Shavenbaby and Yorkie mediate Hippo signaling to protect adult stem cells from apoptosis

Jérôme Bohère¹, Alexandra Mancheno-Ferris¹, Kohsuke Akino², Yuya Yamabe², Sachi Inagaki³, Hélène Chanut-Delalande¹, Serge Plaza⁴, Yuji Kageyama²,³, Dani Osman⁵, Cédric Polesello¹* & François Payre¹*

¹Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Bat 4R3, 118 route de Narbonne, F-31062 Toulouse, France
²Department of Biology, Graduate School of Science, Kobe 657-8501, Japan
³Biosignal Research Center, Kobe University, 1-1 Rokko-dai, Nada, Kobe 657-8501, Japan
⁴Present Address: Laboratoire de Recherche en Sciences Végétales (LSRV), CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, 31326 Castanet-Tolosan, France
⁵Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, 1300, Tripoli, Lebanon

* Correspondence and requests for materials should be addressed to C.P. or F.P. (email: cedric.polesello@univ-tlse3.fr, francois.payre@univ-tlse3.fr)
Abstract

To compensate for accumulating damages and cell death, adult homeostasis (e.g., body fluids and secretion) requires organ regeneration, operated by long-lived stem cells. How stem cells can survive throughout the animal life yet remains poorly understood. Here we show that the transcription factor Shavenbaby (Svb, OvoL in vertebrates) is expressed in renal/nephric stem cells (RNSCs) of *Drosophila* and required for their maintenance during adulthood. As recently shown in embryos, Svb function in adult RNSCs further needs a post-translational processing mediated by Polished rice (Pri) smORF peptides and impairing Svb function leads to RNSC apoptosis. We show that Svb interacts both genetically and physically with Yorkie (YAP/TAZ in vertebrates), a nuclear effector of the Hippo pathway, to activate the expression of the inhibitor of apoptosis *DIAP1*. These data therefore identify Svb as a novel nuclear effector in the Hippo pathway, critical for the survival of adult somatic stem cells.

Keywords

Stem cells, OVOL/Shavenbaby, smORF peptides, Hippo pathway, apoptosis, Renal system, Malpighian tubules, *Drosophila*.
The family of OvoL/Ovo/Shavenbaby (Svb) transcription factors has been strongly conserved across evolution\(^1\) and is characteristic of animal species. Initially discovered in flies for a dual function in the development of epidermal derivatives (Svb) and of the germline (Ovo)\(^2,3\), mammalian orthologs (OvoL1-3) have soon been identified\(^4-6\). OvoL/svb genes produce several protein isoforms and the existence of three partially redundant paralogs in mammals complicates their genetic analysis. There is a single gene in *Drosophila*, which expresses germline- (*ovo*) and somatic-specific (*svb*) transcripts from different promoters. Previous work has well-established the role of Svb in the development of embryonic epidermal tissues\(^3\), where it triggers a tridimensional cell shape remodeling for the formation of actin-rich apical extensions, called trichomes. Svb expression is driven by a large array of cis-regulatory regions, which have become a fruitful paradigm for elucidating the function\(^7,8\) and evolution\(^9-11\) of developmental enhancers. Svb enhancers directly integrate multiple inputs form upstream regulatory pathways\(^7\) and often drive similar patterns, all together conferring robustness to epidermal development in the face of varying environmental conditions and/or genetic backgrounds\(^7,8\). During embryogenesis, the Svb transcription factor directly activates a battery of >150 target genes\(^12-14\) collectively responsible for actin and extra-cellular-matrix reorganization that underlie trichome formation\(^15\). Recent studies have unraveled a tight control of Svb transcriptional properties, in response to Polished rice (Pri, also known as Tarsal-less) peptides, which belongs to a novel family of peptides encoded from small open reading frames (smORF) hidden within apparently long noncoding RNAs\(^16\). Svb is first translated as a long-sized protein that acts as a repressor (Svb\(^{REP}\))\(^17\). Pri smORF peptides then induce a proteolytic processing of Svb\(^{REP}\) leading to the degradation of its N-terminal region and releasing a shorter activator form, Svb\(^{ACT}\)\(^17\). Further work has demonstrated that *pri* expression is directly regulated by periodic pulses of steroid hormones\(^18\), allowing a functional connection between hard-wired genetic regulatory networks (svb expression) and
systemic hormonal control (mediated by pri) for a proper spatio-temporal control of epidermal cell morphogenesis16.

Recent studies suggest that OvoL/Svb factors display broader functions throughout epithelial tissues in both normal and various pathological situations. Molecular profiling of human tumors has revealed that OvoL deregulation is a feature of many carcinomas, directly linked to the metastatic potential of morbid cancers19-23, including kidney24. OvoL factors have been proposed25, 26 to counteract a conserved core of regulators composed of Snail/Slug and Zeb1-2 transcription factors, as well as the micro RNA \textit{mir200}, well known to promote epithelial-mesenchymal transition (EMT)27. The activity of OvoL might help stabilizing a hybrid E/M phenotype21, 25, providing many advantages for both tumors and normal stem cells28. Indeed, recent data show that, like adult somatic stem cells, the most aggressive tumors often display a hybrid phenotype between mesenchymal and epithelial states27, and the expression of specific OvoL isoforms can annihilate the metastatic potential of mammary tumors29, 19. In addition, OvoL/Svb factors have been linked to the control of various progenitors/stem cells, from basal invertebrates30 to mammals31-33. Therefore, whereas a large body of evidence supports a key role for OvoL/Svb in the behavior of somatic stem cells, a functional investigation of their mode of action \textit{in vivo} remains to be undertaken.

