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Abstract 

IW-Scoring represents a new Integrative Weighted Scoring model to annotate and 

prioritise functionally relevant noncoding variations. The pipeline integrates 11 

popular algorithms and outperforms individual methods in three independent data 

sets, including variants in ClinVar database and GWAS studies, and cancer mutations. 

Using IW-Scoring, we located 11 recurrently mutated noncoding regions enriched for 

at least three functional mutations in 14 follicular lymphoma genomes, and validated 

9 clusters (82%) in the International Cancer Genome Consortium cohort (n=36), 

including promoter and enhancer regions of PAX5. IW-Scoring offers greater 

versatility to identify trait and disease associated noncoding variants. 

 

 

Keywords: noncoding variants, regulatory annotation, functional scoring, integrative 

weighted scoring, genome-wide association study, cancer, whole genome sequencing, 

functional and pathogenic variants 
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Background 

Over 98% of the human genome does not encode proteins. Despite its past reference 

as “junk DNA” when first discovered, noncoding sequences are now recognised as 

functionally important, possessing millions of regulatory elements and noncoding 

RNA genes. The annotation of potential regulatory sequences, through the 

Encyclopedia of DNA Elements (ENCODE) [1], Roadmap Epigenomics Consortium 

[2] and the FANTOM5 project [3, 4], is revolutionising our understanding of 

noncoding sequences and revealed that large stretches of the human genome (~80%) 

is evidently associated with DNA transcription to RNA, chromatin marks and other 

epigenomic elements. It has also established that many of the genetic variants 

associated with disease and diverse traits uncovered by genome-wide association 

studies (GWAS) are located within these noncoding regions, residing in or near 

ENCODE and Epigenome defined locations. However, compared to protein-coding 

regions, our understanding of noncoding regulatory elements remains poor. 

Overall the significance of non-coding mutations remains an underexplored 

area of cancer genomics. With the rapid emergence of whole-genome and regulatory 

region targeted survey, many recurrent noncoding mutations have been identified in 

various cancer types. For example the prevalence of TERT promoter mutations has 

been established in melanoma [5, 6], gliomas and a subset of tumours in tissues with 

low rates of self-renewal [7]. Moreover, TERT promoter mutations significantly 

correlate with survival and disease recurrence in bladder cancer, demonstrating the 

clinical significance for noncoding mutations [8]. In chronic lymphocytic leukaemia 

(CLL), whole genome sequencing (WGS) of 150 tumour/normal pairs alongside with DNase-

seq and chromatin immunoprecipitation sequencing (ChIP-seq) identified recurrent mutations 

in the 3' UTR region of NOTCH1 gene and in the active enhancer of PAX5 [9]. In a subset of 

T cell acute lymphoblastic leukaemia (T-ALL), somatic mutations were found in the 

intergenic region to create MYB-binding motifs, which resulted in a super-enhancer upstream 

of the TAL1 oncogene [10]. More recently, three significantly mutated promoters have been 

identified based on deep sequencing in 360 primary breast cancers, and more such regions 

remain to be discovered [11]. Whole-genome sequencing (WGS) data is increasingly 

available, especially through TCGA (The Cancer Genome Atlas) and ICGC 

(International Cancer Genome Consortium), prompting more pan-cancer style studies 

to look for significantly mutated regulatory elements across cancer types [12-15]. 
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 To systematically study these noncoding variants and assess their 

functional/pathogenic potential, they first require careful annotation, by determining 

the regulatory regions they map to, e.g., ENCODE, Epigenome Roadmap and 

FANTOM5 defined elements, and their potential target genes. However, identifying 

potential noncoding pathogenic/driver/functional variants and distinguishing them 

from benign/passenger/non-functional variants, remains challenging, due to their 

abundance, cell/tissue type specificity and complex modes of action [16]. In the last 

few years, there have been many studies integrating all available noncoding 

annotation features to provide scores for the likely functional impact of noncoding 

variants. Many of these studies used machine-learning algorithms to develop 

classifiers integrating a range of annotations including regulatory features, 

conservation metrics, genic context and genome-wide properties to differentiate a set 

of disease-associated/deleterious variants from a set of benign/neutral variants in the 

model training, like CADD [17], GWAVA [18], FATHMM-MKL [19] and 

Genomiser [20]. Other methods, such as DeepSEA [21] and DeltaSVM [22], chose to 

directly learn regulatory sequence codes from large-scale chromatin-profiling data 

generated from ENCODE, while FitCons [23] opted to estimate the selective pressure 

for those functionally important genomic regions on the basis of patterns of 

polymorphism and divergence. Additional methods, like FunSeq2 [24] and Eigen 

[25], developed a weighted scoring system to combine the relative importance of 

various annotation features to separate functional and non-functional variants. The 

advantage of these weighted scoring methods is that they do not rely on any labelled 

gold-standard training data of disease-associated and putatively benign variants, 

which are often inaccurate and impractical for the extent of variants linked with 

GWAS and cancer studies.  

Most of these methods above simply provide a continuous functional score for 

each variant without further information on the prediction accuracy and functional 

consequence in affected regulatory elements. A level of confidence or significance is 

also needed for each estimated score as these methods often score the same variants 

differently with varied performances across different data types. Thus, a class 

ensemble approach that combines the predictions of all these functional methods with 

a weighted scheme would offer a powerful approach to summarise multiple predictive 

evidences, increase specificity and rank variants, as this can generally improve the 

robustness and generalisability over a single scoring system [26]. 
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To address these issues, here we explored the most commonly used functional 

annotation methods and scoring systems for genetic variations in the noncoding 

genome. Using an unsupervised spectral approach based on feature covariance, we 

propose a new Integrative Weighted Scoring system, IW-Scoring, amalgamating 11 

existing functional scores into a single ‘ensemble-like’ algorithm that outperformed 

constituent methods in independent data sets. We then demonstrated its utility in 

identifying and prioritising functional variants in GWAS, expression quantitative trait 

locus (eQTL) and cancer studies. 

