center and extended to up- and down-
stream. 
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Figure S5. Differential 5hmC loci detected in cancer plasma cfDNA and tumor gDNA. a, Counts per 
million reads at SULF1 gene (plus +/-20kb region) in tissue gDNA of 11 colorectal cancer patients 
(subset of Fig 2b). There is no significant 5hmC level difference at SULF1 between tumor and adjacent 
tissues. The moving averages at 0.01 smoother span were shown. b, Cancer plasma cfDNA and tumor 
gDNA exhibit correlation in the average 5hmC levels (library-size and feature length normalized log2 
counts, black bars), while no correlation was found for the log2 fold change at differential 5hmC loci 
detected from cancer plasma cfDNA and from tumor.  
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Figure S6. Performance of 5hmC biomarkers for gastric cancer patients. a, The heatmap shows 
clustering of cfDNA samples from both the discovery and validation batches, using the 50 most up-
regulated and 50 most down-regulated 5hmC loci detected in plasma cfDNA from the discovery batch. 
Diagnostic results using classical biomarkers are also shown. HEA: healthy individuals; CAC: cancer 
patients; nse: neuron specific enolase; CEA: carcinoembryonic antigen; CA19-9/72-4: carbohydrate 
antigen 19-9/72-4. b, Correlation of 5hmC variation in cancer between the discovery and validation 
batches of samples is higher in plasma cfDNA (cancer patients vs. healthy individuals) than in tumor 
genomic DNA (tumors vs. adjacent tissues), especially for 5hmC loci in gene bodies. c,d, Classifying two 
independent validation batches using 5hmC classifier derived from plasma cfDNA from the discovery 
batch. e, Classifying an independent set of gastric cancer tumor tissues using 5hmC biomarkers detected 
from the discovery batch of tissue samples (tumors vs. adjacent tissues). AUC: area under curve. f, The 
predicted cancer probability (score) based on the 5hmC classifier from plasma cfDNA shows a trend 
associated with clinical stage. The one patient after chemotherapy shows a predicted probability 
undistinguishable from healthy individuals. g, The 5hmC cfDNA classifier for gastric cancer is disease- 
and potentially cancer type-specific, showing decreasing predicted probability in cfDNA from colorectal, 
liver, pancreatic and thyroid cancer patients. HEA: healthy control; NOR: patient with benign disease; 
CAC: cancer patient.  
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Figure S7. Tumor associated 5hmC changes in gene regulation. a, Three pairs of tumors (2 colorectal 
and 1 gastric) and adjacent tissues were profiled by RNA-Seq. The log2 fold changes of gene expression 
in tumor versus adjacent tissues were compared to the log2 fold change of 5hmC in tumor versus adjacent 
tissues estimated for these three patients. Gene expression changes in the tumor is positively associated 
with 5hmC changes in the tumor for 200 differential 5hmC loci at gene bodies detected in either colon or 
stomach tumors in the discovery batches. b, Gene pathway analysis of colorectal cancer-related canonical 
pathways.  
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Table S1. Clinical characteristics of colorectal and gastric cancer patients and healthy controls. 

 No. (%) or mean ± SD Participants of each 
group  

P-value a 

 

 CC (n = 80) 

 

GC (n=75) 

 

HC (n =90) 

 

CC vs. 
HC 

GC vs. 
HC 

Age (years) 60.78± 11.61 59.71±12.45 45±13.252 <0.001 <0.001 

Gender 

Male 

Female 

 

47(58.8) 

33(41.3) 

 

47(62.7) 

28(37.3) 

 

57(63.3) 

33(36.7) 

 

0.7 

 

0.9 

BMI (kg/m2) 23.60±3.32 22.36±3.31    

Smoking status 

Never 

Ever 

 

64(90.1) 

7(9.9) 

 

58(78.4) 

16(21.6) 

 

 

  

Drinking status 

Never 

Ever 

 

66(93.0) 

5(7.0) 

 

68(91.9) 