Here we built on the knowledge and tools accumulated for the study of Svb function in flies to investigate its putative contribution to the behavior of somatic stem cells in the adult. We show that in the Malpighian tubules, which ensure essential renal functions in insects34, 35, \textit{svb} is specifically expressed in the adult renal and nephric stem cells (RNSCs, see Fig. 1a). We further find that a main function of Svb in the kidney is to protect RNSCs from apoptosis by controlling the expression of the inhibitor of apoptosis, \textit{DIAP1}, in interaction with Yorkie, a nuclear effector of the Hippo pathway.
Results and Discussion

svb is expressed in Renal Nephric Stem Cells and controls their maintenance

To assay whether svb might be expressed in the adult, we tested large genomic reporter constructs that cover each of the seven enhancers contributing to svb expression. We found that one enhancer, svbE10, drove specific expression in tiny cells of the Malpighian tubules (Supplementary Fig. 1a, b).

Adult Malpighian tubules are mainly composed of two types of differentiated cells35 (Fig. 1a). The principal cells, characterized by the homeodomain Cut protein, express the vacuolar-ATPase (V-ATPase) that establishes an H+ electrochemical potential promoting \textit{trans}-epithelial secretion of Na+ and K+34. The second main population of Malpighian tubules are termed stellate cells, featured by the expression of the Teashirt transcription factor, and that regulate the transport of Cl− and water34. While both principal and stellate cells display large-sized polyploid nuclei, a third population of tiny diploid cells36 are located in the lower tubules and correspond to RNSCs34, 35, 37 (Fig. 1a). RNSCs derive from a subpopulation of intestinal stem cell precursors that colonize Malpighian tubules during post-embryonic development37, 38. RNSCs are characterized by the expression of Escargot, a transcription factor of the Snail/SLUG family that is also expressed in intestinal stem cells (ISCs39) where it acts to prevent ISC differentiation40, 41. Co-localization with an \textit{esg}-LacZ reporter confirmed that the svbE10 enhancer was active in RNSCs (Fig. 1b and Supplementary Fig. 1b). To define the minimal region of svb responsible for the expression in RNSCs, we assayed a collection of overlapping constructs7. This identified two independent elements, the svbE3N and svbE6 enhancers7, 9, which despite having distinct activities during embryogenesis9, 42 drove similar expression in adult RNSCs (Supplementary Fig. 1c).
Having established that two enhancers drive specific expression of svb in the adult stem cells of the renal system, we next assayed consequences of depleting svb function in RNSCs. We used a well-controlled genetic system, hereafter referred to as esg^{ts}, ensuring RNAi-mediated gene depletion, specifically in the stem cells and only at the adult stage⁴³. We also developed an image analysis pipeline, allowing automated quantification of the whole population of RNSCs (see methods). In control conditions, the number of esg-positive RNSCs remains stable after adult hatching, with approx. 350 cells per tubules (Fig. 1c,d). We only noticed a weak reduction of RNSCs (300 cells) after one month. In contrast, esg^{ts}-driven RNAi depletion of svb led to a dramatic loss of RNSCs, which were completely absent after 32 days of treatment (Fig. 1c,d). The effects of svb depletion were already strong following 8 days of treatment, with a two-fold reduction in the number of RNSCs. Similar results were observed when using an independent driver of RNSCs (Dome-meso-gal4) to direct RNAi-mediated knockdown of svb (Supplementary Fig. 1d,e). The loss of RNSCs upon svb depletion was also confirmed by staining against Hindsight, another transcription factor specific of RNSCs within Malpighian tubules (Supplementary Fig. 1d,e). Finally, the key role of svb in the maintenance of adult RNSCs was further demonstrated by results from genetic mosaics, showing that svb-null mutant cells⁴⁴ were unable to maintain RNSCs (Fig. 1e).

Taken together, these data thus reveal that svb is specifically expressed in RNSCs and critically required for the maintenance of the adult stem cell compartment.

Svb processing is essential for its activity in Renal Nephric Stem Cells

In the epidermis, Svb activity relies on a proteolytic processing that causes a switch from a repressor to an activator form. This processing is gated by Pri regulatory peptides, which bind to and activate the Ubr3 ubiquitin E3-ligase that, in turn, triggers a limited degradation
operated by the proteasome45 (Fig. 2a). Thereby, \textit{pri} mediates a systemic control of Svb maturation since the expression of \textit{pri} is directly regulated by the ecdysone receptor (EcR)18. To assess whether the function of Svb in Malpighian tubules also required its proteolytic maturation, we investigated a putative function of \textit{pri} and \textit{ubr3} in RNSCs. We screened a collection of \textit{pri} reporter lines18,46 and identified two \textit{cis}-regulatory regions driving expression in RNSCs (Fig. 2b and Supplementary Fig. 2a,b). Consistently with the expression of \textit{pri} in RNSCs, \textit{pri} depletion almost fully eliminated RNSCs upon 8 days of RNAi treatment (Fig. 2d and Supplementary Fig. 2c). In addition, a dominant negative form of the Ecdysone Receptor (EcRDN) that abolishes \textit{pri} expression during both embryonic and post-embryonic development18 was sufficient to reduce the number of stem cells when specifically expressed in adult RNSCs (Fig. 2d). Furthermore, we found that \textit{ubr3} was also required for RNSC maintenance, as deduced from results of RNAi-mediated depletion and genetic nullification45 of \textit{ubr3} activity (Fig. 2c,d). Finally, the expression of OvoA that behaves as a constitutive repressor isoform of Svb17,44,47 mimicked the effects observed in \textit{svb} loss of function conditions (Fig. 2d). Reciprocally, the expression of OvoB that acts as a constitutive activator isoform of Svb17,44,47 was sufficient to rescue the lack of \textit{ubr3} function (Fig. 2d and Supplementary Fig. 2c), demonstrating that Svb function in RNSCs relies on its matured transcription activator form.