 

 

Results 

IW-Scoring framework 

IW-Scoring consists of four top-level modules, including: 1) gene annotation, 

2) regulatory annotation, 3) functional scoring, and 4) score integration and 

significance inference (Fig. 1). With queried variants as input, IW-Scoring framework 

uses the four modules to annotate and score variants, and rank noncoding ones based 

on their predicted functional significance. Within the gene annotation module, the 

queried variants are first annotated against Ensembl gene annotation to identify and 

filter out any variants that can potentially lead to non-synonymous changes for any 

transcript of a gene using our SNPnexus software [27]. For filtered noncoding 

variants, a gene centric view/summary is provided for within genes (e.g., 

synonymous, UTR and intronic), within 1 kb up- or downstream of genes, or 

intergenic. The next step is to further annotate noncoding variants against 

ENCODE/Epigenome/FANTOM5 defined regions along with Ensembl Regulatory 

Build annotation to identify overlapping regulatory elements of various chromatin 

(e.g., DNase I), polymerase and histone (e.g., H3K4me1/2/3 and H3K27ac) marks, 

transcription factor (TF) binding sites (e.g., CTCF, FOXA1, NFKB, c-Myc, c-Jun, 

p300, etc) and predicted promoters/enhancers/TSS, with the supporting cell and tissue 

types also reported.  

Next, noncoding functional scores of 11 different scoring systems derived 

from eight studies, including CADD v1.3 [17], DeepSEA [21], Eigen (Eigen and 

Eigen-PC) [25], fitCons [23], FunSeq2 [24], FATHMM-MKL [19], GWAVA (region, 

TSS and unmatched scores) [18] and ReMM [20] (Additional file 1: Table S1), are 
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extracted for all noncoding variants allowing missing values for some scores. Finally, 

an integrative score, i.e., IW-Scoring, is calculated for each variant as the weighted 

sum of all different available functional scores (see below for details), with associated 

statistical significance also derived. 

 

IW-Scoring for noncoding variants in training data set 

We used an unsupervised spectral approach similar to that described by Eigen [25] to 

calculate associated weights for different scoring systems. Compared to the 

annotation resources used in Eigen/Eigen-PC, our IW-Scoring framework is designed 

specifically for noncoding variants, with the incorporation of a wider range of 

noncoding functional scores as described above. For the training set, we extracted all 

variants from the 1000 Genomes Project data set [28] that were not present in 

dbNSFP [29] v3.0, and were either 1) within 1 kb upstream of the gene start site and 1 

kb downstream of the gene end site, or 2) within 5′ and 3′ UTR of a gene, or 3) 

synonymous variants in coding regions, leading to a total of 712,259 noncoding 

variants. Available functional scores were extracted and rescaled to calculate the 

covariance matrix (See Methods for details). Correlations among different functional 

scores for the training variants showed that scores from Eigen, DeepSEA, FATHMM 

noncoding, ReMM and CADD were more closely correlated, whereas GWAVA 

scores (i.e., unmatched and TSS) were more similar to each other (Fig. 2A). Under 

the assumption of conditional independence among individual functional scores given 

the true state of a variant (either functional or non-functional), this 

correlation/covariance structure could be used to determine the weight for each 

scoring system when combined to differentiate variants. We are aware of the 

limitation of our assumption, as many functional scores tend to use similar 

information for prediction, thus likely to be correlated when scoring variants. 

However, our inclusion of a wide range of functional scores based on different 

subsets of regulatory annotations and different algorithms (either machine-learning 

classifier, or sequence pattern recognition, or sequence conservation or weighted 

summarising score) minimises the inter-dependency effect and ensure the functional 

scoring based on the most diverse evidences. It is worth noting that functional scores 

were available for >95% of training variants for all methods, except for FunSeq2 

(84%), Eigen-PC (87%) and Eigen (91%), partially due to the missing values for 

chromosome X variants for Eigen (Additional file 1: Table S1). 
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Using the eigendecomposition of the covariant matrix derived from the 

training set, we calculated the weights for different scores (Additional file 1: Table 

S1). Eigen, DeepSEA, FATHMM noncoding, ReMM and CADD had the highest 

weights, while fitCons, GWAVA TSS and Eigen-PC had the lowest weights, half of 

those for Eigen and DeepSEA. Our impression is that evolution and conservation 

based measures, like fitCons, may not be appropriate choice to score functional 

noncoding variants, as the regulatory elements are often lineage/species-specific [30]. 

We then computed the integrative scores for all training variants as the weighted sum 

of different functional scores (rescaled values) where the scores appeared to follow a 

lognormal distribution (mean of 0.028 and standard deviation of 2.211) with a long 

tail in the direction of positive values (Fig. 2B). This distribution could then be used 

to infer the statistical significance for all queried variants. We also compared the 

integrative scores amongst different feature types using the Ensembl Regulatory Build 

annotation, which revealed that variants in promoter regions had the highest scores, 

followed by those in promoter flanking regions and enhancers (Additional file 2: Fig. 

S1).  

 

Benchmark of IW-Scoring and comparison with other methods 

Using three independent validation sets, we assessed the performance of IW-Scoring 

against other methods in differentiating pathogenic/functional noncoding variants 

from benign/non-functional ones. 

