
experimental data, but all the relationships can be reproduced within a large area of parameter space. The non-

monotonic relationships are produced as the result of LN inhibition in the AL network. Without inhibition from LNs, 

only the ‘increase’ and ‘inactivated’ type relationship can be recovered (results not shown). 

 

The presence of cases of decreased in responses with increasing stimulus concentration leads to a weaker scaling of 

the mean PN activity with concentration (See Figure 6), in particular in the high concentration regime, where inhibition 

by LNs is strong.  

 

3.1.3 Correlation between asymptotic PN responses 

It has been shown that while the asymptotic ORN responses across odours are highly correlated (Galizia et al, 1999, 

see also Figure 4a), correlations of PN response patterns are in general much weaker (Ditzen, 2005, see also Figure 

4a). Our model is designed to match the correlations of ORN responses observed in experimental data, as described 

in 2.2.1. It is of interest to study how well the correlations in generated PN responses match their experimental 

counterpart, which was not directly fitted to in the construction of the model. Figure 4b shows the probability 

distribution of pairwise correlations between experimental and model ORN and PN responses across odours. The 

model ORN responses are, as expected, highly correlated, but the degree of correlations is slightly less than that 

observed in the experimental results. This is likely a result of tuning for chemical similarity (See section 2.2.1) and 

non-linearity in spike generation. On the other hand, the distributions for PNs also exhibit a good qualitative match 

with its experimental counterpart, as both have a peak around correlation = 0. Please note that in Figure 4b, the model 

responses are in the form of firing rates while the experimental responses are obtained from calcium imaging data, 

which is strongly related to the former but may not be directly proportional to it (Grienberger and Konnerth, 2012). 

 

(a) (b) 

  
 
Figure 4: (a) Statistical distribution for pairwise correlation across response patterns for ORNs (concentration 𝑐 = 1) and PNs 

(𝑐 = 0.1) observed in calcium imaging experiments (Galizia et al, 1999; Ditzen, 2005) and our model. Our methods are designed 

to fit the distribution of correlation across ORNs observed in experimental data when building the model. No such fitting is 

done for the PNs. Please also note that in the plot, the ‘model responses’ correspond to the firing rate of units which may not be 

directly related to the response obtained by calcium imaging. (b) Comparison between pairwise correlation across firing rate 

patterns for ORN and PN with no inhibition (purple), inhibition with homogeneous (blue), uniform and normal distributed 

(green) and correlation-based (light green) connectivity. The parameters for the latter three scenarios are chosen such that the 

mean output firing rate of PNs are the same for all 3 cases. While the non-linearity in neural spiking and the specific correlation-

based PN-LN connectivity patterns contributed a little to the decorrelation, the most significant contributing factor is the 

presence of inhibition. The results for PNs are obtained over 10 trials from the same set of ORN data and the error bars 

correspond to standard deviation across trials. 𝑐 = 0.1 for all the scenarios in (b). 
 

The decorrelation of the PN response may occur in several distinct processes. Non-linearity in neuronal spiking models 

(de la Rocha et al, 2007; Rosenbaum and Josic, 2011) and neural inhibition can both lead to decorrelation (Middleton 

et al, 2012; Tetzlaff et al, 2012). To elucidate the source of the decorrelation in our model, we compared the PN 

responses generated from AL networks with different inhibition paradigms. Figure 4b shows that the non-linearity in 

the LIF model, the inhibitory neural network involving LNs and the specific correlation-based PN-LN connectivity 

all contributed to the decorrelation in PN activities. However, the dominant effect is the presence of inhibition. This 

supports the hypothesis by Olsen and Wilson (2008). The weak decorrelating effects due to non-linearity in neural 
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spiking may possibly be due to the adaptation we introduced and that makes the f-I curve of the LIF neuron more 

linear (Ermentrout, 1998). On the other hand, the effect of correlation based PN-LN connectivity is mainly reducing 

the amount of strongly correlated PNs by introducing strong mutual inhibition between them. Finally, we looked at 

the case when all the connections between the same unit type in the AL network are homogeneous (i.e. removing 

variability for all connection strengths). The results exhibit no major qualitative difference to the results where the 

LN-PN connections are uniformly distributed, suggesting that the heterogeneity in connectivity plays only a very 

minor, if not negligible, role in shaping the correlation across PNs.  
 

3.1.4 Comparison between ORN and PN response 

Experimental measurements show that the correlation between receptor neuron and AL activity is around 0.6-0.7 

(Deisig et al, 2010). We calculate the correlation between our model ORNs and PNs odour by odour, and it shows a 

good match to experimental data. When LN inhibition is removed, the correlation increases but still substantially 

smaller than unity. This suggests that both LN inhibition and non-linearity of LIF model contribute to the differences 

between ORN and PN response patterns. 

 

 
 
Figure 5: Statistical distribution of the pairwise correlation between the overall ORN and PN response for different odour stimuli. 

The average correlation is around 0.6-0.7, which matches well with experimental observations. Note that if we remove the 

inhibitory input from LNs, the correlation becomes higher but is still significantly below unity, which suggests that both, the 

non-linearity in the LIF model and LN inhibition contribute to differences between ORN and PN response patterns. 
 

We next investigate the phenomenon of ‘magnitude equalization’ in PN responses proposed by Luo et al (2010). In 

their work, the authors produce a model in which the mean of PN responses across glomeruli is less variable for 

different odours than the mean of ORN responses. Here, we quantified this by the coefficient of variation (CV) of the 

mean firing rate across glomeruli for different odours. Table 1 shows a drop in CV from the ORNs to the PNs, 

confirming the effect of PN ‘magnitude equalization’. 

 

As in the last section, we compared the above results to the case where there is no inhibition. Under this circumstance, 

the ORN-PN correlation is significantly higher but still considerably smaller than unity (see Figure 5) while 

‘magnitude equalization’ is weaker but clearly significant (see Table 1), suggesting that both the non-linearity in the 

LIF model and LN inhibition are important in producing both phenomena. 

  
mean sd CV 

ORN 67.41 20.11 0.298 

PN with inhib 40.19±1.04 2.42±0.15 0.059±0.004 

PN no inhib 290.95±1.67 46.84±0.26 0.161±0.001 

 
Table 1: The mean firing rate for ORNs, PNs in the full model and PNs without inhibition. All results are averaged over 10 trials. 

Entries format: mean ± standard deviation across the 10 trials 
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Please note that the above-mentioned effects may be further amplified by noise in the system. While we do add external 

noise to ORNs, for the purpose of obtaining realistic response latencies as described in the next section, and PNs, for 

the purpose of mimicking their spontaneous activity, the noise effects are small and only visible at low stimulus 

concentrations. The general effects of noise on neural response and correlation have been well studied (Shadlen and 

Newsome, 1998; Brunel et al, 2001; Ostojic et al, 2009; Chan, 2015; Chan et al, 2016) and are beyond the scope of 

this study.  

 

3.2 Responses to mixtures  

In this section, we compare the response to a mixture with that to a single component odour, as predicted by our model. 

We also show results from a mathematical analysis which can explain observations regarding the similarity and 

differences between the response patterns in these two cases. Since the only differences between mixtures and single 

component odours manifest themselves at the level of receptors, the analysis here is focused on receptor dynamics. 

The results below are obtained under the simplifying assumption that the concentrations of the odour components in 

mixtures are all equal, as well as equal to the concentration of the single component odours to which we are comparing. 

Please refer to Appendix C for the general case of heterogeneous concentrations among components in a mixture. 

 

3.2.1 Asymptotic response to mixtures and the role of the non-linear transduction process 

In order to understand whether and how the receptor dynamics described by (3) and (4) may lead to qualitative 

differences between responses to single component odours and mixtures, we compare the results for single component 

odours and for mixtures in which all components have the same concentration 𝑐. We can solve the equations for 𝑟∗and 

𝑟mix
∗ in (3) and (4) at equilibrium analytically, leading to (see Appendix C for the derivation): 

 

     𝑟∗ =
1

1

𝐾2
′+

1

𝐾eff
 
1

𝑐eff

          (11a) 

𝑟mix
∗ =

1
1

𝐾2
mix′

+
1

𝐾eff
mix 

1

𝑐eff

,          (11b) 

 

where 𝐾1 =
𝑘1
𝑛

𝑘−1
, 𝐾2 =

𝑘2

𝑘−2
 , 𝐾2

′ = 𝑟total (1 −
1

𝐾2+1
)  , 𝐾eff = 𝑟total𝐾1𝐾2 , 𝐾eff

mix =
(∑ 𝑘1

𝑗
𝑗 )

𝑛

∑ (𝑘1
𝑗
)
𝑛

𝑗

∑ 𝐾eff
𝑖

𝑖 , 𝐾2
mix′ =

1

∑
𝑝𝑖

𝐾2
𝑖 ′

𝑖

, 

𝑝𝑖 =
𝑘eff
𝑖

∑ 𝑘
eff
𝑗

𝑗

,  𝑟mix
∗ = ∑ 𝑟i

∗
𝑖 ,  𝑐eff = 𝑐

𝑛 ,  and 𝐾2
𝑖′ and 𝐾eff

𝑖  refer to the value of 𝐾2
′ and 𝐾eff for the ith odour component 

in the mixture stimulus.  

 

We now study the response to stimuli in the limit of low and high concentrations. It is clear from (11a) and (11b) that 

the responses are determined by 𝐾eff (or 𝐾eff
mix for mixtures) and 𝐾2

′ (or 𝐾2
mix′). This is illustrated in Figure 6a. In the 

limit of small 𝑐eff, 𝑟
∗and 𝑟mix

∗ are given by 

 

     𝑟∗ = 𝐾eff 𝑐eff           (12a) 

𝑟mix
∗ = 𝐾eff

mix𝑐eff =
(∑ 𝑘1

𝑗
𝑗 )

𝑛

∑ (𝑘1
𝑗
)
𝑛

𝑗

∑ 𝐾eff
𝑖  𝑐eff𝑖 ,        (12b) 

 

Rospars et al (2008) showed that responses to mixtures can be superlinear to the sum of the components’ responses 

(synergy), sub-linear but stronger than the weakest component’s response (hypoadditivity) and weaker than the 

weakest component’s response (suppression) (Note that our definition of these terms are different from Rospars et al, 

2008). In the regime of low 𝑐eff, the interaction between odour molecules is dominated by cooperative and inhibitive 

transduction mechanics. In the context of our model, (12b) can reproduce both hypoadditive and synergistic responses 

depending on the value of 𝑛. 