These results provide compelling evidence that the whole regulatory machinery discovered for its role in the development of epidermal cells17,18,45 is also at work in adult RNSCs. We therefore concluded that the post-translational maturation of the Svb transcription factor is essential for the maintenance of RNSCs.
Svb protects Renal Nephric Stem Cells from apoptosis

The loss of RNSCs observed following the lack of svb function or maturation could theoretically result from at least three different causes: i) lack of proliferation, ii) precocious differentiation, or iii) increased cell death. Consistent with the quiescent behavior of RNSCs, we observed a very low frequency of RNSC mitosis in controls, as deduced from staining with the mitotic marker Histone3-P (Supplementary Fig. 3a) and as previously noticed37. Therefore, even a complete block of stem cell division cannot account for the disappearance of RNSCs observed in the absence of svb. Using the lineage-tracing system called ReDDM that has been recently developed for intestinal stem cells48, we next investigated a putative influence of svb on RNSC differentiation. Based on differences in the stability of two fluorescent proteins, ReDDM allows marking renal progenitors that express both mCD8::GFP and H2B::RFP, while their progeny only maintain the very stable H2B::RFP48. In control conditions, we detected very rare H2B::RFP progeny (Fig. 3a) confirming low cell renewal in Malpighian tubules37. Recent work has shown that the expression of mir-8 (the Drosophila homolog of mir-200 in vertebrates) downregulate the expression of EMT-inducing factors Escargot and Zfh1 (the homolog of Zeb1), triggering a strong burst of stem cell differentiation in the intestine48. Similarly, we found that mir-8 expression in RNSCs forced esg+ cells to differentiate and only rare RNSCs persisted after 8 days of treatment (Fig. 3a). Upon mir-8 expression, the progeny (H2B::RFP-positive, GFP-negative cells) of RNSCs present in lower tubules also expressed Alkaline Phosphatase 4, a marker of a subset of differentiated principal cells49 confirming that the depletion of RNSCs upon mir-8 overexpression was caused by their premature differentiation (Supplementary Fig. 3b). In contrast, no modification of the progenitors/progeny ratio was observed in svb-RNAi conditions when compared to controls, showing that svb depletion does not trigger RNSC differentiation (Fig. 3a). Finally, we tested whether svb-depleted RNSCs were lost because they underwent apoptosis. Since apoptotic
figures are difficult to observe in the digestive track50 including the Malpighian tubules, we
assayed consequences of blocking programmed cell death by expressing the viral caspase
inhibitor p35 51. Although the expression of p35 had no detectable effect by itself on RNSCs, it significantly rescued the number of RNSCs when svb was depleted (Fig. 3c and see below).
Taken together, these data show that the loss of RNSCs observed upon svb loss of function is primarily due to stem cell death, indicating that a main role of Svb is to protect adult stem cells from undergoing apoptosis.

\textbf{Svb acts downstream of Hippo}

During epidermal development, svb is expressed in post-mitotic cells where it acts as a terminal differentiation factor that controls cell shape remodeling15,52. We noticed that RNSCs lacking svb displayed a reduced size, as well as an altered morphology (Fig. 3b). One could speculate that these defects in cell shape might stress RNSCs and thus induce apoptosis. Indeed, the Hippo pathway53,54 is a key sensor of mechanical stress renowned to induce apoptosis following cytoskeleton modifications55,56. The core Hippo complex is composed of two kinases, Hippo (Hpo) and Warts and two scaffolding proteins, Salvador and Mob As Tumor Suppressor53,54. Activation of Hippo leads to the phosphorylation of the co-
transcription factor Yorkie (Yki) that results in Yki nuclear exclusion/degradation, preventing its positive action on the transcription of target genes such as \textit{DIAP1} and \textit{bantam}53,54.
Previous work has shown that the Hippo pathway is a key regulator of the \textit{Drosophila} gut homeostasis, controlling survival and proliferation of stem cells for tissue regeneration57,58. Consistently, we found that the activation of Hpo induced a strong reduction in the number of RNSCs. However, co-expression of OvoB, the constitutive activator isoform of Svb, together with Hpo was sufficient to rescue the loss of RNSCs (Fig. 4a). These results therefore
demonstrated that if Svb and Hpo interact for the homeostasis of RNSCs, the loss of RNSCs observed upon svb knockdown is not due to the activation of the Hippo pathway, since Svb is instead acting downstream Hpo. In contrast, overexpression of Yki (mimicking a loss of Hippo signaling\footnote{59}) induced a strong increase in esg+ renal cells, which displayed abnormal tumor-like morphology when compared to wild-type RNSCs (Fig. 4a). Unexpectedly, this increase in the number of renal stem cells was entirely suppressed upon svb depletion, or expression of the constitutive repressor OvoA (Fig. 4a and Supplementary Fig. 3f). Quantification indicated that esg+ cells overexpressing Yki were even more sensitive to svb loss-of-function than otherwise normal RNSCs (Fig. 4a), a result well in line with the extra-resistance of intestinal stem cells to apoptosis when compared to tumorous stem-like cells\footnote{50}. Hence, the function of Yki in RNSCs requires Svb, suggesting that Svb was acting either downstream or in parallel with this nuclear effector of Hippo. Several lines of evidence ruled out the former and validated the latter hypothesis. First, knocking down Yki also led to RNSC loss (Supplementary Fig. 3c). Expression of the Svb constitutive activator (OvoB) was nevertheless not able to rescue RNSC survival in the absence of Yki (as opposed to the overexpression of Hpo, Fig. 4a), showing that Svb requires Yki activity for RNSC maintenance (Fig. 4a and Supplementary Fig. 3c). Second, although Yki is sufficient to induce DIAP1 expression\footnote{60} (and see below), Yki was not able to rescue the lack of Svb while DIAP1 alone did (Fig. 4a). Indeed, we found that DIAP1 was sufficient to compensate for svb-depletion (Fig. 4a and Supplementary Fig. 3f). In sum, while both Svb and Yki are required for RNSC maintenance, re-expression of Yki is not sufficient to rescue the loss of svb function. Reciprocally, Svb is not sufficient to rescue a proper RNSC compartment in the absence of Yki, showing that Svb and Yki act in parallel for the survival of adult stem cells. We thus concluded that Svb acts downstream of Hippo cytoplasmic core components and, together with Yki, both nuclear factors are required to protect RNSCs from apoptosis.
Svb as a novel nuclear effector of the Hippo pathway