 

ClinVar pathogenic and benign noncoding variants 

We selected noncoding single nucleotide variants (SNV) from the ClinVar database 

[31], including 3′/5′ UTR, intergenic upstream / downstream, intronic, and 

synonymous coding variants, resulting in in total 769 pathogenic SNVs (true 

positives) and 11,173 benign SNVs as control (true negatives). As shown in the 

average receiver operating characteristic (ROC) curves when comparing all 11 

individual functional scores (Fig. 3A), ReMM, Eigen and FATHMM noncoding gave 

the best performances in differentiating pathogenic from benign variants with the area 

under the curve (AUC) values ranging 0.76 – 0.78 (Additional file 3: Table S2). The 

performances of DeepSEA and CADD were the next best with AUC of 0.72, whereas 

fitCons and GWAVA unmatched classifiers performed poorly (AUC = 0.58 and 0.62, 

respectively). We also performed the Wilcoxon rank-sum tests to compare functional 
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scores between pathogenic and benign noncoding variants for each scoring system. 

Although the overall results were highly significant for all methods, P values from the 

tests were the most significant for ReMM (P = 1.5 × 10-149), FATHMM noncoding (P 

= 2.9 × 10-121) and Eigen (P = 2.5 × 10-114), while P values for fitCons (P = 6.0 × 10-

11) and GWAVA unmatched (P = 7.3 × 10-13) were the least significant, consistent 

with the AUC results. 

We next calculated IW-Scoring values for all ClinVar pathogenic and benign 

noncoding variants. The AUC for the integrative scores was 0.78 (95% CI: 0.77 – 

0.80), marginally higher than that of the best performing score above, ReMM (Fig. 

3B). P value from the Wilcoxon rank-sum test was also the lowest for the IW-scores 

(P = 1.1 × 10-151). We also simply added up all 11 individual scores as the ‘sum-up’ 

scores, and the AUC for this was 0.78 (95% CI: 0.76 – 0.79), almost on a par with the 

weighted scores. As fitCons performed the worst out of all methods, we excluded 

fitCons from the training set and recalculated weights for all the remaining scores, 

followed by the calculation of IW-scores for all selected ClinVar noncoding variants. 

The AUC for this set of integrative scores to distinguish pathogenic from benign 

variants was 0.80 (95% CI: 0.78 – 0.81), the highest of all scores (Fig. 3B). This best 

performance was also supported by the most significant P value derived from the 

Wilcoxon rank-sum test (P = 1.5 × 10-165) (Fig. 3C; Additional file 3: Table S2). 

Furthermore, we also computed the significance p-values by comparing IW-scores 

with the lognormal distribution of those derived from the training set for selected 

ClinVar pathogenic and benign noncoding variants. P-values for pathogenic variants 

were much more significant overall than those for benign variants (combined p-value 

using Wilkinson’s method [15], p = 0.0003 for pathogenic variants and p = 0.15 for 

benign variants) (Fig. 3D). Within a queried variant set, IW-scores and associated p-

values could be further used to rank and prioritise variants. It is worth noting that the 

performance of IW-Scoring did not improve when we excluded other methods with 

poor performances (e.g., GWAVA unmatched) or just used the best performing 

methods only (e.g., ReMM, Eigen and FATHMM noncoding). As shown in the 

distribution of scores across all tools for pathogenic and benign variants (Additional 

file 4: Fig. S2), IW-score (excluding fitCons) is close to taking the maximum of 

individual scores, increasing the specificity greatly. It is also important to note that 

IW-Scoring, along with ReMM and DeepSEA, resolved 100% of the selected ClinVar 

variants, with CADD and FATHMM noncoding scoring 98% variants, while three 
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methods had scores for <90% selected variants, GWAVA (89%), Eigen-PC (86%) 

and FunSeq2 (only 55%) (Additional file 3: Table S2). 

 

GWAS significant noncoding SNPs 

The second validation test data set we used was the noncoding trait-associated SNPs 

from the National Human Genome Research Institute (NHGRI)-EBI GWAS Catalog 

(http://www.ebi.ac.uk/gwas/home). We identified 19,797 GWAS significant 

noncoding SNPs, consisting of intergenic, intronic, synonymous and regulatory 

region variants. For negative ‘non-functional’ variants, we randomly selected more 

than twice the number of 1000 Genomes intergenic and intronic SNPs with minor 

allele frequency (MAF) > 5% in the population (n = 45,808). In general, the 

performances of all methods were much poorer for this data set when compared to 

ClinVar data set. This is probably because most of these GWAS significant SNPs are 

not truly causal, but in linkage disequilibrium (LD) with the genuine causal ones, 

which consisted of only 5% of all GWAS catalogued SNPs [32]. The AUCs for IW-

Scoring and GWAVA unmatched classifiers were very comparable (0.591 and 0.595, 

respectively), producing the best results of all (Fig. 4A). Eigen-PC, DeepSEA, 

FunSeq2, GWAVA TSS and Eigen were the next best (AUC range 0.580 – 0.589), 

while ReMM and CADD performed relatively poorly (AUC, 0.533 and 0.536, 

respectively). FitCons appeared to be inadequate in handling this set of SNP data with 

AUC below 0.500 (Fig. 4A; Additional file 5: Table S3). Thus, we excluded fitCons 

from the integrative scores. In contrast with the ClinVar analysis, this exclusion did 

not improve the discriminating power of the integrative scores (AUC = 0.590) (Fig. 

4A). When comparing the P values from the Wilcoxon rank-sum test between GWAS 

significant and non-functional variants, the integrative scores led to the highest 

significance (P = 3.7 × 10-301) along with GWAVA unmatched, followed by Eigen-

PC, DeepSEA, FunSeq2, GWAVA TSS and Eigen (Additional file 5: Table S3). 

Again, IW-Scoring was informative for all selected 65,605 variants, with ReMM, 

DeepSEA, FATHMM noncoding, FunSeq2 and CADD all scoring >95% variants. 

Eigen-PC was the only score system that had scores for <90% variants (89%) 

(Additional file 5: Table S3). 