 

In appendix E, we show that for mixtures with 𝑁 components  
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1 ≤
(∑ 𝑘1

𝑗
𝑗 )

𝑛

∑ (𝑘1
𝑗
)
𝑛

𝑗

≤ 𝑁𝑛−1 for 𝑛 ≥ 1 and         (13a) 

1 >
(∑ 𝑘1

𝑗
𝑗 )

𝑛

∑ (𝑘1
𝑗
)
𝑛

𝑗

> 𝑁𝑛−1 for 𝑛 < 1            (13b) 

 

(13a) shows that synergy can be achieved when 𝑛 > 1, hypoadditivity when 0 < 𝑛 < 1. When 𝑛 = 1, the responses 

are strictly additive. The role of 𝑛 in mixture responses is illustrated in Figures 6b and c.  

Note that even though it is possible to obtain suppressive mixture response when 𝑛 ≤ −1 (See appendix E). We do 

not consider cases of non-positive 𝑛, as in such cases, the responses remain finite (when 𝑛 = 0) or blow up (when  

𝑛 < 0) if 𝑐 tends to 0, which is highly unrealistic.  

 

Data analysis of experimental measurements (Gremiaux et al, 2012) shows that for biological systems, the coefficient 

𝑛 ranges takes values between 0 and 1 for most receptor types. This resonates well with other observations that 

responses to mixtures are predominantly hypoadditive (Duchamp-Viret et al, 2003; Rospars et al, 2008; Cruz and 

Lowe, 2013).  

 

(a) (b) (c) 

   
(d)   

 

 

Figure 6: (a) The activation level of receptors for which the dynamics are described by (3). In the limit of small 𝑐eff, receptors 

with the same 𝐾eff respond identically, regardless of the value of 𝐾2
′. In the other limit of large 𝑐eff,  responses always approach 

an asymptotic value depending on 𝐾2
′, regardless of the value of 𝐾eff. Legend format: 1st number: 𝐾eff, 2

nd number: , 𝐾2
′. (b,c) 

Examples of the response to binary mixtures as 𝑛 varies. The responses to their constituent components are shown as thick black 

lines. In the limit of small 𝑐eff, the mixture response can be synergistic, linearly additive and hypoadditive depending on the 

values of 𝑛. In the other limit, the responses to mixtures are independent of the value of 𝑛 and are always in between those of 

their constituent components. For simplicity, we chose 𝑘1 for both components to be the same. 𝐾2
′, 𝐾eff for each component in 

(b): 0.29,8.33;0.5,20 (c): 0.5,8.33;0.29,20. (d) The change of activation level of a receptor when another component is added to 

the original single component stimulus. At high 𝐾2
′ (for the added odour), the response to the added odour alone, and therefore 

the weighted mean of the response, is higher than that of the original odour, resulting in a rise in response after the addition of 

the odour, and vice versa. The larger the 𝐾eff (for the added odour), the larger the weight for the response of the added odour, 

resulting in a larger deviation of the response from that of the original odour. 𝐾2
′, 𝐾eff for the original odour: 0.25,10. 
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In the limit of large 𝑐eff, we have 𝑟mix
∗ = 𝐾2

mix′ =
1

∑
𝑝𝑖

𝐾2
𝑖 ′

2
𝑖

 for mixtures. The response to the mixture is the weighted 

harmonic mean of the maximum responses to the constituent components when they are presented alone, with the 

weight 𝑝𝑖 =
𝑘eff
𝑖

∑ 𝑘
eff
𝑗

𝑗

  being proportional to their respective response gain at low concentrations. This implies that in this 

limit, the mixture response must be hypoadditive and in between the responses of its constituent components, 

regardless of the value of 𝑛, as shown in Figure 6b and c. This result is supported by Duchamp-Viret (2003), who 

showed that there are only 3% of instances where this is untrue at a high (but finite) concentration. Intuitively, in such 

a regime, competition for receptor sites dominates the interaction between odour molecules of different types, which 

gives rise to the hypoadditivity in responses. How the mixture responses are affected by 𝐾2
′ and 𝐾eff of its constituent 

components is illustrated in Figure 6d. 

 

3.2.2 Dose-response relationship at system level 

In (11a) and (11b), the parameters correspond to specific individual odour-receptor combinations. If we consider the 

entire space of possible odour inputs and the space of all possible chemical receptors, we would have a very large 

number of possible odour-reception combinations. Each combination 𝑖 is characterized by parameters, 𝑥1
𝑖 , …,  𝑥𝑛

𝑖 , 

which are sampled from parameter sets 𝑋1, …,  𝑋𝑛, each having the same number of elements as the number of 

possible odour-reception combinations. If we consider a sufficiently large number of such combinations, it is sensible 

to describe 𝑥1
𝑖 , … , 𝑥𝑛

𝑖 , as random variables with some appropriate probability distribution each. We will take this view 

for all parameters in (11a) and (11b) below, which allows us to study the statistical properties of responses analytically. 

Note that we are not applying the above treatments to the parameter 𝑛, which reflects the properties of receptors only 

and is odorant-independent. 

 

Figure 7 shows our model’s prediction of average ORN responses for single component, binary and ternary mixtures 

stimuli using statistically constraint parameters (See methods). At low concentration, the responses to binary and 

ternary mixtures are larger than those to the single components but less than twice and three times those of single 

components. As shown in the following, this derives from the fact that 𝑛 < 1 for most of the receptors: Considering 

the average mixture response 〈𝑟mix
∗〉, 

〈𝑟mix
∗〉 = 〈

(∑ 𝑘1
𝑗

𝑗 )
𝑛

∑ 𝑘1
𝑗𝑛

𝑗
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𝑖 𝑐eff𝑖 〉  

              ≈ 〈
(∑ 𝑘1

𝑗
𝑗 )

𝑛
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𝑗𝑛

𝑗

〉 〈∑ 𝐾eff
𝑖 𝑐eff𝑖 〉  

if we assume that 
(∑ 𝑘1

𝑗
𝑗 )

𝑛

∑ 𝑘1
𝑗𝑛

𝑗

 and 𝑘1
𝑖 𝑛 are essentially uncorrelated. While they are not truly independent, this is a good 

approximation since the former does not scale with 𝑘1
𝑖 . Then,  

〈𝑟mix
∗〉  ≈ 𝑁 〈

(∑ 𝑘1
𝑗

𝑗 )
𝑛

∑ 𝑘1
𝑗𝑛

𝑗

〉 〈𝐾eff𝑐eff〉  

              = 𝑁 〈
(∑ 𝑘1

𝑗
𝑗 )

𝑛

∑ 𝑘1
𝑗𝑛

𝑗

〉 〈𝑟∗〉  ,         (14) 

where we made use of the fact that all the 𝐾eff
𝑖  are independent and identically distributed random variables. 

By (E2)-(E4), 1 ≥
(∑ 𝑘1

𝑗
𝑗 )

𝑛

∑ (𝑘1
𝑗
)
𝑛

𝑗

≥ 𝑁𝑛−1 if 0 < 𝑛 ≤ 1. This implies 

𝑁〈𝑟∗〉 ≥ 〈𝑟mix
∗〉 ≈ 𝑁 〈

(∑ 𝑘1
𝑗

𝑗 )
𝑛

∑ 𝑘1
𝑗𝑛

𝑗

〉 〈𝑟∗〉 ≥ 𝑁𝑛〈𝑟∗〉 > 〈𝑟∗〉,       (15) 

which resonates with the findings in Figure 7. Similarly, it can be shown that 𝑁〈𝑟∗〉 ≤ 〈𝑟mix
∗〉 ≤ 𝑁𝑛〈𝑟∗〉 if 𝑛 ≥ 1. 
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At high concentrations, our model predicts equivalent average responses to single odours and mixtures. Here we 

investigate the relationship between the average response to a single component odour at the limit of large 𝐶 over all 

possible odour-receptor combinations and the average response to mixtures for the example of binary mixtures. It can 

be proven that for binary mixtures, 〈𝑟∗〉 ≥ 〈𝑟mix
∗〉, i.e. 〈𝐾2

𝑖′〉𝑖 ≥ 〈
1

𝑝𝑖

𝐾2
𝑖 ′
+
𝑝𝑗

𝐾2
𝑗 ′

〉𝑖,𝑗 , 𝑖, 𝑗 = 1,2, … , 𝑁 if 𝐾eff is homogeneous 

for all odour-receptor combinations, i.e. 𝑝𝑖 =
1

2
, ∀𝑖 ≤ 𝑁 (See Appendix D). Since the average response to mixtures is 

monotonically increasing with the rank correlation between 𝑝 and 𝐾2
′ (See Appendix D), it is a simple corollary that 

〈𝐾2
𝑖′〉𝑖 ≥ 〈

1
𝑝𝑖

𝐾2
𝑖 ′
+
𝑝𝑗

𝐾2
𝑗 ′

〉𝑖,𝑗 if 𝑝 is perfectly anti-rank-correlated with 𝐾2
′. However, this also means that it is possible that 

〈𝐾2
𝑖′〉𝑖 ≤ 〈

1
𝑝𝑖

𝐾2
𝑖 ′
+
𝑝𝑗

𝐾2
𝑗 ′

〉𝑖,𝑗 if the rank correlation between 𝑝 and 𝐾2
′ is sufficiently large. Therefore, while rough equivalence 

in average response to single odours and mixtures is observed for parameter choices corresponding to honey bees’ 

olfactory system, we cannot conclude that it is a general property of the receptor model.  