Having established that Svb and Yki genetically interact, we wondered whether the two proteins might interact to control the expression of common target genes, e.g., DIAP1. Yki is unable to bind DNA by itself and need to associate to sequence-specific-transcription factors. Interestingly, Yki contains two WW protein domains shown to mediate interaction with partners bearing PPxY motifs (such as Wts, Wbp2 and Mad), and we detected two PPxY motifs within the Svb protein, at position 523 (PPFY) and 881 (PPSY). Co-immunoprecipitation assays showed that Svb bound to the wild type form of Yki, while the mutation of Yki WW motifs was sufficient to abrogate the interaction with Svb (Fig. 4c). A second piece of evidence emerged from the comparison of chromatin immuno-precipitation (ChIP-seq) datasets between Svb and Yki. We found that Svb and Yki share 836 common genomic binding sites (Supplementary Fig. 4a) and statistical tests established the significance of this overlap (Supplementary Fig. 4b). Interestingly, co-binding of Yki was rare for the direct target genes of Svb identified in the epidermis, as illustrated by shavenoid or dusky-like that both lack Yki binding (Supplementary Fig. 4d,d’). In contrast, Svb was often bound to known Yki target genes, such as bantam, fat, piwi or nanos (Supplementary Fig. 4e,c’). ChIP-seq also revealed that Svb and Yki bound to a same region of DIAP1, within an enhancer driving specific expression in adult intestinal stem cells (Fig. 4b). We therefore tested if Svb might regulate DIAP1 expression. Although very weak in control conditions, expression of DIAP1-LacZ was strongly enhanced upon Yki overexpression. This induction was completely antagonized by OvoA (Fig. 4d). Similar results were obtained with the isolated DIAP1 enhancer (DIAP1-4.3-GFP) containing the binding sites of Yki and Svb, the expression of which was again enhanced by Yki overexpression and abrogated upon counteracting Svb activity (Fig. 4e). These data thus strengthen the conclusion that Svb and
Yki functionally interact in RNSCs to prevent apoptosis, at least in part through promoting DIAP1 expression.

One important question was whether the interaction between Svb and the Hippo pathway also took place in other tissues. The function of Hippo has been initially described in imaginal discs, which give rise to most adult tissues and Yki overexpression promotes cell proliferation in both wing and eye discs. We tested Svb/Yki genetic interactions in the wing using collier-Gal4 that drives expression in the medial (L3-L4) intervein region. Yki overexpression resulted in the expansion of this region due to tissue overgrowth (Supplementary Fig. 3d). In contrast, OvoA leads to both a reduction of the L3-L4 region and the absence of epidermal trichomes. As in RNSCs, OvoA was epistatic to Yki, since the wing region expressing both yki and ovoA was smaller than in controls and lacked trichomes (Supplementary Fig. 3d). In the eye, overexpression of Yki using the GMR-Gal4 driver promoted extra cell proliferation resulting in an increased eye size. Similar results were obtained following pri overexpression, and co-expressing pri and yki resulted in a synergistic eye growth (Supplementary Fig. 3e). Northern blotting of RNAs extracted from adult heads revealed that DIAP1 mRNA levels were increased following pri overexpression (Supplementary Fig. 4e), while there was no effect on yki or cycE mRNA.

We interpret these results to imply that Svb functionally interacts with Yorkie, both in adult stem cells and in developing tissues, to regulate a subset of transcriptional targets of the Hippo pathway, including the activation of DIAP1 expression.
Conclusions

Our results show that Shavenbaby is expressed and required for the maintenance of adult renal stem cells (RNSCs) in flies, supporting the conclusion that the OvoL/Svb family of transcription factors plays a key and evolutionarily-conserved role in the behavior of progenitors-stem cells.

The role of Svb in adult stem cell maintenance in flies requires both a fine control of its expression and of its transcriptional activity. Svb expression in RNSCs involves at least two separable enhancers, driving similar expression patterns. Svb was one the first cases to reveal the functional importance of apparently redundant (or shadow) enhancers in the phenotypic robustness of developmental networks. Our data suggest that a similar cis-regulatory architecture is also underlying the control of adult stem cells.

RNSCs maintenance further requires a proper post-translational maturation of the Svb protein, in the response to Pri smORF peptides. During both embryonic and post-embryonic development, the main role of Pri peptides is to provide a temporal control of Svb activity, conveying systemic steroid signaling. It is therefore possible that Pri smORF peptides also connect genetic networks to hormonal control for the regulation of adult stem cells. Recent work has shown that various smORF peptides contribute to the regulation of developmental pathways, muscle formation and physiology, etc…, and our findings extend their influence to the control of adult stem cells. It has been proposed that the emerging field of smORF peptides may open novel therapeutic strategies, for example peptidomimetic drugs, which might also be of interest for regenerative medicine.

Complementary data establish that a main function of Svb in adult stem cells is mediated by a functional interplay with the Hippo pathway, well established for its roles in the control of adult stem cells. Our results indicate that Svb behaves as a novel nuclear effector of...
Hippo, relying on a direct interaction with Yorkie in order to protect stem cells from apoptosis, at least in part through the regulation of \textit{DIAP1} expression. Analysis of genome-wide binding events further suggests that the Svb/Yki interaction is involved in the control of a broader set of Hippo-regulated genes, including during development. Since both Pri and Ubr3 are also essential for the survival of adult stem cells, it is interesting to note that Ubr3 protects the DIAP1 protein from degradation69, and direct binding of Ubr3 on the activated form of DIAP1 is elicited in the presence of Pri peptides45. Therefore, in addition to the control of \textit{DIAP1} expression (\textit{via} Svb), Ubr3 and Pri could also stabilize the DIAP1 protein to protect stem cells from apoptosis. Although initially restricted to TEAD transcription factors, the number of Yorkie (YAP/TAZ) nuclear partner is rapidly growing54. Recent work has shown a direct interaction of YAP/TAZ with the Snail/Slug pro-EMT factors in the control of stem cell renewal and differentiation70. As previously reported for intestinal stem cells40, 41, 48, pro-EMT regulators are also required for preventing premature differentiation of renal stem cells. While pro-EMT and OvoL factors are often viewed as antagonistic factors19, 21, 25, in vivo studies in \textit{Drosophila} stem cells show that they both contribute to their maintenance, Svb/Yki preventing their apoptosis and EMT factors their differentiation. Many studies having implicated the Hippo pathway, pro-EMT and OvoL/Svb factors in various tumors, new insights into their functional interactions in adult stem cells may provide additional knowledge directly relevant to understand their connections in human cancers.
Methods