6(8.1) 

 

 

  

Tumor size,  

Greatest dimension 
(mm) 

 

39.99±15.75 

 

44.2±26.889 

   

Diagnosis 

  Primary 

  Postoperative   
recurrence 

  Resection of tumors  

 

77(96.3) 

1(1.2) 

 

2(2.5) 

  

73(97.3) 

2(2.7) 

 

0 

   

TNM stages  

 I 

 II  

 III 

 IV 

 

5(6.5) 

7(9.1) 

43(55.8) 

22(28.6) 

 

11(15.5) 

10(14.1) 

37(52.1) 

13(18.3) 
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Pathological grade  

Good  

Moderate 

Low 

 

4(6.8) 

51(74.6) 

11(18.6) 

 

5 (7.8) 

12(18.8) 

47(73.4) 

   

Depth of invasion 

T1 

T2 

T3 

T4 

 

4(6.3) 

7(10.9) 

2(3.1) 

51(79.7) 

 

12(18.8) 

0(0) 

11(17.2) 

41(64.0) 

   

Lymphatic metastasis 

Positive 

Negative 

 

35(53.8) 

30(46.2) 

 

39(62.9) 

23(37.1) 

   

Distal metastasis 

Positive 

Negative 

 

22(28.2) 

56(71.8) 

 

11(15.4) 

60(84.5) 

   

      

AFP 

Positive 

Negative 

 

0(0) 

74(100) 

 

4(7.5) 

49(92.5) 

   

CEA 

Positive 

Negative 

 

24(33.8) 

47(66.2) 

 

9(13.6) 

57(86.4) 

   

CA19-9 

Positive 

Negative 

 

15(21.4) 

55(78.6) 

 

9(14.3) 

54(85.7) 

   

CA72-4 

Positive 

Negative  

 

11(16.9) 

54(83.1) 

 

18(29.0) 

44(71.0) 

   

NSE      
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Positive 

Negative 

8(19.5) 

33(80.5) 

6(13.0) 

40(87.0) 

CK19 

Positive 

Negative 

 

17(42.5) 

23(57.5) 

 

15(35.7) 

27(64.3) 

   

CA15-3 

Positive 

Negative 

 

0(0) 

48(100) 

 

1(2.8) 

35(97.2) 

   

CA125 

Positive 

Negative 

 

6(11.3) 

47(88.7) 

 

2(5.1) 

37(94.9) 

   

Collected sample No. 

Only Peripheral 
blood 

Both peripheral 
blood and tissue 

Only tissue 

 

36(45.0) 

37(46.25) 

 

7(8.75) 

 

23(30.7) 

39(52.0) 

 

13(17.3) 

 

90(100) 

 

 

 

a Chi-squared test.   

Notes: CC, Colorectal Cancer; GC, Gastric Cancer; HC, Healthy Control; BMI: body mass index; NES:  
Neuron-Specific Enolase; CEA: carcinoembryonic antigen; AFP: alpha-fetoprotein; CA125: carbohydrate 
antigen 125; CA15-3: carbohydrate antigen 15-3; CA19-9: carbohydrate antigen 19-9; CA72-4: 
carbohydrate antigen 72-4. 
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Table S2. General characteristics of hepatocellular carcinoma, pancreatic cancer, thyroid cancer, gastric benign diseases, colorectal 
benign diseases, US colorectal cancer patients, and US healthy controls. 