 

(a) (b) (c) 

   
Figure 7: The relationships between the stimulus concentration and the average response for (a) ORN activation level (b) ORN 

firing rate and (c) PN firing rate, across all different odour-unit combinations. For both the activation level and firing rate, the 

average response strength for binary and ternary mixtures are larger than those of components but smaller than twice and triple 

those of single components at low stimulus concentrations. They, however, become almost identical at high stimulus 

concentrations. Note that the results for ORNs are obtained by further averaging over 1000 trials. Error bars are not shown as 

the variability of the results across trials is very small (𝜎firing rate < 0.6, 𝜎activation < 0.003), in particular at high stimulus 

concentrations. 

 

3.2.3 Correlation between asymptotic response patterns at high and low stimulus concentration 

Figure 8 shows that the asymptotic ORN response patterns to the same single component odour stimulus at high and 

low concentration are less correlated than those of mixture stimuli, suggesting ORN response patterns to mixtures 

tends to be more concentration-invariant than those of single component odours.  
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In section 3.2.1, we have shown that the activation levels of receptors at the limit of low and high effective stimulus 

concentration are 𝐾eff𝑐eff and 𝐾2
′ (𝐾eff

mix𝑐eff and 𝐾2
mix′) for odours of a single (multiple) component(s). Therefore, the 

correlation between activation patterns for stimuli in the limit of low and high 𝑐eff is essentially equivalent to the 

correlation of 𝐾eff and 𝐾2
′, assuming that 𝑐eff for each odour-receptor combination is the same. If 𝐾eff and 𝐾2

′ are 

strongly positively correlated, weak response at low concentration is more likely accompanied with weak response in 

high concentration for that odour-receptor combination, and vice versa. Taking the case of a single component odorant 

as an example, we illustratively show in Figure 9 that there is a strong positive dependence of the correlation between 

response patterns at different effective concentrations and 𝐾eff and 𝐾2
′. 

 

(a) (b) 

  
Figure 9: Dose response curves for different 𝐾eff and 𝐾2

′, where the correlation between the parameters are (a) strongly positive 

and (b) non-positive. When 𝐾eff is strongly positively correlated with 𝐾2
′, the proportion between the responses of different 

units are roughly constant over a large range of effective concentration, which indicates a high linear correlation between the 

response patterns at different effective concentrations. The opposite is observed if they are not strongly positively correlated. 

Legend format: first number 
1

𝐾2
′,  second number 

1

𝐾eff
. 

 

If we assume that 𝑘1 , 𝑘−1  and 𝐾2  are independent, the pairwise Pearson correlation between 𝐾𝑒𝑓𝑓  and 𝐾2
′  is 

positive as a simple consequence of the Chebyshev integral inequality (See e.g. Egozcue et al, 2009) since 𝐾eff is 

monotonically increasing with 𝐾2 and 𝐾2 is monotonically increasing with 𝐾2
′. 

 

 
 

Figure 8: The pairwise correlation, averaged over all ORNs and PNs, between the response patterns at low (𝑐 = 10−4) and high 

(𝑐 = 10−1) concentration. For ORNs, the results is an average of over 1000 trials and the error bar is the standard deviation 

across different trials. We also verified that the observed monotonic relationship between the cross-concentration correlation 

and the number of components holds for every single trial. For PNs, the results are from a single trial. 
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We then asked, whether, under these assumptions,  𝐾eff
mix and 𝐾2

mix′  would be more strongly positively correlated 

than 𝐾eff and K2
′. While it is not expected that the above statement holds universally, we computed the correlations 

between 𝐾eff
mix and 𝐾2

mix′, and Keff and K2
′ using a number of parameter sets with different ranges and statistical 

distributions, including biologically plausible ones, over many trials. We were able to verify that the above 

statements hold true for all trials even if the distribution of 𝐾1 and 𝐾2 are strongly skewed, as shown in Table 2. 

Therefore, we are confident that the above-mentioned conjecture holds for most, if not all, reasonable probability 

distributions of 𝐾1 and 𝐾2.  

 

The remaining questions are whether the higher correlation between 𝐾eff
mix and 𝐾2

mix′ can be extended to correlation 

of response patterns, in terms of firing rate, at different concentration, and whether such correlations would be 

destroyed by the non-uniformity of 𝑐eff for different odour-receptor combinations for stimuli with the same 𝑐 caused 

by variability in 𝑛. Table 2 shows that, if the transduction coefficient 𝑛 is a constant, the correlation of the firing rate 

response patterns at high and low 𝑐eff for binary mixtures is indeed higher than that of single component odours. 

This holds for all trials and for all tested biologically plausible parameter sets. If we also take into account the non-

uniformity of 𝑛 across ORNs, the difference in correlation decreases and it is possible that results from a few trials 

become discordant. However, Table 2 shows that overall the cross-correlation for mixtures is still significantly 

higher than for their single odours counterparts and the instances of discordance are very rare even when 𝑛 is highly 

variable. This suggests that the higher cross-concentration correlation between response patterns is a general result 

for the receptor model as described in (3) and (4).   

 

Probability 

distribution  

𝒌𝟏
𝒏

 (min,max)/ 𝝁,𝝈 𝒌−𝟏 (min,max)/ 𝝁,𝝈 𝑲𝟐 

(min,max)

/  𝝁,𝝈 

Mean corr 

difference 

 

% of discordant 

trials  

𝑲𝐞𝐟𝐟
𝐦𝐢𝐱 and 𝑲𝟐

𝒎𝒊𝒙′, and 𝑲𝒆𝒇𝒇 and 𝑲𝟐
′ (𝒏 = 𝟎. 𝟔𝟓) 

Uniform  (0.5,5) (0.005,0.05) (0.01,1) 0.061 0 

Exp(uniform) (0.63,31.6) (0.006,0.1) (0.01,1) 0.095 0 

Normal * 4,1.5 0.03,0.01 0.3,0.15 0.038 0 

Uniform** (0.5,5) (0.005,0.05) (1,10) 0.06 0 

Uniform** (0.01,0.1) (0.1,1) (0.01,1) 0.061 0 

Exp(uniform)** (0.01,1) (0.01,1) (0.01,10) 0.063 0 

Log(uniform)** (0.095,4.61) (0.001,0.095) (0.01,1.1) 0.042 0 

Average firing rate for mixture and single component odourant (𝒏 = 𝟎. 𝟔𝟓) 

Uniform  (0.5,5) (0.005,0.05) (0.01,1) 0.239 0 

Exp(uniform) (0.63,31.6) (0.006,0.1) (0.01,1) 0.379 0 

Normal * 4,1.5 0.03,0.01 0.3,0.15 0.312 0 

𝑲𝐞𝐟𝐟
𝐦𝐢𝐱 and 𝑲𝟐

𝒎𝒊𝒙′, and 𝑲𝒆𝒇𝒇 and 𝑲𝟐
′ (variable 𝒏) 

Uniform  (0.5,5) (0.005,0.05) (0.01,1) 0.056 0 

Exp(uniform) (0.63,31.6) (0.006,0.1) (0.01,1) 0.096 0 

Normal * 4,1.5 0.03,0.01 0.3,0.15 0.029 0 

Average firing rate for mixture and single component odourant (variable 𝒏) 

Uniform  (0.5,5) (0.005,0.05) (0.01,1) 0.083 9 

Exp(uniform) (0.63,31.6) (0.006,0.1) (0.01,1) 0.308 0 

Normal * 4,1.5 0.03,0.01 0.3,0.15 0.101 7 

 

Table 2: The difference in the mean correlation between 𝐾eff and 𝐾2
′ and that of 𝐾eff

mix and 𝐾2
mix′ , and the cross-

concentration (𝑐 = 10−4 and 𝑐 = 10−1) correlation between the response patterns, in terms of firing rate, to binary 

mixtures and single component odour stimuli over 1000 trials. The correlation of 𝐾eff
mix and 𝐾2

mix′  is higher for all 

trials and for all choices of parameter sets. The variability of the “transduction constant” 𝑛 (𝑛′: log-normal 

distribution, 𝜇log𝑛′ = 0.44, 𝜎log𝑛′ = 0.22, 𝑛′ = 𝑛log10, chosen based of experimental measurements by Gremiaux 

et al (2012)) weakens the effects and introduces discordance in some of the trials. However, the cross-concentration 

correlation of the response patterns for mixtures is still significantly higher than that of single component odour 
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stimuli and instances of discordance are rare. *A hard boundary of 𝐾1, 𝐾2 > 0 is imposed for unbounded 

distributions. ** Non-biologically plausible parameter sets 

 

For non-biologically plausible parameter sets marked with ** in Table 2, the majority of the neurons either remain 

inactive at high concentration or already respond at the asymptotical level at low concentration. Correlation becomes 

non-indicative as a measure in such a context. 