Fly stocks. The following Drosophila stocks were used in this study: tsh-LacZ (BL#11370), esg-lacZ (BL#10359), esg-Gal4, UAS-GFP; tubulin-Gal80ts/SM6-TM6B 43 (B. Edgar), yw, hsFLP, tubulin-Gal80 FR19A; UAS-mcd8::GFP/Cyo; tubulin-Gal4/TM6 Tb (N. Tapon), esg-Gal4, UAS-mcd8::GFP/Cyo; UAS-H2B::RFP, tubulin-Gal80ts/TM2 48 (M. Dominguez), col-Gal4, UAS-mcd8::GFP/Cyo and domeMeso-Gal4 (M. Crozatier), GMR-Gal4/Cyo (BL#9146), tal-Gal4/TM3 Sb (J.P. Couso), svbE-GFP, svbE10-lacZ, svbE3N-lacZ, svbE6-lacZ (D. Stern), svbE3N-GFP (this work), svbR9, FRT19A/ FMO 44, ubr3B FRT19A/ FMO 45 (H. Bellen), Diap1-lacZ (BL#12093), UAS-svb RNAi (VDRC #v40316), UAS-ubr3 RNAi (VRDC #22901), UAS-yki RNAi (VDRC #KK104523), UAS-pri RNAi (J.P. Couso), UAS-OvoA 44, UAS-OvoB 44, UAS-EcRDN (BL#9449), UAS-mir8 (S.M. Cohen), UAS-p35 (B. Monier), UAS-hpo/CyO (N. Tapon), UAS-yki/TM3 Sb (D.J. Pan), UAS-DIAP1 (N. Tapon), UAS-pri/CyO (J.P. Couso).

Flies were cultured (unless otherwise noted) at 25°C, using standard cornmeal food (per liter: 17g inactivated yeast powder, 80g corn flour, 9g agar, 45g white sugar and 17ml of Moldex). Similar results were also observed using a richer medium (same composition except 45g of yeast powder). Female adult flies were used in all analyses throughout the study and placed on fly food supplemented with fresh yeast, which was changed every two days. Conditional expression in RNSCs was achieved by maintaining tub-Gal80ts expressing flies at 18°C, until adulthood. Eclosed females aged for 3- to 4-days were shifted to 29°C for induction of gene expression and were kept at 29°C for the indicated period of time (in most cases 8 days). Virgin females bearing svbR9, svbPL107 or ubr3B mutations 44,45 over FM0 balancers were mated with males of the following genotype: yw, hs-FLP, tub-Gal80, FRT19A; UAS::mcd8-GFP; tub-Gal4/TM6,Tb. Females of the correct phenotype (no B and no Tb) were heat shocked for 1h at 37°C. Flies were transferred on fresh food every two days and dissected at the indicated
time. Detailed information about the full genotype of each *Drosophila* stock is given in the genotype section below.

Histology. Tissues were dissected in 1X PBS, fixed in 4% formaldehyde in PBS for 15 min at room temperature, washed for 5 min in PBS containing 0.1% Triton X-100 (PBT) and fixed again during 20 min. Following a 5 min wash (PBT 0.1), tissues were then blocked for 30 minutes in PBT containing 1% BSA. Primary antibodies were incubated overnight at 4°C. Anti-β-Galactosidase (Cappel) antibody was used at 1/1000, Cut (DSHB) and GFP antibodies at 1/200, and phospho-HistoneH3 (Upstate) and Disc-large (DSHB) antibodies at 1/500. AlexaFluor-488 or 555 secondary antibodies (Molecular Probes) were incubated for 2 hrs at room temperature at 1/500. After washes, tissues were mounted in Vectashield (Vector). For X-gal staining, adult tissues were dissected in 1X PBS, fixed in 1% glutaraldehyde in PBS for 15 min at room temperature and washed in PBS. The staining solution was warmed up at 37°C for 10 min plus 10 other min after addition of 8% X-Gal (5-bromo-4-chloro-3-indoyl-β-D-Galactopyranoside). The X-Gal solution used to reveal the β-Galactosidase activity was:

- 10mM NaH2PO4.H2O/ NA2HPO4.2H2O (pH=7.2), 150mM NaCl, 1mM MgCl2.6H2O,
- 3.1mM K4 (FeII(CN)6), 3.1mM K3 (FeIII(CN)6), 0.3 % Triton X-100. Bright-field pictures were acquired using a Nikon eclipse 90i microscope.

Microscopy, image and statistical analysis. Images of whole Malpighian tubules were acquired on a LSM710 confocal scanning microscope (X20 objective), using automated multi-position scan. After stitching, tiled images of individual pairs of tubules were analyzed with IMARIS 8.0 to quantify the number of GFP-positive cells. Data of at least three independent experiments (approx. 20 tubules) were analyzed with GraphPad Prims 5, using two-tailed Mann-Whitney tests. The statistical significance of differences observed between compared genotypes was indicated as: ***(p<0.001), ns (p>0.05). Close-up pictures were
acquired using Leica SPE and Leica SP8 confocal laser scanning microscopes (X40 and X63 objectives). Laser intensity and background filtering was set according to the control samples and remained the same for all subsequent samples. The intensity of most pictures has been enhanced equally for all images within the same experiment using adjustments in Photoshop CS5. All images were processed using Adobe Photoshop, Illustrator CS5 and Inkscape 0.91.