 

Noncoding cancer mutations from COSMIC 
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Next, we compared the different scoring systems to determine their ability to 

differentiate potentially functional from non-functional noncoding cancer mutations 

in the COSMIC database [33]. As GWAVA only scores known SNPs, we omitted all 

three GWAVA scores from this test. Since the large-scale discovery of true functional 

noncoding mutations is still very much lacking, for potential “functional” ones, we 

identified all COSMIC noncoding mutations that had been identified in more than two 

samples and were also absent or present in less than 1% of samples in the 1000 

Genome Project and NHLBI GO Exome Sequencing Project (ESP) data sets, 

restricting our analysis to 68,969 noncoding mutations. We further limited this set of 

mutations to those within the annotated regulatory regions only from ENCODE, 

Epigenome Roadmap and Ensembl Regulatory Build, leading to 34,813 potentially 

functional mutations as true positives. For the control set, we randomly selected ~4 

million COSMIC non-recurrent noncoding mutations, and identified those with MAF 

larger than 1% in the 1000 Genome data set. We further excluded mutations within 

the annotated regulatory regions, leading to 57,866 noncoding mutations as the non-

functional control. The AUC was the highest for ReMM (0.64), followed by 

FATHMM noncoding (0.62), Eigen-PC (0.60) and IW-Scoring of eight scoring 

systems (0.60) (Fig. 4B; Additional file 6: Table S4). CADD and DeepSEA 

appeared to perform the poorest in differentiating the selected recurrent from non-

recurrent noncoding mutations, with AUC < 0.55. Thus, we excluded these two 

functional scores from IW-Scoring, and the new integrative scores based on the six 

remaining scoring systems significantly improved the discriminating power with an 

AUC of 0.63, which was only marginally lower than that for the best performing 

method, ReMM (Fig. 4B; Additional file 6: Table S4). In general, recurrent 

noncoding mutations within the regulatory regions had significantly higher functional 

scores on average than their non-recurrent counterpart for all scoring systems. The 

extent of this difference was the highest for ReMM and IW-Scoring compared to 

others (Fig. 4C; Additional file 6: Table S4). Again, Eigen and Eigen-PC resolved 

the lowest number of selected COSMIC variants. 

 In summary of the benchmark results across three data sets, the performance 

of IW-Scoring was stable and ranked consistently among the best performing 

methods. However, the performances of other methods appeared to vary greatly 

among data types. 
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IW-Scoring usage and workflows  

To further assist end-users to apply IW-Scoring to annotate and score their queried 

variants, here we discuss the standard usage of our framework. IW-Scoring contains 

separate workflows for scoring known and novel variants. For known variants, we 

provide two IW-scores with the associated p-values: one that aggregates scores from 

11 functional scoring systems including fitCons, and the other excluding fitCons. This 

approach is useful for ranking and narrowing down variants indicated in GWAS and 

QTL studies, as well as rare known variants in hereditary diseases. As GWAVA only 

scores known variants, the workflow for novel variants excludes GWAVA scores 

from the aggregate calculation and provides two integrative scores: one that 

aggregates scores from the other eight scoring systems, and the other further 

excluding CADD and DeepSEA scores. This workflow is preferred for variants 

identified in cancer and other somatic diseases. In situations where users do not know 

which options to choose, they can use both workflows to generate IW-scores. The 

percentage of queried variants that are scored by GWAVA can further guide users in 

interpreting which IW-scores would be more reliable. 

 

Application of IW-Scoring to study noncoding variants from human data sets 

Having assessed the performance of IW-Scoring and other available functional scores 

in a range of test data sets, next we aimed to use our scoring system to evaluate key 

noncoding variants derived from association mapping, eQTL and cancer studies. 

 

Disease SNPs near consensus motifs 

We first assessed the functional significance for known disease-associated variants 

that fall near consensus motifs of transcription factor binding sites. We used candidate 

causal variants generated from Farh et al. [32], where transcription and cis-regulatory 

elements annotations for primary immune cells generated from Epigenome Roadmap 

Project were used and integrated. In this study, Farh et al. investigated the effects of 

disease SNPs in altering TF binding, and identified a notable AP-1 binding motif-

disrupting SNP rs17293632 associated with Crohn’s disease. We extracted all nearby 

known variants, within 5 kb up- and downstream of rs17293632 (n=187), and 

calculated the IW-scores for them. Our results show that IW-score for the causal SNP 

rs17293632 is the highest (score = 9.48, p = 7.32 × 10-13) among all the SNPs 

investigated (Fig. 5A). rs17293632 is located within an intron of SMAD3, a region 
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enriched for H3K4me1, H3K27ac, DNase I and TF ChIP-seq peaks, also with a 

higher degree of sequence conservation (Fig. 5A). The assessment of IW-scores 

further highlighted three additional SNPs with functional potential in this region, 

rs28514342 (5.47, p = 0.006), rs12324077 (4.98, p = 0.012) and rs193193326 (4.50, p 

= 0.020), which were all within 5 kb from the disease-associated rs17293632, thus 

likely to be in the same linkage disequilibrium (LD) block. 

 

Disease SNPs with gene regulatory effects 

We also assessed the functional significance for disease SNPs with gene regulatory 

effects. Combining epigenome data and a data set mapping variants in peripheral 

blood gene expression, Farh et al. identified two eQTL SNPs in the IKZF3 locus with 

independent effects on IKZF3 expression. Based on the GWAS and eQTL 

significance, rs12946510 is associated with decreased IKZF3 expression and 

increased multiple sclerosis (MS) risk, while rs907091 is associated with increased 

expression but with no association with MS risk. Interestingly, IW-score for the 

causal SNP rs12946510 is high (5.35, p = 0.007), whereas the IW-score for the eQTL 

SNP rs907091 with no disease effect is not significant (-0.105, p = 0.525), in line with 

the scores for all nearby non-functional SNPs (Fig. 5B). These results indicated that 

IW-scores are probably more sensitive to disease causative effects linked with 

phenotypic differences, rather than gene expression differences of nearby targeted 

genes. Therefore, by combining IW-scores and gene expression differences, we could 

further pinpoint those SNPs with both disease association and gene regulatory effects. 