 

3.2.4 Response latency 

The response latency, defined as the time required for an ORN to fire a spike after stimulus onset, is primarily 

determined by the transient receptor response at the limit of small time. The stronger the transient response, the 

lower the latency. In Appendix F we consider the full sets of dynamics equation for single component stimuli and 

mixtures and find an approximation for 𝑟∗ and 𝑟mix
∗ at the limit of small ceff and 𝑡. In the approximation, we assume 

that  𝑘1
𝑛 ≫ 𝑘−1, 𝐾2, which is essential for both reproducing the rapid pulse tracking ability of ORNs observed in 

Szyszka et al (2014) (See also Figure 2) and ensuring a realistic magnitude of receptor responses at different 

concentrations. This leads to the following expressions: 

    𝑟∗ ≈
𝑘2

𝑘−2
𝑘1

𝑛𝑟total𝑐eff𝑡            (16a) 

𝑟mix
∗ ≈

(∑ 𝑘1
𝑗

𝑗 )
𝑛

∑ 𝑘1
𝑗𝑛

𝑗

∑
𝑘2
𝑖

𝑘−2
𝑖 𝑘1

𝑖 𝑛𝑟total𝑐eff𝑡𝑖          (16b) 

Now, we compare the average response to N-component mixtures and single component odorants for a typical receptor, 

i.e. we are averaging over 𝑘 values, but not over 𝑛. To ensure that differences are not caused by the disparity in the 

number of molecules present in the single component odour and in the mixture, we consider the mixtures with 

concentration 𝑐0  for each component, and single component odorants with concentration 𝑁𝑐0 . Using a similar 

approach as in the derivation of (15), we have for mixtures 

    〈𝑟mix
∗(𝑐 = 𝑐0)〉 ≈ 𝑁 〈

(∑ 𝑘1
𝑗

𝑗 )
𝑛

∑ 𝑘1
𝑗𝑛

𝑗

〉 〈𝑟∗(𝑐 = 𝑐0)〉        (17) 

Note that the assumption of essentially uncorrelated 
(∑ 𝑘1

𝑗
𝑗 )

𝑛

∑ 𝑘1
𝑗𝑛

𝑗

 and 𝑘1
𝑖 𝑛 is made as in (14). For single component odorants 

with normalized concentration and assuming 𝑛 < 1, we have 

    〈𝑟∗(𝑐 = 𝑁𝑐0)〉  

= 〈
𝑘2

𝑘−2
𝑘1

𝑛𝑟total𝑁
𝑛𝑐0eff𝑡〉  

= 𝑁 𝑁𝑛−1 〈𝑟∗(𝑐 = 𝑐0)〉           

≤ 𝑁 〈
(∑ 𝑘1

𝑗
𝑗 )

𝑛

∑ 𝑘1
𝑗𝑛

𝑗

〉 〈𝑟∗(𝑐 = 𝑐0)〉   (by E4) 

= 〈𝑟mix
∗(𝑐 = 𝑐0)〉           (18)  

It can easily be shown that by (E3), the inequality sign in (18) flips if 𝑛 ≥ 1. 

As discussed in the previous section, 𝑛 ≤ 1 for the majority of the receptors. This implies that on average one would 

expect that at the limit of small ceff,  the response latency for mixtures is smaller than its single component counterpart 

with the same number of molecules, which has been verified by the results from simulation of our models as shown 

in Figure 10.  
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Figure 10: The average response latency decreases with the number of components in the odour stimulus. The effect is most 

significant when the stimulus concentration is low. This effect cannot be fully explained by the higher number of odour 

molecules in stimuli with more components compared to their counterparts with less components at the same concentration, 

since the latency for binary mixtures (red) is lower than that for a single component odour with doubled concentration (green). 

Please note that an absolute latency of 1ms is added to the latency generated by simulation to mimic the time required for the 

diffusion of odour molecules in the sensilla. 

At high concentration, Free receptors are quickly depleted and equilibrium is quickly reached such that the 

approximation in (16a) and (16b) breaks down already at very small 𝑡, much earlier than the receptor neuron can fire 

a spike. In this regime, the response latency of the neurons is dominated by the equilibrium activation level, which on 

average, as shown in Figure 1, is almost equivalent for single component stimuli and mixtures. This offers an 

explanation why the average response latencies for these two type of stimuli are also almost equivalent at high 

concentration. 

 

3.2.5 Monotonicity of the results with respect to the number of components in mixtures 

Although the monotonicity of the above results can be established by further simulation and analysis, one can obtain 

an intuitive understanding of it by considering the following: We can interpret a ternary mixture as a binary mixture 

of a binary mixture of two components with the third component. We can then consider the binary mixture as a single 

odour by transforming 𝐾2
mix′  and 𝐾eff

mix in (11b) into 𝐾2′
𝑖 ′ and 𝐾eff

′, and apply the analyses in the previous sections 

with the third component being the second odour in the mixture (taking the value of 𝐾2
2′  and 𝐾eff

2 ). This procedure 

can be repeated to obtain results for mixtures having an arbitrary number of components, and the validity of this 

approach is shown in (C15). Following this idea, one can clearly see that the any change in response properties with 

respect to the single component case must be monotonic as the number of components in the mixtures increases. 

 

3.2.6 Mixtures of different proportions 

If the concentration of the components in a mixture is not identical, we can add weighting terms to the terms in the 

summation in 𝐾eff
mix and 𝐾2

mix′, so that 𝐾eff
mix becomes a weighted sum of 𝐾eff

i  while the weight 𝑝𝑖  in 𝐾2
mix′ is further 

weighted by the effective concentration for different components (See e.g. (C11)). It can be expected that much of the 

discussion above would not be affected as these weighting effects would be averaged out, except that the magnitude 

of change for different properties may be altered. The detailed study for such effects is beyond the scope of this work. 

 

3.2.7 Extension of the results to projection neurons 

One may ask whether our observations at the level of receptors and receptor neurons would also be preserved in PNs. 

If we assume that spike generation is independent of the sub-threshold membrane potential dynamics in the ORNs, it 

is obvious that lower 1st spike response latency in the ORNs implies lower latency in PNs. For the observations of 

weaker response gain and stronger correlation between response to stimuli at low and high concentrations in ORNs, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/163238doi: bioRxiv preprint 

https://doi.org/10.1101/163238


one might think that the non-linearity of spike generation and inhibition may render the observed effects insignificant 

in PNs. We show in Figure 7c and 8 that this is not the case.  

 

4. Discussion 

In this work, we produced a biophysical model of the early olfactory system of honey bees in which their full receptor 

repertoire is considered. Instead of directly fitting specific experimental data, model responses are generated with 

constraints from the overall statistics observed in ORN responses in a number of experiments, namely the generally 

high pairwise correlation between ORN response to different odours (Galizia et al, 1999), the dependence of similarity 

in ORN response pattern and chemical structure of odorants (Carcaud et al, 2012), the sigmoid-shaped response-dose 

relationship (Rospars et al, 2008, Gremiaux et al, 2012), and the fast response dynamics and high sensitivity to 

temporally fluctuating inputs (Syzszka et al, 2014). With this approach, we showed that many experimental findings 

from data not used to build the model can be reproduced. 

 

The model takes into account several biophysical processes at a minimal level, including processes of chemical 

binding and activation in receptors, and spike generation and transmission in the antennal lobe network. This allows 

us to pinpoint which part of the system is responsible for certain features of the response. At the same time, it is simple 

enough to allow mathematical analysis and/or efficient numerical simulation of various parts of the system. 

 

We then extended the receptor model such that it can also describe responses to mixtures of chemicals. The model 

can reproduce experimentally observed synergistic and hypoadditive mixture responses (Duchamp-Viret et al, 2003; 

Rospars et al, 2008; Cruz and Lowe et al, 2013). We then applied probability theory in order to compare the statistical 

properties of the receptor responses to single component and mixture stimuli, and showed that for binary mixtures the 

response latency of ORNs at low stimulus concentrations is reduced and the response patterns are less variable across 

concentrations, as compared to single component odours. We showed rigorously that these results are not specific to 

any particular fine-tuned parameter set, but are a general consequence of the receptor dynamics described by (4) in a 

large regime containing biologically plausible scenarios. In addition, our results imply that any change in response 

properties with respect to the single component case must be monotonic with the number of components in the 

mixtures. Finally, by numerical simulation, we found that these results are preserved in PNs, unaffected by processes 

in the later part of the system, including spike generation and LN inhibition. 

 

4.1 Improvements of our receptor model for mixtures over previous models 

In our receptor model for mixtures, the total rate of molecule binding is determined by applying the transduction 

cascade after summing up the effective affinity to the receptors 𝑘1
𝑗
𝑐𝑗 for each component. Previous work (Rospars et 

al, 2008; Nowotny et al, 2013) instead applied the transduction cascade to each of the components, which gives 

equations of the following form: 

{
 
 

 
 𝑟0̇ = ∑ 𝑘−1

𝑗
𝑟𝑗𝑗 − ∑ [(𝑘1

𝑗
𝑐𝑗)

𝑛
]𝑗 𝑟0                                          

𝑟̇𝑖  = (𝑘1
𝑖𝑐𝑖)

𝑛
𝑟0  − 𝑘−1

𝑖 𝑟𝑖 + 𝑘−2
𝑖 𝑟𝑖

∗ − 𝑘2
𝑖 𝑟𝑖                            

𝑟̇𝑖
∗ = 𝑘2

𝑖 𝑟𝑖 − 𝑘−2
𝑖 𝑟𝑖

∗                                                                   

𝑟total = 𝑟0 + ∑ (𝑟𝑗 + 𝑟𝑗
∗)𝑗                                                                  

                         (17) 

Cruz and Lowe (2013) pointed out that this equation is inconsistent for ‘mixtures’ of identical components with 

randomly partitioned concentrations. They offered a solution by not considering the transduction constant 𝑛 in the 

dynamical equations but added them directly to the solution. It is highly non-trivial to ascertain whether such altered 

expressions would correspond to the solutions to a system of equations that have good biological basis. Our approach 

is more transparent on how molecules may interact biophysically, and offers experimentally testable predictions. 

In our model, the rate of receptor binding for each component is weighted by its effective affinity to the receptor after 

taking transduction into account. We believe this is the best educated guess based on the information we have. We 

assumed that the total rate of receptor binding depends on transduction processes, which means such processes 

influence the interaction between odour molecules and receptor sites, and competition between different types of 

molecules for receptor sites should also take into account such effects. 
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4.2 Limitations of our model 

In the model, we did not consider inhibitory responses for ORNs. A technical reason is that experimental 

measurements using calcium imaging are not very good in exposing inhibitory responses. While some ORNs do 

express inhibitory responses (Getz and Akers, 1993; de Bruyne et al, 1999), it is unlikely that they contribute 

substantially to odour identification, since the system would otherwise need to take much longer to perform odour 

identification than results from behavioural experiments suggest (Resulaj et al, 2015) given the relatively small 

number of neurons in the bees’ early olfactory system. It is possible though that inhibitory responses are important for 

coding fine features of odorants but that is beyond the scope of this study. With suitable experimental data the model 

can be adjusted by changing a few parameters to also generate inhibitory responses. 