Western blotting and immunoprecipitation. *Drosophila* S2 cells were grown in Schneider medium supplemented with 10% fetal calf serum and 1% penicillin/streptomycin (Invitrogen) at 25°C. We used stable cell lines co-expressing the copper-inducible constructs pMT-Svb::GFP and pMT-pri17. S2 cell lines were cultured in six-well plates (1.75x106 cells/3ml) and transfected in 100 µl of Opti-MEM (Invitrogen) with 3 µl of FugeneHD (Promega) and the indicated constructs. CuSO4 (final concentration of 1mM) was used to induce the expression of pMT plasmids. The following plasmids were used: pAc-Yki::HA and its related mutated version pAc-Yki-WW::HA. Cells were lysed in 250 µl of ice-cold lysis buffer (150 mM NaCl, 50mM Tris [pH 8], 0.5% NP40, 1mM EGTA, 0.5M NaF, 200mM vanadate, phosphatase inhibitor cocktail 1 (Sigma) and protease inhibitors (Roche). After clearing by centrifugation at 14,000 rpm for 10 min, immuno-precipitations were done from transfected lysates in lysis buffer using anti-GFP antibody (GFP-trap, Chromotek). Immuno-precipitated samples were separated by SDS-PAGE and transferred to PVDF membranes, then blotted using anti-GFP (TP401, Acris Antibodies, 1:10000) and anti-HA (Covance, 1:2.000) antibodies. Secondary antibodies anti-mouse or anti-rabbit IgG-HRP conjugates (Jackson Laboratory, 1:10.000) were detected using ECL Clarity (Biorad).

Northern blot analysis. Using adult total RNAs as a starting material, DNA fragments containing coding sequence of *yki*, *CycE* and *DIAP1* were reverse transcribed and PCR-amplified with pairs of specific primers: CTGCC CAACT CCTTC TTCAC (forward) and
AACTG AATGG GGCTG ATGAC (reverse) for yki; GATGA CGTTG AGGAG GAGGA (forward) and TGCGT CTTCT GCACC TTATG (reverse) for CycE; CCGAG GAACC TGAAA CAGAA (forward) and GCACA ACTTT TCCTC GGGTA (reverse) for DIAP1. A SP6 promoter sequence (CAAGC TATTT AGGTG ACACT ATAG) was attached to each reverse primer for \textit{in vitro} transcription. DIG-labelled probes were prepared with SP6 RNA polymerase, according to the supplier’s manual (Roche). Northern blot analysis was described previously18. Briefly, 2 days-old adults were frozen with liquid nitrogen and heads were sorted with sieves, followed by RNA purification with Isogen (Nippon Gene). 1 µg of RNA per lane was separated by formaldehyde–agarose gel electrophoresis and then transferred to a nylon membrane (Roche). Hybridization and wash procedures were carried out at 52\(^\circ\)C and 65\(^\circ\)C, respectively. The filters were reacted with an alkaline phosphatase-conjugated anti-DIG antibody (Roche) and chemiluminescent reactions with CPD-Star (Roche) were detected by LAS 4000mini (GE Healthcare).
Genotypes

Figure 1A: yw/w; esg-Gal4, UAS-GFP/ tsh-LacZ

Figure 1B: yw/w; esg-LacZ+/+; svbE3N-GFP/+;

Figure 1C & D control: yw/w; esg-Gal4, UAS-GFP/+; tubulinGal80ts;

Figure 1C & D svb-RNAi: yw/w; esg-Gal4, UAS-GFP/+; tubulinGal80ts/ UAS-svb-RNAi

Figure 1E control: yw, hsFLP, tubulin-Gal80 FR19A; UAS-mCD8::GFP/+; tubulin-Gal4/ry

Figure 1E svb89: yw, hsFLP, tubulin-Gal80 FR19A/ yw svb89 FRT19A; UAS-mCD8::GFP/+; tubulin-Gal4/+;

Figure 2B: tal-Gal4/ UAS-HB2::RFP

Figure 2C control: yw, hsFLP, tubulin-Gal80 FR19A; UAS-mCD8::GFP/+; tubulin-Gal4/ry

Figure 2C ubr38: yw, hsFLP, tubulin-Gal80 FR19A/ yw ubr38 FRT19A; UAS-mCD8::GFP/+; tubulin-Gal4/+;

Figure 2D control: yw/w; esg-Gal4, UAS-GFP/+; tubulin-Gal80ts/+;

Figure 2D svb-RNAi: yw/w; esg-Gal4, UAS-GFP/+; tubulin-Gal80ts/ UAS-svb-RNAi

Figure 2D ovoA: yw/w; esg-Gal4, UAS-GFP/+; tubulin-Gal80ts/ UAS-ovoA

Figure 2D ovoB: yw/w; esg-Gal4, UAS-GFP/+; tubulin-Gal80ts/ UAS-ovoB

Figure 2D pri-RNAi: yw/w; esg-Gal4, UAS-GFP/+; tubulin-Gal80ts/ UAS-pri-RNAi

Figure 2D EcRDN: yw/w; esg-Gal4, UAS-GFP/+; tubulin-Gal80ts/ UAS-EcRDNBwts4

Figure 2D ubr3-RNAi: yw/w; esg-Gal4, UAS-GFP/ UAS-ubr3 RNAi; tubulin-Gal80ts/+;

Figure 2D ubr3-RNAi + ovoB: yw/w; esg-Gal4, UAS-GFP/ ubr3 RNAi; tubulin-Gal80ts/ UAS-ovoB/+;

Figure 3A control: yw/w; esg-Gal4, UAS-mCD8::GFP/+; UAS-H2B::RFP, tubulin-Gal80ts/+;