IKZF3 3' downstream region is enriched for H3K27ac, DNase I peaks and TF binding 

sites; therefore, many variants in this region appeared to have higher IW-scores 

compared to those in other regions (Fig. 5B). 

 

Recurrent functional noncoding mutations in cancer 

We assessed the functional significance of recurrent noncoding mutations identified 

in cancer, using TERT promoter mutations as the representative example. First, we 

identified somatic mutations curated in COSMIC and Huang et al. [34], as well as the 

known SNPs in this region, including ~15 kb up- and downstream flanking regions. In 

order to generate comparable scores between somatic mutations and known SNPs, we 

used the IW-Scoring novel variant workflow for both. Intriguingly, higher IW-scores 

were observed around the promoter region marked by strong DNase I signal and 
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conserved TF binding sites, and gradually decreased to non-functional levels moving 

away from the promoter (Fig. 5C). For the two most frequently recurrent mutations, 

chr5:1,295,228 C>T and chr5:1,295,250 C>T (reverse strand, hg19), the integrative 

scores of eight scoring systems were 4.25 (p = 0.021) and 4.09 (p = 0.025), 

respectively. The scores for other less frequent mutations, chr5: 1,295,228 C>A and 

chr5:1,295,161 A>C (reverse strand), were 3.12 (p = 0.068) and 3.47 (p = 0.048). 

Encouragingly, this provided further confirmation of the accuracy and validity of our 

integrative approach for somatic variants. Interestingly, we also identified a silent 

mutation within a DNase I hypersensitive site, chr5:1,282,594 C>A (reverse strand), 

c.1719C>A, p.L573L, with a score of 3.88 (p = 0.032) with strong pathogenic 

potential (Fig. 5C). 

 

Landscape of noncoding mutations in follicular lymphoma 

We next used IW-Scoring to investigate the landscape of noncoding mutations in 

cancer. We chose to examine WGS datasets in a haematological cancer, follicular 

lymphoma (FL) where the landscape of the coding mutations has been extensively 

studied recently [11, 35-37]. More than 90% of the tumours have mutations in genes 

encoding epigenetic regulators suggests that these tumours rely on epigenetic 

deregulation [38]. However, little is known about the repertoire of non-coding 

mutations in FL. 

First we used a cohort of 14 WGS cancer samples from six FL patients from 

our previous study [11]. We calculated IW-scores for all 9,3078 unique noncoding 

somatic mutations. As expected, mutations in defined regulatory regions generally 

had significantly higher scores than those in non-regulatory regions (Wilcoxon test, p 

= 3.53 × 10-49, for Ensembl Regulatory Build; p = 2.71 × 10-89 for ENCODE 

annotation). For example, within Ensembl Regulatory Build defined regions, 

mutations in promoters had the highest IW-scores on average, followed by those in 

open chromatin and promoter flanking regions, while mutations in TF binding sites 

had relatively low scores (Fig. 6A). This is largely reflected by the occurrence of 

mutations in various ENCODE annotated regions (Additional file 7: Fig. S3). 

Among different ENCODE TF binding regions, mutations within POU2F2, BCLAF1, 

FOXA2, Ini1 and Brg1 binding sites seemed to have the highest pathogenic potential 

on average, further emphasising the importance of B-cell specific activator (POU2F2, 

also known as Oct-2) (mean IW-score, -0.47, compared to the mean of -1.15 for all 
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mutations in TF binding regions), Bcl-2 associated protein (BCLAF1) (mean IW-

score, -0.63), and chromatin modification and remodelling (FOXA2, Ini1/SMARCB1, 

and Brg1/SMARCA4, mean IW-score of -0.70, -0.83 and -0.85, respectively) in FL 

development (Fig. 6B; Additional file 8: Table S5). 

By using a p < 0.05 significance threshold for the IW-scores, this allowed the 

identification and refinement of the list of non-coding mutations to 1,375 (~1.5%) 

variants (Additional file 9: Table S6). To highlight recurrent functional mutations in 

regulatory regions, we next examined the density of these candidate functional 

mutations and searched for regions where functional mutations were clustered within 

short inter-distance of each other (<10 kb). We identified 11 such clusters with 

enriched functional mutations (n ≥ 3) (Additional file 9: Table S6). Many of these 

are known targets of aberrant somatic hypermutations (aSHM) in B-cell lymphomas, 

such as BCL2, BCL6, BCL7A, CXCR4 and PAX5 [39, 40]. However, many recurrent 

functional mutations were also found outside the typical targeted regions of aSHM for 

these genes, i.e., within ~2k bp downstream of transcription start sites (TSS). To what 

extent these mutations were associated with aSHM remains unclear. 

We were able to validate these mutation clusters in an extended cohort of 36 

FL patients derived from the ICGC Malignant Lymphoma Project where whole-

genome simple somatic mutations (SSM) were available (ICGC Data Portal Release 

23). Nine out of 11 clusters (82%) were also significantly enriched for functional 

mutations in this larger cohort (Additional file 10: Table S7), although many more 

mutational clusters enriched for functional mutations were discovered (data not 

shown). For example, we found in total 64 functional mutations in PAX5 5' 

upstream/UTR and first intron, and only 7 of these were within the usual aSHM target 

regions (Additional file 11: Table S8). The majority of these mutations were within 

PAX5 first intron that contains an active promoter characterized by a DNase I 

hypersensitive site with strong H3K4me3 and H3K27ac signals in a lymphoblastoid B 

cell line GM12878 (Fig. 6C). Interestingly, we further identified two clusters of 

mutations ~300-330 kb upstream of the PAX gene. One cluster was within ZCCHC7 

intronic region with 5 potential functional mutations, and the other cluster of 24 

mutations was located at the 3' downstream region of ZCCHC7 with the most 

significant mutation as chr9: 3,7371,916 G>A (3.29, p = 0.058) (Fig. 6C and 6D). 