 

We have made several approximations when calculating the firing rate and response latency of neurons. The 

instantaneous firing rate 𝜈, by our definition in (10), corresponds to the anticipated firing rate if the effective input 

current 𝐼eff (see (8)) stays constant. The lack of a temporal filter representing the finite time scale of spike generation 

leads to an overestimation in the sensitivity of neurons to input fluctuations (Ostojic and Brunel, 2011; Schaffer et al, 

2013). However, in this context, such effects are alleviated by the additional temporal filters in the process of binding 

and activation of receptors, as described in (3), which smoothen out 𝐼eff to some extent even if the stimulus intensity 

fluctuates rapidly. Moreover, we assumed that inputs are noise-free when calculating the firing rate and response 

latency of ORNs. This assumption is valid for dominantly mean-driven neurons firing regularly at high rate. Outside 

this regime, the firing rate and response latency of the neurons are underestimated. However, as we have explained in 

the previous paragraph, these slow-firing neurons are unlikely to be essential for odour identification, and given the 

low spontaneous firing rate observed in most ORNs, it is unlikely that noise would affect the AL response substantially 

apart from cases when the stimulus is very weak. Under certain circumstances, it is possible to approximate higher-

dimensional conductance-based models by a 1-dimensional integrate-and-fire model (Fourcaud and Brunel, 2002; 

Richardson and Gerstner, 2005). In such cases, a good approximation can be obtained for the mean firing rate and the 

probability distribution of response latency for arbitrary input without having to directly simulate (7) numerically 

(Ostojic and Brunel, 2011; Chan et al, in preparation). These methods also do not require an adiabatic approximation. 

 

To generate the ORN responses, we assumed that all the interactions take place at the receptor level. ORNs would 

integrate input from receptors but do not interact with each other. Experimental measurements (Duchamp-Viret et al, 

2003; Rospars et al, 2008) have shown that for a small minority of odour-receptor combinations, ORN responses can 

decrease with concentration. In addition, there is a small chance that mixture responses are lower than all the individual 

responses to their constituent components. While this can be reproduced by having the transduction constant 𝑛 taking 

a negative value, it is unrealistic because of the singularity at zero concentration. A more plausible mechanism for 

such results is coupling between different ORNs. It has been reported in Drosophila that excitation of a receptor 

neuron may inhibit its neighbour in the sensillum via ephaptic interactions (Su et al, 2012; Van der Goes van Naters, 

2013), which may lead to the above-mentioned suppressed mixture responses. However, since the structure of sensilla 

in bees’ antenna is different from that of Drosophila sensilla, it is unclear whether the same effects would exist in 

bees. Better knowledge about the bees’ anatomy and chemical processes in the receptor is required to improve the 

model. Nevertheless, here we have shown that even without considering the above-mentioned extra interactions, many 

features of olfactory processes can already be reproduced. This raises the question whether and how these interactions 

affect olfactory processing and coding. 

 

4.3 The role of the 2-step binding and activation processes in olfactory receptors 

It is well known that there are two distinct chemical processes taking place in olfactory receptors: binding of odour 

molecules to receptors and activation of bound receptors (Rospars et al, 2008). One may ask whether a single process 

would be sufficient to produce olfactory responses without compromising the coding of stimuli. Our results ((11a) 

and (11b)) elucidate how the olfactory response depends on each process. For single component stimuli, the 

asymptotic response in the limit of high concentration depends only on the activation process while the response at 

the other limit of low concentration depends on both the binding and activation processes. From this, it is clear that 

the process of activation of bound receptors is essential for a rich representation of different stimuli at high 

concentration, and thus identification of odour in this regime. However, it also somewhat destroys the correlation 

between the representations for the same odour at different concentrations. Here we showed that this can be alleviated 

by replacing single component odorants with mixtures, since the response to mixtures at high concentration no longer 

only depends on the activation of receptors but also is weighed by the affinity of the constituent odorants to the 
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receptors. The additional dependence on the binding step leads to the higher correlation between response patterns at 

high and low concentration. 

 

4.4 Implication of our results on coding of odours 

An important question is how the lower average response latency and higher correlation between responses across 

concentrations for mixtures affect information coding. Behavioural experiments (Resulaj et al, 2015) suggest that 

odour identification by the olfactory system is performed in the time scale of 101ms. Here we describe two simplistic 

code which is possible under such constrains. First, the response patterns are sampled for a fixed amount of time, after 

which a decision of odour identity is made (Junek et al, 2010; Wilson et al, 2017). With lower latency, more ORNs 

can be recruited for the identification of a particular odour. This implies larger information capacity of the system for 

mixture stimuli. Second, the decision of odour identity is determined by the response of a fixed number of ORNs (). 

In this case, the lower average latency for mixtures allows them to be identified by the system more quickly. 

 

In natural environment, odours molecules are primarily transported through air by convection. Previous studies 

(Murlis et al, 1992; Weissburg et al, 2012) showed that odours molecules move through air in filaments, forming 

complex odour plumes. Very often, the movement of those plumes is chaotic because of turbulent air flow, which 

results in rapid and unpredictable fluctuations in the concentration of odours as received by animals. Therefore, to 

identify an odour, the response of the olfactory system need to be reasonably robust against changes in odour 

concentration. The strong positive correlation between response patterns across concentrations for mixtures is 

therefore highly conducive to odour identification. 

 

One may argue that such correlations hinder the coding of odour concentration. There are several alternatives of how 

concentration information can be coded, as discussed in previous work. For instance, information for concentration 

may be coded by other features of the response, like the portion of activated glomeruli (Stopfer et al, 2003; Strauch et 

al, 2012), the connectivity between units with plastic synapses (Hopfield, 1991), or by responses at the later part of 

the olfactory system (Froese et al, 2013). It is also possible that concentration information is encoded by the temporal 

patterns of input, for instance the response latency of all or a sub-set of units (Hopfield, 1995) or degree of synchrony 

between firing of different units (Brill et al, 2015). Therefore, the improved identity coding due to more invariant 

asymptotic response pattern does not necessarily imply a compromise in concentration coding, and it remains an open 

question how identity and concentration coding may be simultaneously achieved (Hopfield, 1991,1995; Stopfer et al, 

2003, Arnson and Holy, 2013). 
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Appendix A: Generating ORN responses which matches the statistics of experimental data 

The method we used to generate the response vectors is inspired by that used by Haenicke (2015). The response 

vector of the 𝑘𝑡ℎ ORN is denoted as 𝑢𝑘, in which each element corresponds to the response of the ORN to a 

particular odour. For 𝑘 ≤ 26, 𝑢𝑘 was directly adopted from experimental data of the 26 ORNs as mentioned in the 

last paragraph. The rest of 𝑢𝑘 were generated as follows: 

 𝑢𝑘 = {

1

𝑠total+(𝑘−𝑠total)𝑦𝑘
∑ 2{(𝑠𝑖𝑘 − 0.5)𝑢𝑖 + [0.5 − (𝑠𝑖𝑘 − 0.5)] × 𝜉unif × 𝑦𝑘},  for𝑖<𝑘  𝑠𝑖𝑘 > 0.5

   
1

𝑠total+(𝑘−𝑠total)𝑦𝑘
∑ 2{(0.5 − 𝑠𝑖𝑘)(1 − 𝑢𝑖) + [0.5 − (0.5 − 𝑠𝑖𝑘)] × 𝜉unif × 𝑦𝑘},  for𝑖<𝑘  𝑠𝑖𝑘 ≤ 0.5

,   (A1) 

where 𝑠𝑖𝑗  are elements of an upper triangular matrix 𝑠 which describes the ratio of correlation between pairs of 

glomeruli response vectors, 𝑦𝑗 controls the overall level of correlation between the response vector of the 𝑗𝑡ℎ ORN 

and that of the other ORNs, 𝜉unif is a uniform random number in [0,1). The factor 
1

𝑠total+(𝑘−𝑠total)𝑦𝑘
, in which 

𝑠total = ∑ 2(𝑠𝑖𝑘 − 0.5)𝑖<𝑘 , normalizes the responses to [0,1]. 

 

The statistics of the elements in each response vectors 𝑟𝑘 (𝑘 > 26) generated by the above procedures does not 

follow that of their counterparts in the experimental data (𝑘 ≤ 26). Therefore, we rescaled all the elements 𝑢𝑗𝑘, 

where 𝑗 = 1,2, …16 corresponds to each of the 16 odours, in all response vectors 𝑢𝑘 for 𝑘 > 26 and obtained new 

responses vectors 𝑢𝑘
∗  comprising of elements 𝑢𝑗𝑘

∗ , which are described by: 

𝑢𝑗𝑘
′ =

{
 

 (𝑢𝑗𝑘 − 𝜇𝑟𝑘) × √
𝜉𝜎

𝜎𝑟𝑘
+ 𝜉𝜇 , if 0 ≤ (𝑢𝑗𝑘 − 𝜇𝑟𝑘) × √

𝜉𝜎

𝜎𝑢𝑘
+ 𝜉𝜇 ≤ 1

𝛿 × 𝜉unif, if (𝑢𝑗𝑘 − 𝜇𝑟𝑘) × √
𝜉𝜎

𝜎𝑢𝑘
+ 𝜉𝜇 < 0

,         (A2) 

where 𝜉𝜇 and 𝜉𝜎  are random variables centred around the mean and the variance across all elements in all response 

vectors from the experimental data, 𝜇𝑟𝑘 =
∑ 𝑢𝑗𝑘𝑗

𝑗
, which corresponds to the mean of the elements in 𝑢𝑘, 𝜎𝑟𝑘 =

∑ 𝑢𝑗𝑘
2

𝑗

𝑗
− 𝜇𝑟𝑘

2, which corresponds to the variance of the elements in 𝑢𝑘, 𝛿 is a small constant. There is a small 

possibility that the rescaled elements have negative values. In such cases, the rescaled value were artificially set to a 

value close to 0 as described by (A2). The rescaled elements were allowed to have value greater than 1 since it is 

possible that some ORNs which are not experimentally measured respond more strongly to some odours than all of 

its experimentally measured counterparts. 