Figure 3A mir8: yw/w, UAS-mir8; esg-Gal4, UAS-mCD8::GFP/+; UAS-H2B::RFP, tubulin-Gal80ts/+;

Figure 3A svb-RNAi: yw/w ; esg-Gal4, UAS-mCD8::GFP/+; UAS-H2B::RFP, tubulin-Gal80ts/ UAS-svb RNAi

Figure 3B control: yw/w; esg-Gal4, UAS-GFP/+; tubulin-Gal80ts/+;

Figure 3B svb-RNAi: yw/w; esg-Gal4, UAS-GFP/+; tubulin-Gal80ts/ UAS-svb-RNAi

Figure 3C control: yw/w; esg-Gal4, UAS-GFP/+; tubulin-Gal80ts/+;

Figure 3C p35: yw/w; esg-Gal4, UAS-GFP/ UAS-p35; tubulin-Gal80ts/+;

Figure 3C svb-RNAi: yw/w; esg-Gal4, UAS-GFP/+; tubulin-Gal80ts/ UAS-svb-RNAi

Figure 3C p35+ svb-RNAi: yw/w; esg-Gal4, UAS-GFP/ UAS-p35; tubulin-Gal80ts/ UAS-svb-RNAi

Figure 4A control: yw/w; esg-Gal4, UAS-GFP/+; tubulin-Gal80ts/+;

Figure 4A hpo: yw/w; esg-Gal4, UAS-GFP/ UAS-hpo; tubulin-Gal80ts/+;

Figure 4A yki: yw/w; esg-Gal4, UAS-GFP/+; tubulin-Gal80ts/ UAS-yki

Figure 4A DIAP1: yw/w; esg-Gal4, UAS-GFP/ +; tubulin-Gal80ts/ UAS-DIAP1

Figure 4A svb-RNAi: yw/w; esg-Gal4, UAS-GFP/+; tubulin-Gal80ts/ UAS-svb-RNAi

Figure 4A hpo+ ovoB: yw/w; esg-Gal4, UAS-GFP/ UAS-hpo; tubulin-Gal80ts/ UAS-ovoB

Figure 4A yki+ svb-RNAi: yw/w; esg-Gal4, UAS-GFP/ +; tubulin-Gal80ts/ UAS-ovoB, UAS-yki

Figure 4A DIAP1+ svb-RNAi: yw/w; esg-Gal4, UAS-GFP/ +; tubulin-Gal80ts/ UAS-DIAP1, UAS-svb-RNAi

Figure 4D control: yw/w; esg-Gal4, UAS-GFP/ +; tubulin-Gal80ts/ DIAP1-LacZ/+;

Figure 4D yki: yw/w; esg-Gal4, UAS-GFP/ +; tubulin-Gal80ts/ DIAP1-LacZ/ UAS-yki

Figure 4D ovoA: yw/w; esg-Gal4, UAS-GFP/ +; tubulin-Gal80ts/ DIAP1-LacZ/ UAS-ovoA
Figure 4D yki + ovoA: yw/; esg-Gal4, UAS-GFP/+; tubulin-Gal80p/DIAP1-LacZ/UAS-yki, UAS-ovoA

Figure 4E control: yw/; esg-Gal4, UAS-GFP/+; tubulin-Gal80p/DIAP14.3-GFP/+

Figure 4E yki: yw/; esg-Gal4, UAS-GFP/+; tubulin-Gal80p/DIAP14.3-GFP/UAS-yki

Figure 4E ovoA: yw/; esg-Gal4, UAS-GFP/+; tubulin-Gal80p/DIAP14.3-GFP/UAS-ovoA

Figure 4E yki + ovoA: yw/; esg-Gal4, UAS-GFP/+; tubulin-Gal80p/DIAP14.3-GFP/UAS-yki, UAS-ovoA

Figure Sup1B: yw/w; esg-LacZ/svbE10-GFP

Figure Sup1C: yw/w; esg-LacZ/+

Figure Sup1C: w; svbE35-LacZ/+

Figure Sup1C: w; svbE6-LacZ/+

Figure Sup1D: yw/w; esg-Gal4, UAS-GFP/+

Figure Sup1E control: yw/w; dome-meso-Gal4, UAS-mCherry/+

Figure Sup1E svb-RNAi: yw/w; dome-meso-Gal4, UAS-mCherry/+; UAS-svb-RNAi/+

Figure Sup2B: yw/w; esg-LacZ/+

Figure Sup2B: w; priA-LacZ/+

Figure Sup2B: yw/+; priJ-LacZ/+

Figure Sup3A: yw/w; esg-Gal4, UAS-GFP/+

Figure Sup3B control: yw/w; esg-Gal4, UAS-mCD8::GFP/+; UAS-H2B::RFP, tubulin-Gal80p/+

Figure Sup3B mir-8: yw/UAS-mir8; esg-Gal4, UAS-mCD8::GFP/+; UAS-H2B::RFP, tubulin-Gal80p/+

Figure Sup3C control: yw/; esg-Gal4, UAS-GFP/+; tubulin-Gal80p/+

Figure Sup3C ovoB: yw/; esg-Gal4, UAS-GFP/+; tubulin-Gal80p/UAS-ovoB

Figure Sup3C yki-RNAi: yw/; esg-Gal4, UAS-GFP/+; tubulin-Gal80p/UAS-yki

Figure Sup3C yki-RNAi + ovoB: yw/; esg-Gal4, UAS-GFP/+; tubulin-Gal80p/UAS-yki, UAS-ovoB

Figure Sup3D ctrl: yw/w; col-Gal4, UAS-mCD8::GFP/+

Figure Sup3D yki-RNAi: yw/w; col-Gal4, UAS-mCD8::GFP/+; UAS-yki/+

Figure Sup3D ovoA: yw/w; col-Gal4, UAS-mCD8::GFP/+; UAS-ovoA/+

Figure Sup3D yki-RNAi + ovoA: yw/w; col-Gal4, UAS-mCD8::GFP/+; UAS-yki, UAS-ovoA/+