Both regions seemed to contain active enhancers marked by DNase I, H3K4me1 and 

H3K27ac peaks profiled in GM12878 (Fig. 6C). The latter cluster has been 
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previously described in several B-cell related malignancies, indicating this region 

served as a PAX5 enhancer [9]. By comparing FL mutations and their IW-scores 

among these three regions, our results further suggest that mutations in PAX5 

promoter were commonly more deleterious than those in enhancers (Wilcoxon test, p 

= 4.64 × 10-4, for promoter vs. enhancer region 2) (Fig. 6C and 6D). Future studies 

are required to further understand the gene expression regulatory effect and 

mechanism of these mutations in those regions. 

 

 

Discussion 

The noncoding regions of the genome harbour a substantial fraction of total DNA 

sequence variations, and the functional contribution of these variants to complex 

traits, genetic diseases and tumourigenesis is still very poorly defined. Only a small 

fraction is believed to be truly functional and pathogenic. How to identify and 

prioritise these key functional driver events has become critical in the era of routine 

whole genome surveys and studies. We describe here an integrative approach, IW-

Scoring, for noncoding variant annotation and functional scoring. We showed that our 

approach outperforms most other functional scoring methods in differentiating 

functional/pathogenic from non-functional/benign variants in a variety of independent 

data sets: (1) validated clinically relevant variants, (2) GWAS significant variants, and 

(3) recurrent COSMIC cancer mutations. We also demonstrated its powerful 

application in identifying functional mutations in FL noncoding genome. 

 Our integrative approach has several advantages when compared to other 

available methods. First, it starts with embedded gene and regulatory annotation 

modules, allowing for easy access to the gene centric information and overlapping 

regulatory elements from a wide range of annotation resources, as well as available 

functional scores for queried variants. Second, it uses an unsupervised spectral 

approach to assign weights to available functional scores, and integrates these into a 

weighted sum. This approach yields the final scores and functional calls based on 

multiple evidences with a level of significance also derived to further improve the 

prioritisation. Thirdly, the nature of this integration meant that the performance of 

IW-scores was stable and ranked consistently among the best performing methods 

across all test variant data types. The performances of other methods, however, 
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appeared to vary among data types, therefore, caution is needed to interpret these 

scores when different data types are studied and compared. In contrast with other 

tools, IW-Scoring benefitted by scoring the highest proportion of variants in all data 

sets via imputations based on interdependencies between variables. These advantages 

ensure that our method is versatile and can be applied to various studies from known 

SNPs, to rare germline variants and to somatic novel mutations. 

 A common feature of IW-Scoring and many other methods (e.g., CADD, 

Eigen and GWAVA) is that disease/phenotype and tissue/cell specificities with their 

related annotations were all combined into a single functional score. This technique 

significantly reduced the dimensionality of scoring output without having to produce 

scores for each tissue and phenotype, as well as for different chromatin/histone marks, 

making the data post-processing much easier and more straightforward especially for 

a large number of variants. However, IW-Scoring still allows for the functional 

variants associated with specific tissues, cells and features to be identified through the 

regulatory annotation module. This is currently lacking in many other methods, 

although some algorithms have chosen to focus on the identification of disease/tissue 

specific risk variants recently [22, 41]. Compared to most available methods, we 

believe our approach is optimally balanced between summarised and detailed 

evidences for the diverse range of users. 

 It could be argued that the approach we have adopted with IW-Scoring is 

similar to Eigen and Eigen-PC but it is worth pointing out that, our framework is 

specifically designed for noncoding variants, incorporating most recent and a wider 

range of noncoding annotation and functional features/scores. Via a vigorous weight 

learning process, strong weights were assigned to the block of closely correlated 

scores (Eigen, DeepSEA, FATHMM noncoding, ReMM and CADD), and the derived 

IW-Scoring significantly outperformed individual constituent scores (including Eigen 

and Eigen-PC) across various data sets, demonstrating the accuracy and validity of 

our approach. Such ensemble based approach with different estimated weights has 

been shown to perform better than any single component classifier [26], and has been 

widely used in various bioinformatics problems [41, 42]. The weighted integration 

technique based on the eigendecomposition of the covariance matrix also offers the 

flexibility to incorporate any other correlated genome-wide functional scores/features 

into the integrative scores. Many other integration approaches for continuous output 

can also be explored. For example, decision tree and random forest have been shown 
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to perform well to predict the functional consequences of non-synonymous variants 

combining various scores [43]. Their performances on noncoding variants in 

comparison to our IW-Scoring approach are yet to be seen. However, as suggested by 

our results, incorporating more annotation scoring systems does not necessarily 

improve the performance of integrative scores, especially if these additional scoring 

systems are very much uncorrelated with the existing ones. Integrative scores can be 

mostly useful when combined with additional layers of genetic data, such as gene 

expression profiling by RNA-seq, to look for differential expression of target genes. 

This combinational approach has recently been applied to identify recurrent 

noncoding regulatory mutations in pancreatic cancer [44]. We are aware that IW-

Scoring and all other algorithms are useful and powerful tools to prioritise mutations 

and associated genes from hundreds of thousands of noncoding mutations. However, 

these findings still need to be validated in the wet-lab to determine their true 

oncogenic potential. 