Cancer Benign Diseases US samples 

 

 

No. (%) or 

mean ± SD 

Participants of 

Hepatocellular 

Carcinoma (n 

=25) 

No. (%) or 

mean ± SD 

Participants 

of Pancreatic 

cancer (n 

=34) 

 No. (%) or 

mean ± SD 

Participant

s of Thyroid 

cancer 

 (n=46) 

 

 

No. (%) or mean 

± SD Participants 

of Gastric Benign 

diseases  (n =22) 

No. (%) or mean ± 

SD Participants of 

Colorectal Benign 

diseases (n =49) 

 No. (%) or 

mean ± SD 

Participants of 

US colorectal 

cancer patients 

CC (n = 5) 

No. (%) or mean ± 

SD Participants of 

US unaffected 

controls (n = 6) 

Age (years) 59.32±11.86 53.06±13.04 Age (years) 41.75± 

9.44 

Age (years) 62.68±15.03 60.78±12.02 Age (years) 61.38± 10.72 33.16± 15.51 

Gender 

Male 

Female 

 

19(76.0) 

6(24.0) 

 

17(50) 

17(50) 

Gender 

Male 

  Female 

 

8(25) 

24(75) 

Gender 

Male 

   Female 

 

14(63.6) 

8(36.4) 

 

27(55.1) 

22(44.9) 

Gender 

Male 

  Female 

 

3(60.0) 

2(40.0) 

 

3(50.0) 

3(50.0) 

Smoking status 

Never 

Ever 

 

12(52.17) 

11(48.73) 

 

8(72.73) 

3(27.27) 

TSH 

Lower than the normal value 

Higher than the normal value 

  The normal value 

 

3(12) 

2(8) 

20(80) 

Smoking 

status 

Never 

  Ever 

 

20(90.9) 

2(9.1) 

 

45(91.8) 

4(8.2) 

Race, Ethnicity 

 White, Not 

Hispanic or Latino 

5(100) 6(100) 

Drinking status 

Never 

Ever 

 

14(60.87) 

9(39.13) 

 

9(81.82) 

2(18.18) 

FFT3 

Lower than the normal value 

Higher than the normal value 

  The normal value 

 

0 

0 

25(100) 

Drinking 

status 

Never 

  Ever 

 

22(100) 

0 

 

47(95.9) 

2(4.1) 

Smoking status 

Never 

  Ever 

 

1(20.0) 

4(80.0) 

 

4(66.7) 

2(33.3) 
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CEA 

Positive 

  Negative 

 

4(16.7) 

20(83.3) 

 

1(11.11) 

8(88.89) 

FFT4 

Lower than the normal value 

Higher than the normal value 

  The normal value 

 

0 

0 

25(100) 

BMI 

(kg/m
2
) 

 

22.90±3.16 

 

22.71±3.11 

TNM stages  

 I 

 II  

 III 

   IV 

 

0(0) 

2(40) 

2(40) 

1(20) 

 

 

 

CA19-9 

Positive 

Negative 

 

12(50) 

12(50) 

 

3(37.5) 

5(62.5) 

Lymphatic metastasis 

Positive 

  Negative 

 

16 

2 

 Diagnosis 

   Gastritis 

or enteritis 

   Polyps 

   Ulcers  

 

4(18.2) 

12(54.5) 

6(27.3) 

 

41(83.7) 

8(16.3) 

0 

Depth of invasion 

T3 

T4 

 

3(60.0) 

2(40.0) 

 

 

AFP 

Positive 

  Negative 

 

14(58.33) 

10(47.67) 

 

0 

5(100) 

        Lymphatic 

metastasis 

Positive 

Negative 

 

2(40.0) 

3(60.0) 

 

 

 

Tumor size,  

Greatest dimension 

(mm) 

 

42.83±39.634 

 

 

 

 

    

  

 

 

Distal metastasis 

Positive 

Negative 

 

1(20.0) 

4(80.0) 

 

 

Number of tumor 

foci  

Singe                 

Multiple  

 

13(56.52) 

10(43.48) 

 

 

 

 

 

 

    

  

 

 

 

   

HBsAg  

Positive 

Negative  

 

20(83.33) 

4(16.67) 
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HBsAg (+) HBV-DNA  

≥ 500 IU/mL 

 < 500IU/mL 

 

12(70.59) 

5(29.41) 

 

 

 

 

 

 

    

  

    

 

Notes: CEA: carcinoembryonic antigen; AFP: alpha-fetoprotein; CA19-9: carbohydrate antigen 19-9. 
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