Figure Sup3E ctrl: yw/w; GMR-Gal4/+

Figure Sup3E pri: yw/w; GMR-Gal4/UAS-pri

Figure Sup3E yki: yw/w; GMR-Gal4/+; UAS-yki

Figure Sup3E pri+yki: yw/w; GMR-Gal4/UAS-pri; UAS-yki/+
References

Acknowledgments

We are grateful to FlyBase, Bloomington and Vienna stock centers, Developmental Studies Hybridoma Bank, as well as N. Tapon, J. Colombani, K.F. Harvey, D.J. Pan, J. Dow and H. Skaer and M. Crozatier, for providing flies, antibodies and molecular reagents. We also thank B. Ronsin (Toulouse RIO Imaging) for help with microscopy, A. Alsawadi, A. Dib, J. Zanet, M. Soulard and P. Valenti for experimental support. We also thank all members of the Payre lab for critical reading of the manuscript. This work was supported by ANR (Chrononet), Fondation pour le Recherche Médicale (FRM), Programme Scientifique de Cooperation Internationale (PSCI) for D.O. and F.P., and by MEXT KAKENHI (JP26113006) for Y.K..

J.B. was supported by fellowships from “Ministère de l’Enseignement et de la Recherche” and “La Ligue contre le Cancer.”

Author Contributions

C.P., S.P., Y.K., D.O. and F.P. conceived and directed the project, following initial observations made by D.O.. J.B. carried out most of the experiments presented here, under the supervision of C.P. and other experiments were conducted by C.P., K.A., Y.Y., S.I. and D.O.. A.M.F analyzed NGS data. J.B., C.P., K.A., Y.Y., S.I., H.C.D., S.P., Y.K., D.O. and F.P. analyzed data and contributed to their interpretation. J.B., C.P. and F.P. prepared the figures and wrote the manuscript. All authors helped to write the paper.

Competing financial interests.

The authors declare having not competing financial interests.
Figure 1: svb is expressed in RNSCs and required for their maintenance. (a) Adult Malpighian tubules are composed of three types of cells. Principal cells (PC) are identified by immunostaining against Cut (cyan) and stellate cells (SC) by tsh-LacZ (in red). RNSCs located in the lower tubules express esg-Gal4, UAS-GFP (green). (b) Fork region of the Malpighian tubules. The expression of svb and esg was monitored by the expression of svb-E-GFP (green) and esg-LacZ (red) enhancers, respectively. Nuclei were stained with DAPI (blue). (c) esg-Gal4-driven svb-RNAi leads to a progressive decrease in the number of RNSCs compared to control conditions (esg-Gal4 driving only GFP). (d) Quantification of the number of RNSCs (esg-GFP positive) after 4, 8, 16 and 32 of transgene induction in control (green) and svb-RNAi (red) conditions. (e) Genetic mosaics (MARCM) showing control and svb59 clones, positively labelled with GFP (green) in the fork region of Malpighian tubules, 25 days after clone induction. The white arrowhead indicates the position of a svb-mutant cell.
Figure 2: Processing of Svb is essential for RNSC maintenance. (a) Schematic representation of Svb maturation, as well as the germinal isoforms OvoA and OvoB that act as constitutive (pri-independent) repressor and activator, respectively. (b) Expression of pri monitored by the activity of pri-Gal4 driving the expression of H2B::RFP (red). The nuclei (DAPI) are in blue. (c) MARCM clones of control and ubr3 mutant cells, 25 days after induction. Arrowheads indicate positions of ubr3 mutant cells. (d) Fork region of Malpighian tubules, with esg
superscript
 fs-driven expression of GFP and the indicated transgenes, after 8 days of induction. Quantification of the number of esg+ cells per tubule is indicated on the right of each picture (see also Supplementary Figure 2).
Figure 3: svb protects RNSCs from apoptosis. (a) Lineage-tracing experiments (esg-ReDDM) at 8 days after induction. While RNSCs express both mCD8::GFP (green) and H2B::RFP (red), only the stable H2B::RFP protein persists in their progeny. Nuclei are in blue (DAPI). RFP positive cells that lack or display remnants of GFP levels are indicated by arrows and arrowheads, respectively. (b) Left, three-dimensional reconstruction of 3 different RNSCs in control (esg^{ts}>GFP) and svb-RNAi contexts. Pictures show GFP after 8 days of treatment. Right, quantification of the RNSC volume in control (Ctrl, green) and svb-RNAi conditions. (c) Rescue of svb-depleted RNSCs by p35. esg^{ts} was used to drive the expression of indicated transgenes (together with GFP), during 8 days. Quantification of esg⁺ cells is shown at the right of each picture.
Figure 4: svb is a member of the Hippo pathway. (a) Pictures of Malpighian tubules with esg
expression of GFP (control) and indicated transgenes. Quantification of esg+ cells is given on each picture (see also Supplementary Figure 3f). (b) Drawing of the DIAP1 locus. Exons are represented in cyan, the DIAP1-4.3 enhancer in dark green and the insertion site of the DIAP1-LacZ reporter (J5C8) is in red. Regions bound in ChIP-seq (MACS peaks) by Svb and Yki are indicated in green and magenta, respectively. (c) Svb co-immuno-precipitates with Yki in S2 cells. Svb::GFP and Yki::HA, or a mutated form of Yki substituting the WW domains (YkiWW::HA), were expressed in S2 cells. Protein immuno-precipitated by anti-GFP were blotted with anti-GFP and anti-HA antibodies. (d) esgwt was used to drive the expression of yki, svbREP (ovoA), and yki together with svbREP in RNSCs. The expression of DIAP1 was followed by the activity of DIAP1-lacZ. (e) Expression of the DIAP1-4.3-GFP enhancer was followed by immuno-staining against GFP (green) and Hindsight (Hnt, red) revealing the antagonistic influence of Yki and OvoA on RNSCs.