 In this age of WGS and diagnostics, we believe IW-Scoring offers great 

versatility in discovering noncoding disease causal variants. With the collection of a 

cohort of samples with the same disease or phenotype, one can identify recurrently 

mutated noncoding regions enriched for functional mutations predicted by IW-

Scoring, which could drive the disease initiation and development, with or without the 

presence of coding drivers. This will certainly trigger the new wave of noncoding 

biomarker discovery. 

 

 

Conclusion 

Here we describe IW-Scoring, an integrative weighted scoring framework for 

functional annotation and prioritisation of genetic noncoding variants. IW-Scoring 

shows consistent and superior performance in identifying potential 

functional/pathogenic variants and mutations when compared to individual 

constituent scores, across ClinVar, GWAS and COSMIC noncoding data sets. The 

four top-level modules in our approach offer dynamic outputs with a versatile range 

of gene and regulatory annotation features, as well as individual and integrative 

functional scores with associated significance. We demonstrate the utility of IW-

Scoring in identifying functional noncoding variants and mutations in GWAS, eQTL 
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and cancer studies. In particular, we harnessed the capacity of the algorithm to 

identify clusters enriched with functional or pathogenic mutations thereby providing a 

powerful tool to further decipher novel noncoding driver candidates in disease 

genomes. In the era of WGS and multi-omics studies, we propose that IW-Scoring 

can play an integral part in the search for significant regulatory variations in complex 

traits and diseases. 

 We have constructed a web interface for users to query into various noncoding 

annotation and scoring databases to annotate any list of known and novel variants, 

and to calculate IW-scores for them. This was made available at http://snp-

nexus.org/IW-Scoring. 

 

 

Methods 

Data Sources 

Gene coding annotation source 

We use Ensembl (version 75) gene annotation model to annotate variants with 

SNPnexus and select noncoding variations. We also collect related gene 

mapping/effect information e.g., synonymous, intronic, 5′ or 3′ UTR, up- or 

downstream (within 1k bp) of the gene. If variants are between genes, i.e., intergenic, 

we collect their nearest up- and downstream genes and distances to them. 

 

Noncoding annotation sources 

We use ENCODE, Epigenome Roadmap and FANTOM5 for noncoding annotations. 

ENCODE and Epigenome Roadmap data sources were obtained from Ensembl 

BioMart (Version 75). Within ENCODE, annotated regions for DNase I, polymerase, 

various histone marks (e.g., H3K4, H3K27, H3K36 and H3K9), TF binding across 19 

cell lines are implemented for regulatory annotations. For Epigenome Roadmap, 

annotated regions for DNase I sites and up to 25 different histone marks for H1ESC 

and IMR90 cells are included. We also include Ensembl Regulatory Build annotation. 

For FANTOM5 regions, we collect overlapping CAGE peaks, predicted enhancers 

and TSS for each noncoding variant. 

 

Noncoding variant scoring sources 
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We use 11 noncoding functional scores to build the IW-Scoring algorithm. These 11 

scores were derived from eight studies, CADD, DeepSEA, Eigen, fitCons, FunSeq2, 

FATHMM-MKL, GWAVA and ReMM (Additional file 1: Table S1). For all these 

methods except DeepSEA, the pre-computed genome-wide score files with tabix 

indexes were downloaded. For DeepSEA, the original source code was obtained and 

run locally.  

 

Construction of integrative noncoding scores 

We used an unsupervised spectral approach similar to Eigen / Eigen-PC [25] to derive 

a weighted linear combination of individual scores. To achieve this, we first need to 

learn the weights for different functional scores incorporated. 

 

Estimation of the weight for constituent scores 

The weight estimation procedure is implemented as following: 

(1) Training data set assembly: a training data set of 712,259 noncoding variants 

was first assembled, consisting of variants within up-, downstream and UTR 

genic regions, as well as synonymous variants from the 1000 Genomes 

Project. We obtained functional scores from the 11 scoring systems, allowing 

missing values for certain scores. DeepSEA functional significance scores (p-

values) were –log2 transformed to enable data integration. 

(2) Data rescaling: noncoding scores (continuous variables) were rescaled to 

have a mean of zero and a variance of one, individually. The minimum and 

maximum for the original and rescaled values of each scoring system were 

retained for the data transformation of queried data sets (see the section 

below). 

(3) Covariance estimation: a covariance matrix was calculated as pairwise 

correlations between any two of the 11 scoring systems. This allows variants 

with missing values for certain scores to be used when values from other 

methods are available. This ensures we estimate the weights based on all 

observed variants accurately. 

(4) Weight estimation via eigendecomposition: the estimated weights for the 

individual scoring systems were calculated using the eigendecomposition of 

the covariance matrix. The lead eigenvector (i.e., the one with the greatest 
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eigenvalue) was used and assigned to the corresponding scores as their 

weights. 

We also calculated IW-scores, a weighted sum of rescaled values of different 

noncoding scores, for all training variants, in order to determine a distribution of 

integrative scores. We imputed missing values in the rescaled scoring matrix using the 

Amelia R package [45]. Amelia performs multiple imputation of missing data taking 

into account potential interdependencies between variables, combining the 

expectation-maximization with bootstrapping algorithm. The final imputed values 

were calculated as a mean of 10 imputations. 

 

Calculating integrative scores and associated significance for queried variant sets 

The IW-Scoring framework to calculate integrative scores for any set of queried 

variants is outlined below: 

(1) Score extraction and missing value imputation: similar to the training data 

processing, we first extract scores from different methods. For variants with missing 

values from certain scoring systems, imputations are implemented. Considering the 

usual small sample size for queried variant sets, we employ a strategy to merge them 

with a set of 100,000 variants randomly selected from the training set where all values 

are available, in order to increase the imputation accuracy. We then impute the 

missing values using Amelia based on the average of 10 imputations. 