 

Both the statistics of the pairwise correlation of the generated vectors 𝑢𝑘
′  as well as the mean and variance across 

their elements match that of the experimental data. For the rest of the paper, 𝑢𝑘 refers to 𝑢𝑘
′  as described by (A2) 

instead of its counterpart in (A1). 

 

Table A1 listed the parameters used for the random variables. They are obtained by manual trial-and-error. While 

our method and parameters provide generated response patterns with an excellent fit with the data, there may be 

other possible parameters or methods which may produce equally good or better fit with the data, the study of which 

is outside the scope of this work. 

Random variables pdf 𝝁, 𝝈/(min, max) 

𝑠 *mixture of 3 

normal distributions 
0.88,0.075 with 𝑝 = 0.2 

0.16,0.075 with 𝑝 = 0.2 

0.64,0.075 with 𝑝 = 0.6 

𝑦 **normal 1,1 

𝜉𝜇 mixture of 2 uniform 

distributions 
(0.12,0.4) with 𝑝 = 0.75 

(0.35,0.7) with 𝑝 = 0.25 

𝜉𝜎  Folded normal  0,0.028 

Table A1: Parameters used for (A1) and (A2). *A hard boundary 0 < 𝑠 < 1 is imposed.  **A hard boundary 0 <

𝑛 < 2 is imposed.   
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Appendix B: Parameters of the model 

Random variables p.d.f. value/𝝁, 𝝈 units remarks 

Parameters for the Hill curves in (2) and receptor dynamics 

𝐶1
2

  normal -3, 1  hard boundary: −4.4 < 𝐶1
2

< −0.4 

𝑛′  log-normal 0.45, 0.3  hard boundary: 0.7 < 𝑛′ < 3.5 

𝑟0  constant 2   

𝑘1  normal and 

then scaled* 

1.2, 0.15 ms-1 scaling factor: √𝐶1
2

 𝑛′  

hard boundary: 0.1 < 𝑘1 < 5000  

𝑘2  normal 0.1, 0.01 ms-1 hard boundary: 𝑘2 > 0 

Note: 𝑘−1 and 𝑘−2 are constrained by the above. Hard boundary: 𝑘−1 > 0.01, 0 < 𝑘−2 < 50 

AL network connectivity between units 

(Note in all cases a hard boundary of mean±2 standard deviation are applied) 

𝑤0  normal 0.006, 0.002   

𝑤corr  normal 0.01, 0.001   

𝑔ORN   constant 2 nS  

ORN-PN normal 0.045, 0.01   

ORN-LN normal 0.013, 0.003   

LN-PN normal 0.04, 0.01   

LN-LN normal 0.004, 0.001   

Spiking model 

𝜏𝑚  constant 20 ms  

𝑉𝑒  constant 50 mV  

𝑉𝑖  constant -75 mV  

𝑉𝑟   constant -70 mV  

𝑔𝑙  constant 1 nS  

𝑉𝑡ℎ  constant -50 mV  

𝑉reset  constant -70 mV  

𝑡refract  constant 2 ms  

background 

excitation  

ORN constant 0.28 nS  

PN normal 0.24, 0.02 nS hard boundary: mean±2 sd 

background 

inhibition  

ORN constant 0.5 nS  

PN normal 0.15, 0.01 nS hard boundary: mean±2 sd 

𝐼adapt
base

  ORN constant 40 mA  

PN normal 4.5, 0.4 mA hard boundary: mean±2 sd 

LN normal 1.8, 0.2 mA hard boundary: mean±2 sd 

𝜏adapt  ORN constant 60 ms  

PN/LN constant 25 ms  

 

Table B1: Parameters used in the model. 
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Appendix C: Derivation of the asymptotic receptor response 

Here we are deriving the asymptotic response for the dynamical equations (3) and (4). The dynamics equation of 

binding and activation for single odour stimulus is 

{
 

 
𝑟0̇ = 𝑘−1𝑟 − (𝑘1𝑐)

𝑛𝑟0                              

𝑟̇   = (𝑘1𝑐)
𝑛𝑟0  − 𝑘−1𝑟 + 𝑘−2𝑟

∗ − 𝑘2𝑟 

𝑟 ∗̇ = 𝑘2𝑟 − 𝑘−2𝑟
∗                                      

𝑟total = 𝑟0 + 𝑟 + 𝑟
∗                                             

,                                    (C1) 

At equilibrium, we have 𝑟̇0 = 𝑟̇ = 𝑟
∗̇ = 0, this gives 

{

𝑟  = 𝐾1𝑟0𝑐
𝑛           

𝑟∗ = 𝐾2𝑟                 
  𝑟0  = 𝑟total − 𝑟 − 𝑟

∗
 ,          (C2) 

where 𝐾1 =
𝑘1
𝑛

𝑘−1
, 𝐾2 =

𝑘2

𝑘−2
,  

Hence we have 

𝑟∗ = 𝐾2𝑟 = 𝐾1𝐾2𝑟0𝑐
𝑛 = 𝐾1𝐾2(𝑟total − 𝑟 − 𝑟

∗)𝑐𝑛 = 𝐾1𝐾2 [𝑟total − (1 +
1

𝐾2
) 𝑟∗] 𝑐𝑛  

[1 + 𝐾1𝐾2 (1 +
1

𝐾2
) 𝑐𝑛] 𝑟∗ = 𝐾1𝐾2𝑟total𝑐

𝑛  

𝑟∗ =
𝑟total

1

𝐾1𝐾2𝑐
𝑛+(1+

1

𝐾2
)
          (C3) 

Let 𝐾eff = 𝑟total𝐾1𝐾2, 𝐾2
′ = 𝑟total

1

(1+
1

𝐾2
)
, 𝑐eff = 𝑐𝑛 we have  

𝑟∗ =
1

1

𝐾2
′+

1

𝐾eff

1

𝑐eff

           (C4) 

We now consider, more generally, the sets of dynamics equation for stimulus with an arbitrary number of 

components: 

{
  
 

  
 𝑟0̇ = ∑ 𝑘−1

𝑗
𝑟𝑗𝑗 − (∑ 𝑘1

𝑗
𝑐𝑗𝑗 )

𝑛
𝑟0                                          

𝑟̇𝑖  = (∑ 𝑘1
𝑗
𝑐𝑗𝑗 )

𝑛 (𝑘1
𝑖 𝑐𝑖)

𝑛

∑ (𝑘1
𝑗
𝑐𝑗)

𝑛

𝑗

𝑟0  − 𝑘−1
𝑖 𝑟𝑖 + 𝑘−2

𝑖 𝑟𝑖
∗ − 𝑘2

𝑖 𝑟𝑖

𝑟̇𝑖
∗ = 𝑘2

𝑖 𝑟𝑖 − 𝑘−2
𝑖 𝑟𝑖

∗                                                               

𝑟total = 𝑟0 + ∑ (𝑟𝑗 + 𝑟𝑗
∗)𝑗                                                               

  ,      (C5) 

where the subscript 𝑖 refers to the parameter for the 𝑖𝑡ℎ component in the stimulus 

At equilibrium, we have 𝑟0̇ = 𝑟̇𝑖 = 𝑟̇𝑖
∗ = 0 ∀𝑖, this gives 

 

{
 
 

 
 𝑟𝑖  = 𝐾1

𝑖
(∑ 𝑘1

𝑗
𝑐𝑗𝑗 )

𝑛

∑ (𝑘1
𝑗
𝑐𝑗)

𝑛

𝑗

𝑟0𝑐eff
𝑖     

𝑟𝑖
∗ = 𝐾2

𝑖𝑟𝑖                             

𝑟0 = 𝑟total − ∑ (𝑟𝑗 + 𝑟𝑗
∗)𝑗

,         (C6) 

 Hence we have  

𝑟0 = 𝑟total − ∑ (𝑟𝑗 + 𝑟𝑗
∗)𝑗   
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𝑟𝑖
∗

𝐾1
𝑖𝐾2

𝑖𝑐eff
𝑖

∑ (𝑘1
𝑗
𝑐𝑗)

𝑛

𝑗

(∑ 𝑘1
𝑗
𝑐𝑗𝑗 )

𝑛 = 𝑟total −∑ [𝑟𝑗
∗ (1 +

1

𝐾2
𝑗)]𝑗   

𝑟𝑖
∗

𝐾eff
𝑖 𝑐eff

𝑖

∑ (𝑘1
𝑗
𝑐𝑗)

𝑛

𝑗

(∑ 𝑘1
𝑗
𝑐𝑗𝑗 )

𝑛 = 1 − ∑ (
1

𝐾2
𝑗′
𝑟𝑗
∗)𝑗            

𝑟𝑖
∗ + 𝐾eff

𝑖 ′
𝑐eff
𝑖 ∑ (

1

𝐾2
𝑗′
𝑟𝑗
∗)𝑗 = 𝐾eff

𝑖 ′
𝑐eff
𝑖 ,        (C7) 

where 𝐾eff
𝑖 ′
= 𝐾eff

𝑖 (∑ 𝑘1
𝑗
𝑐𝑗𝑗 )

𝑛

∑ (𝑘1
𝑗
𝑐𝑗)

𝑛

𝑗

 

(C7) can be rewritten in matrix form, 

𝑀𝒓∗ = 𝒂,           (C8) 

where 𝑀𝑖𝑗 = 𝛿𝑖𝑗 +
 𝐾eff
𝑖 ′

𝑐eff
𝑖

𝐾2
𝑗′

, 𝛿𝑖𝑗 is the Kronecker delta function,  𝑎𝑖 = 𝐾eff
𝑖 ′
𝑐eff,𝑖 

𝒓∗ can be obtained by finding the inverse of 𝑀, and the total receptor response 𝑟total
∗  is given by  𝑟total

∗ = ∑ 𝑟𝑖
∗

𝑖 . 