(2) Data rescaling: we use the training data set as a reference for all queried 

variants to be rescaled to. For each scoring system, we rescale the values of queried 

variants to fit into the rescaled distribution of the training set based on the parameters 

(e.g., the minimum and maximum) derived from the original and rescaled scores (at 

the training variant data recalling stage above). The rescaled values need to satisfy the 

following equation, 

                            
��������

��������
�  

��������

��������
                                                                     (1)  

where �����  and ����� , ���	�  and ���	�  are the maximum and minimum values of 

the original and rescaled scores for scoring system i in the training set, respectively. 

Variables ��  and ��  are the original and rescaled values of scoring system i for the 

queried variant. Thus, the solution to this equation of calculating �� is 

                            �� �
����� � ���������� ����� � ���������

������ �����
.                                   (2)  
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(3) Integrative scoring: after rescaling, the integrative scores are calculated as 

the weighted sum of rescaled values of all scoring systems for queried variants, as 

                           
�_���� �  ∑ ��� ��                                                                    (3) 

where �� is the weight of scoring system i derived from the training set. 

(4) Scoring significance and variant ranking: the integrative scores for queried 

variants are compared to the lognormal distribution of all scores in the training set 

(e.g., Fig. 2B) to determine the significance levels. Queried variants are further 

ranked based on IW-scores and p-values derived. 

 

Performance comparison between integrative scores and other scores 

We used noncoding variants from the ClinVar database version 2016/11/01 and 

National Human Genome Research Institute (NHGRI)-EBI GWAS Catalog version 

2016/11/21. The performance of each scoring method was assessed using the average 

receiver operating characteristic (ROC) curves and the area under curve (AUC) using 

pROC R package [46]. For cancer data sets, we selected noncoding variants curated in 

the COSMIC database Version 79. 
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associated weights estimated (XLSX 53 kb) 

Additional file 2: Fig. S1. Integrative scores for mutations within various Ensembl 
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Additional file 3: Table S2. Assessment of the performances of various methods in 

the ClinVar data set (XLSX 41 kb) 

Additional file 4: Fig. S2. Distribution of functional scores for selected ClinVar 

pathogenic and benign variants across all methods (PDF 281 kb) 
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the COSMIC data set (XLSX 41 kb) 
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Additional file 9: Table S6. 1,375 FL mutations with significant integrative scores of 

p < 0.05 (XLSX 147 kb) 

Additional file 10: Table S7. Nine out of 11 clusters identified in Okosun et al. were 

validated in ICGC FL cohort (XLSX 12 kb) 

Additional file 11: Table S8. Potential functional mutations in PAX5 promoter and 
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Figure legends 

 

Fig. 1. The IW-Scoring framework. 

 

Fig. 2. Correlations between 11 functional scores and the distribution of integrative 

scores of 712,259 noncoding variants in the training set. (A) Correlation matrix of 11 

functional scores based on variants in the training set. (B) Distribution of integrative 

scores based on 11 scoring systems for all variants in the training set. The mean and 

standard deviation were shown. Mean and median values were indicated by the blue 

and green lines, respectively. 

 

Fig. 3. Comparison of the performances of different functional scores with IW-

Scoring using the ClinVar pathogenic and benign noncoding variants. (A) ROC 

curves of the 11 individual functional scores with AUC values noted, measuring the 

accuracy to differentiate pathogenic and benign variants. (B) AUC values for IW-

Scoring and selected individual scores to differentiate pathogenic and benign variants. 

95% CI bars were also shown. (C) Violin plots of integrative scores (without fitCons) 

for ClinVar pathogenic and benign variants. (D) Boxplot of p-values associated with 

integrative scores (without fitCons) for pathogenic and benign variants. 

 

Fig. 4. Comparison of the performances of different functional scores using the 

GWAS and COSMIC noncoding data sets. (A) AUC values for integrative scores and 

individual scores in the ability to differentiate between GWAS and randomly selected 

1000G noncoding SNPs. 95% CI bars were also shown. (B) AUC values for 

integrative scores and individual scores in the ability to differentiate COSMIC 

recurrent from non-recurrent noncoding mutations. (C) Violin plots of functional 

scores between recurrent and non-recurrent noncoding mutations for CADD, 

integrative scores (six scores) and ReMM. 

 

Fig. 5. Application of IW-Scoring in scoring variants identified in GWAS, eQTL and 

cancer studies. (A) Disease SNPs near consensus motifs in SMAD3 intronic region. 

Integrative scores (without fitCons) were shown for all nearby known SNPs along 

with the disease-associated candidates. (B) Disease SNPs with gene regulatory effects 

nearly 3' UTR of IKZF3. Integrative scores (without fitCons) were shown for 1,000 
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randomly selected known SNPs nearby, and two GWAS and eQTL candidates, 

circled with red and blue circles, respectively. (C) TERT promoter mutations and 

known SNPs in the region, with their integrative scores calculated. Black and grey 

dots denote somatic mutations and SNPs, respectively. 

 

Fig. 6. Integrative scores of somatic mutations in follicular lymphoma. (A) Integrative 

scores for mutations within Ensembl Regulatory Build annotated regions. (B) 

Integrative scores for mutations within top mutated TF binding sites. The mean value 

was shown by the red dotted line. (C) Recurrent mutations in PAX5 locus. Integrative 

scores were shown for all noncoding mutations in whole chromosome 9 first. PAX5 

locus was further zoomed in with three mutations clusters further identified, PAX5 

promoter, putative enhance region 1 and 2. Mutations from ICGC FL samples were 

shown by solid green dots, while mutations from Okosun et al. were shown by solid 

light blue dots. Signals of epigenetic histone marks were for GM12878 cell line. (D) 

Integrative scores for mutations across three PAX5 associated regions in boxplots. 

Red dotted line indicated the level of p = 0.05. 
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