First we will look at the special case of binary mixture, in this case 𝑀 =

(

 
 
1 +

 𝐾eff
1 ′

𝑐eff
1

𝐾2
1′

𝐾eff
1 ′

𝑐eff
1

𝐾2
2′

𝐾eff
2 ′

𝑐eff
2

𝐾2
1′

1 +
𝐾eff
2 ′

𝑐eff
2

𝐾2
2′

)

 
 

 

𝑀−1 =
1

∆

(

 
 
1 +

𝐾eff
2 ′

𝑐eff
2

𝐾2
2′

−𝐾eff
1 ′

𝑐eff
1

𝐾2
2′

−𝐾eff
2 ′

𝑐eff
2

𝐾2
1′

1 +
𝐾eff
1 ′

𝑐eff
1

𝐾2
1′

)

 
 

,        (C9) 

where ∆= (1 +
𝐾eff
1 ′

𝑐eff
1

𝐾2
1′

) (1 +
𝐾eff
2 ′

𝑐eff
2

𝐾2
2′

) − (
𝐾eff
1 ′

𝑐eff
1

𝐾2
2′

)(
𝐾eff
2 ′

𝑐eff
2

𝐾2
1′

) = 1 + ∑
𝐾eff
𝑖 ′

𝑐eff
𝑖

𝐾2
𝑖 ′𝑖 . 

𝒓∗ = 𝑀−1𝒂  

     =
1

∆

(

 
 
1 +

𝐾eff
2 ′

𝑐eff
2

𝐾2
2′

−𝐾eff
1 ′

𝑐eff
1

𝐾2
2′

−𝐾eff
2 ′

𝑐eff
2

𝐾2
1′

1 +
𝐾eff
1 ′

𝑐eff
1

𝐾2
1′

)

 
 
(
𝐾eff
1 ′
𝑐eff
1

𝐾eff
2 ′
𝑐eff
2
)  

      =
1

1+∑
𝐾eff
𝑖 ′

𝑐eff
𝑖

𝐾2
i ′

𝑖

(
𝐾eff
1 ′
𝑐eff
1

𝐾eff
2 ′
𝑐eff
2
)          

      =
1

1+∑
𝐾eff
𝑖 ′

𝑐eff
𝑖

𝐾2
i ′

𝑖

𝒂                             (C10) 

𝑟𝑚𝑖𝑥
∗ =

∑ 𝐾eff
𝑖 ′

𝑐eff
𝑖

𝑖

1+∑
𝐾eff
𝑖 ′

𝑐eff
𝑖

𝐾2
i ′

𝑖

=
1

1

∑ 𝐾eff
𝑖 ′

𝑐eff
𝑖

𝑖

+∑
𝐾eff
𝑖 ′

𝑐eff
𝑖

∑ 𝐾
eff
𝑗 ′

𝑐
eff
𝑗

𝑗

1

𝐾2
i ′

𝑖

=
1

1

𝐾eff
mix

1

𝑐eff
1 +

1

𝐾2
mix′

,       (C11) 

where 𝐾eff
mix = ∑ 𝐾eff

𝑖 ′ 𝑐eff
𝑖

𝑐eff
1𝑖 = ∑ 𝐾eff

𝑖 (∑ 𝑘1
𝑗
𝑐𝑗𝑗 )

𝑛

∑ (𝑘1
𝑗
𝑐𝑗)

𝑛

𝑗

𝑐eff
𝑖

𝑐eff
1𝑖 , 𝐾2

mix′ =
1

∑
𝑝𝑖

𝐾2𝑖
′𝑖

, 𝑝𝑖 =
𝐾eff
𝑖 𝑐eff

𝑖

∑ 𝐾
eff
𝑗
𝑐
eff
𝑗

𝑗

.     (C12) 
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If 𝑐eff
1 = 𝑐eff

2 = 𝑐eff, 𝐾eff
mix and 𝑝𝑖  can be further simplified as  

𝐾eff
mix = ∑ 𝐾eff

𝑖 ′
𝑖 = ∑ 𝐾eff

𝑗 (∑ 𝑘1
𝑗

𝑗 )
𝑛

∑ 𝑘1
𝑗𝑛

𝑗
𝑖 , 𝑝𝑖 =

𝐾eff
𝑖

∑ 𝐾
eff
𝑗

𝑗

.        (C13) 

In fact (C10) to (C13) is true for mixture with any number of component, note that 

(𝑀𝒂)𝑖 = ∑ [(𝛿𝑖𝑗 +
𝐾eff
𝑖 ′

𝑐eff
𝑖

𝐾2
𝑗′

)𝐾eff
𝑗 ′
𝑐eff
𝑗
]𝑗   

           = 𝐾eff
𝑖 ′
𝑐eff,𝑖 + ∑ [(

𝐾eff
𝑖 ′

𝑐eff
𝑖

𝐾2
𝑗′

)𝐾eff
𝑗 ′
𝑐eff
𝑗
]𝑗  

           = 𝑎𝑖 [1 + ∑ (
𝐾eff
𝑗 ′

𝑐eff
𝑗

𝐾2
𝑗′

)𝑗 ]         (C14) 

We have 𝑀𝒂 = 𝒂 [1 + ∑ (
𝐾eff
𝑗 ′

𝑐eff
𝑗

𝐾2
𝑗′

)𝑗 ], which gives (C10) 

1

1+∑ (
𝐾
eff
𝑗 ′

𝑐
eff
𝑗

𝐾2
𝑗 ′

)𝑗

𝒂 = 𝑀−1𝒂 = 𝒓∗          (C15) 
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Appendix D: A proof of weaker average receptor response to binary mixture than single 

odour in the limit of high stimulus concentration, assuming homogeneous 𝑲𝐞𝐟𝐟 
 

We are now proving 〈𝐾2
′〉 ≤ 〈

1
1

2𝐾21
′+

1

2𝐾22
′

〉, where  𝐾2
′, 𝐾21

′ and 𝐾22
′ are uniformly and independently sampled from 

the set 𝑌 = {𝑦1 , 𝑦2, … , 𝑦𝑁} 

 

Let 𝑥𝑖 =
1

2𝑦𝑖
 and arrange the terms such that 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑁 > 0 

We want to show that 
∑

1

2𝑥𝑖

𝑁
𝑖

𝑁
≥

∑ ∑
1

𝑥𝑖+𝑥𝑗
𝑗<𝑖

𝑁
𝑖

𝑁(𝑁−1)

2

, ∀𝑁 ≥ 2 

 

 

Proof by induction on 𝑵: 

For 𝑁 = 2,  
1

2
(
1

2𝑥1
+

1

2𝑥2
) =

1

2

𝑥1+𝑥2

2𝑥1𝑥2
>

1

2

𝑥1+𝑥2
(𝑥1+𝑥2)

2

2

=
1

𝑥1+𝑥2
  (𝐴𝑀 ≥ 𝐺𝑀) 

Assume it is true that  
∑

1

2𝑥𝑖

𝑁
𝑖

𝑁
≥

∑ ∑
1

𝑥𝑖+𝑥𝑗
𝑗<𝑖

𝑁
𝑖

𝑁(𝑁−1)

2

, where 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑁 > 0 

∑
1

2𝑥𝑖

𝑁+1
𝑖

𝑁+1
, 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑁 ≥ 𝑥𝑁+1 > 0 

=
∑

1

2𝑥𝑖

𝑁
𝑖 +

1

2𝑥𝑁+1

𝑁+1
  

≥

2

𝑁−1
∑ ∑

1

𝑥𝑖+𝑥𝑗
+

1

2𝑥𝑁+1
𝑗<𝑖

𝑁
𝑖

𝑁+1
     (Induction hypothesis) 

=
∑ ∑

1

𝑥𝑖+𝑥𝑗
𝑗<𝑖

𝑁
𝑖 +

1

𝑁−1
(∑ ∑

1

𝑥𝑖+𝑥𝑗
𝑗<𝑖

𝑁
𝑖 )+

𝑁

4𝑥𝑁+1

𝑁(𝑁+1)

2

  

=
∑ ∑

1

𝑥𝑖+𝑥𝑗
𝑗<𝑖

𝑁
𝑖 +

1

𝑁−1
(∑ ∑

1

𝑥𝑖+𝑥𝑗
𝑗<𝑖

𝑁
𝑖 +

1

2𝑥𝑁+1
)

𝑁(𝑁+1)

2

  

≥
∑ ∑

1

𝑥𝑖+𝑥𝑗
𝑗<𝑖

𝑁
𝑖 +

1

𝑁−1
(∑ ∑

1

𝑥𝑖+𝑥𝑁+1
𝑗<𝑖

𝑁
𝑖 +

1

𝑥𝑗+𝑥𝑁+1
)

𝑁(𝑁+1)

2

   (See (*) below) 

=
∑ ∑

1

𝑥𝑖+𝑥𝑗
𝑗<𝑖

𝑁
𝑖 +∑

1

𝑥𝑖+𝑥𝑁+1

𝑁
𝑖

𝑁(𝑁+1)

2

  

=
∑ ∑

1

𝑥𝑖+𝑥𝑗
𝑗<𝑖

𝑁+1
𝑖

𝑁(𝑁+1)

2

  

q.e.d. 

 

(*) 

To show 
1

𝑥𝑖+𝑥𝑗
+

1

2𝑥𝑁+1
>

1

𝑥𝑖+𝑥𝑁+1
+

1

𝑥𝑗+𝑥𝑁+1
 

Note that 
1

𝑥𝑖+𝑥𝑗
+

1

2𝑥𝑁+1
=

𝑥𝑖+𝑥𝑗+2𝑥𝑁+1

2𝑥𝑁+1(𝑥𝑖+𝑥𝑗)
 and 

1

𝑥𝑖+𝑥𝑁+1
+

1

𝑥𝑗+𝑥𝑁+1
=

𝑥𝑖+𝑥𝑗+2𝑥𝑁+1

(𝑥𝑖+𝑥𝑁+1)(𝑥𝑗+𝑥𝑁+1)
 

Since the numerator for both expressions are the same, by comparing the denominator, we have 
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1

𝑥𝑖+𝑥𝑗
+

1

2𝑥𝑁+1
>

1

𝑥𝑖+𝑥𝑁+1
+

1

𝑥𝑗+𝑥𝑁+1
↔  2𝑥𝑁+1(𝑥𝑖 + 𝑥𝑗) < (𝑥𝑖 + 𝑥𝑁+1)(𝑥𝑗 + 𝑥𝑁+1)  

 

(𝑥𝑖 + 𝑥𝑁+1)(𝑥𝑗 + 𝑥𝑁+1) − 2𝑥𝑁+1(𝑥𝑖 + 𝑥𝑗)  

= 𝑥𝑁+1
2 − 𝑥𝑁+1(𝑥𝑖 + 𝑥𝑗) + 𝑥𝑖𝑥𝑗  

= (𝑥𝑖 − 𝑥𝑁+1)(𝑥𝑗 − 𝑥𝑁+1)      (∵ 𝑥𝑁+1 ≤ 𝑥𝑖 , 𝑥𝑗) 

> 0  

⇔  2𝑥𝑁+1(𝑥𝑖 + 𝑥𝑗) < (𝑥𝑖 + 𝑥𝑁+1)(𝑥𝑗 + 𝑥𝑁+1)  

⇔ 
1

𝑥𝑖+𝑥𝑗
+

1

2𝑥𝑁+1
>

1

𝑥𝑖+𝑥𝑁+1
+

1

𝑥𝑗+𝑥𝑁+1
  

q.e.d. 

 

To show 〈
1

𝑝1

𝐾21
′+

𝑝2

𝐾22
′

〉 is increasing with its rank correlation between 𝑝 and 𝐾2
′, it is sufficient to show that 

1
𝑏1
a1
+
𝑏2
a2

>

1
𝑏2
a1
+
𝑏1
a2

 if a1 > a2 > 0 and b1 > b2 > 0. Note that  

(
𝑏1

a1
+

𝑏2

a2
) − (

𝑏2

a1
+

𝑏1

a2
) = (𝑏1 − 𝑏2) (

1

a1
−

1

a2
) < 0  

Therefore, (
𝑏1

a1
+

𝑏2

a2
) < (

𝑏2

a1
+

𝑏1

a2
), which implies  

1
𝑏1
a1
+
𝑏2
a2

>
1

𝑏2
a1
+
𝑏1
a2

.  
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Appendix E 

 
Here we provide a proof for (13a) and (13b). 

Since the parameters 𝑘1
𝑗
 are strictly positive, we can rewrite 

(∑ 𝑘1
𝑗

𝑗 )
𝑛

∑ 𝑘1
𝑗𝑛

𝑗

 in terms of the 𝐿𝑝-norms of a vector 𝑘1 =

(𝑘1
1, ⋯ , 𝑘1

𝑁), 
 

(∑ 𝑘1
𝑗

𝑗 )
𝑛

∑ 𝑘1
𝑗𝑛

𝑗

= (
∑ 𝑘1

𝑗
𝑗

(∑ 𝑘1
𝑗𝑛

𝑗 )

1
𝑛

)

𝑛

= (
‖𝑘1‖1

‖𝑘1‖𝑛
)
𝑛

,        (E1) 

where ‖. ‖𝑝 corresponds to the 𝐿𝑝 norm.  

 

It is straightforward to show, e.g. by Janssen’s inequality, that ‖. ‖𝑝 decreases with 𝑝, ‖𝑘1‖𝑛 ≤ ‖𝑘1‖1 if and only if 

𝑛 ≥ 1. This gives 

 

{
 
 

 
 (∑ 𝑘1

𝑗
𝑗 )

𝑛

∑ 𝑘1
𝑗𝑛

𝑗

≥ 1  if  𝑛 ≥ 1

(∑ 𝑘1
𝑗

𝑗 )
𝑛

∑ 𝑘1
𝑗𝑛

𝑗

< 1  otherwise

          (E2) 

 

To obtain the upper (lower) bound for 𝑛 ≥ 1 (𝑛 < 1), we use Hölder’s inequality. For 𝑛 ≥ 1, we have 

∑ (𝑘1
𝑗
)(1)𝑗 ≤ (∑ 𝑘1

𝑗𝑛

𝑗 )

1

𝑛
(∑ 1

1

1−
1
𝑛𝑗 )

1−
1

𝑛

  

∑ 𝑘1
𝑗

𝑗 ≤ 𝑁1−
1

𝑛 (∑ 𝑘1
𝑗𝑛

𝑗 )

1

𝑛
  

(∑ 𝑘1
𝑗

𝑗 )
𝑛
≤ 𝑁𝑛−1∑ 𝑘1

𝑗𝑛

𝑗   

(∑ 𝑘1
𝑗

𝑗 )
𝑛

∑ 𝑘1
𝑗𝑛

𝑗

≤ 𝑁𝑛−1            (E3) 

 

For 𝑛 < 1, we have 

∑ (𝑘1
𝑗𝑛
) (1)𝑗 ≤ (∑ (𝑘1

𝑗𝑛
)

1

𝑛
𝑗 )

𝑛

(∑ 1
1

1−𝑛𝑗 )
1−𝑛

  

∑ 𝑘1
𝑗𝑛

𝑗 ≤ 𝑁1−𝑛(∑ 𝑘1
𝑗

𝑗 )
𝑛

  

(∑ 𝑘1
𝑗

𝑗 )
𝑛

∑ 𝑘1
𝑗𝑛

𝑗

≥ 𝑁𝑛−1            (E4) 

 

In 3.2.1, we stated that it is possible to obtain suppressive response when 𝑛 < −1. We illustrate this with the 

example of 𝑛 = −2 using the Cauchy-Schwarz inequality. 

 

(∑ 𝑘1
𝑗

𝑗 )
−2

∑ 𝑘1
𝑗−2

𝑗

 =
1

(∑ 𝑘1
𝑗

𝑗 )
2
∑ (

1

𝑘1
𝑗)

2

𝑗

 ≤
1

(∑ (𝑘1
𝑗
)(

1

𝑘1
𝑗)𝑗 )

2 =
1

4
        (E5) 

 

By (C13) and (E5), 𝐾eff
mix ≤

1

4
(𝐾eff

1 + 𝐾eff
2 ), which can be smaller than both 𝐾eff

1  and 𝐾eff
2 . 
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Appendix F: Derivation for the receptor dynamics in the limit of small 𝒕 
 

The dynamics equation of binding and activation for single odour stimulus is given by (C1) 

 

{
 

 
𝑟0̇ = 𝑘−1𝑟 − (𝑘1𝑐)

𝑛𝑟0                              

𝑟̇   = (𝑘1𝑐)
𝑛𝑟0  − 𝑘−1𝑟 + 𝑘−2𝑟

∗ − 𝑘2𝑟 

𝑟 ∗̇ = 𝑘2𝑟 − 𝑘−2𝑟
∗                                      

𝑟total = 𝑟0 + 𝑟 + 𝑟
∗                                             

,                               (F1) 

 

At small 𝑡 and with the assumption that 𝑘1
𝑛 > 1 ≫ 𝑘−1, 𝑘2, 𝑟𝑏̇ can be approximated by 𝑟̇ ≈ 𝑘1

𝑛𝑟0𝑐eff ≈ 𝑘1
𝑛𝑟0(𝑡 =

0)𝑐eff. Since 𝑟0(𝑡 = 0)= 𝑟total and 𝑟(𝑡 = 0) = 0, we have 

𝑟 = 𝑘1
𝑛𝑟total𝑐eff𝑡           (F2) 

Substituting (F2) into the third equation of (F1) gives 

𝑟 ∗̇ + 𝑘−2𝑟
∗ = 𝑘1

𝑛𝑘2𝑟𝑐eff𝑡          (F3) 

(F3) is linear and can be solved by standard methods. The solution is given below 

𝑟∗ =
𝑘1
𝑛𝑘2𝑟total𝑐eff

2
(
𝑒−𝑘−2𝑡−1

𝑘−2
2 +

𝑡

𝑘−2
)  

     ≈
𝑘1
𝑛𝑘2𝑟total𝑐eff

2
(
1−(−𝑘−2𝑡)−1

𝑘−2
2 +

𝑡

𝑘−2
)  

     ≈
𝑘2

𝑘−2
𝑘1𝑟total𝑐eff𝑡           (F4) 

By comparing (E2) and (E4), we can see that the rate of increase in activation is slower than that of binding by a factor 

of  
𝑘−2

𝑘2
. It is also clear that the approximation breaks down when 𝑘2 > 𝑘−2.  

Similar calculation can be done for mixture stimulus. As the competition for binding sites for different odour 

components is negligible at small 𝑡, the binding and activation step is independent for each odour component. It can 

easily be shown that 

𝑟mix
∗ =

(∑ 𝑘1
𝑗

𝑗 )
𝑛

∑ 𝑘1
𝑗𝑛

𝑗

∑
𝑘2
𝑖

𝑘−2
𝑖 𝑘1

𝑖 𝑛𝑟total𝑐eff𝑡𝑖          (F5) 
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