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Abstract—Closed loop neuromodulation, where the stimulation
is controlled autonomously based on physiological events, has
been more effective than open loop techniques. In the few existing
closed loop implementations which have a feedback, indirect
non-neurophysiological biomarkers have been typically used
(e.g. heart rate, stomach distension). Although these biomarkers
enable automatic initiation of neural stimulation, they do not
enable intelligent control of stimulation dosage. In this paper,
we present a novel closed loop neuromodulation platform based
on a dual signal mode that is detecting electrical and chemical
signatures of neural activity. We demonstrated it on a case of
vagus nerve stimulation (VNS). Vagal chemical (pH) signal is
detected and used for initiating VNS and vagal compound action
potential (CAP) signals are used to determine the stimulation
dosage and pattern. Although we used the paradigm of appetite
control and neurometabolic therapies, the platform developed
here can be utilised for prototyping closed loop neuromodulation
systems before adapting the final System-on-Chip (SoC) design.

I. INTRODUCTION

Neuromodulation is a fast growing treatment paradigm for
a number of diseases and conditions such as epilepsy, depres-
sion, obesity, inflammation, etc [1]. Apart from implementing
it for drug resistant cases, the primary reason behind this is
the ability for neuromodulatory therapies to enable a more
precise intervention by targeting a certain nerve or brain area
than drug therapies. Furthermore, the dosage can be tuned for
each individual case [2].

Neuromodulation therapies can be divided into two thera-
peutic paradigms: open loop and closed loop. The stimulation
dose control aspect of neuromodulation implants consist of
answering two questions: when to stimulate and how much.
Open loop neuromodulation therapies involve crude manual
tuning of stimulation time and dosage by healthcare profes-
sionals based on factors such as patient vitals, discomfort or
pain, etc [3]. Closed loop involves autonomous decisions based
on physiological events, hence it tends to be more patient-
specific. Closed loop neuromodulation therapies have been
demonstrated to be more efficient than open loop [4], [5].

In this paper, we introduce a novel platform to implement
an adaptive stimulation based on dual mode signalling i.e
chemical and electrical, see Fig. 1. Our immediate aim is to use
it to develop a closed loop VNS implant for apettite control,
but it can be used as generic platform for developing adaptable
neurostimulation systems. This system is able to address the
two primary concerns of a closed loop implant by initiating

Fig. 1. Platform for dual mode biosignal closed loop neuromodulation.

stimulation based on the presence of specific chemical signa-
ture in the neural response to a specific physiological condition
and controlling the stimulation dose based on CAPs elicited
say during an interrogative low frequency stimulation.

The platform was initially created for the development of
a closed-loop stimulation of the gastric branch of the vagus
nerve in order to regulate appetite [6]. We were able to identify
chemical pH signatures specific to the vagus response to
cholecystokinin (CCK), a gut hormone released during meal
intake, during in vivo experiments [6]. CCK is responsible
for reducing appetite and it has been previously demonstrated
that VNS introduced in correlation to meal intake leads to
greater effective weight loss [3]. We utilise the pH signal
(chemical sensor) which has a higher amplitude, hence easy
to detect compared to neural mass activity, to initiate VNS
in correlation to meal intake. However, apart from knowing
when to stimulate we needed to adjust the stimulation to a
certain level which always varies from case to case due to
electrodes proximity to the nerve, contact impedance etc. We
utilise CAPs elicited during an interrogative VNS protocol
to characterise the vagus nerve for individual subjects and
determine the precise stimulation parameters necessary.

II. SYSTEM ARCHITECTURE

The prototyping platform consists of all elements needed for
a complete closed loop neuromodulation system: electrodes,
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front-end analogue amplifiers, signal processing algorithms
and stimulator, Fig. 1. The electrodes are IrOx microspikes
interfaced to a multichannel, multifunctional neural amplifier
with on-chip 8-bit ADC. This ADC is interfaced to an NI USB
6212 Data Acquisition Device. The acquired neural signals are
processed on the computer in this platform, with the future
goal of enabling efficient System-On-Chip implementation.
Finally, the PC is connected to a stimulator.

A. Sensors: IrOx Electrodes

Choice of electrodes is a crucial part of the platform
development. The instrumentation specification and design
very much depend on it. Initially we have targeted to measure
the pH, and currently we are examining potassium electrodes
as well [7]. For pH we decided to use IrOx wires [8]. The
mechanism behind ability of the IrOx to sense pH changes
lies in the existence of redox chemical reaction between two
IrOx types, namely Ir(III)Ox and Ir(IV)Ox:

2IrO2 + 2H+ + 2e− � Ir2O3 +H2O (1)

A potentiometric sensor typically measures potential differ-
ence between the sensing electrode and a reference electrode
such as silver-silver chloride electrode (Ag/AgCl), i.e. the
Open Circuit Potential (OCP). The measured OCP is modelled
by the Nernst equation and is dependant on ionic concen-
tration. The sensitivity of potentiometric IrOx sensors range
from 60 − 90 mV/pH. For the typical pH variation observed
in biomedical applications of 0.02− 1 pH units and assuming
minimum sensitivity, the signal levels will range from 1.2 mV
to 60 mV. The response time for IrOx sensors i.e. time required
to reach 90% of the equilibrium value, for the relevant ranges,
is 6− 12 s for a change of 1 pH unit [9]. Hence the pH signal
is a low frequency signal with bandwidth less than 0.1 Hz.

An outstanding issue with IrOx sensors is presence of drift
in the OCP. The origin of the drift could be due to hysteresis
in the IrOx sensor or change in ambient conditions, such as
temperature, which affect pH [9].

IrOx microneedles have small sensing area and in order to
preserve this sensing layer, it is essential to ensure no leakage
current flow through the electrode. Otherwise, this will lead to
reduction of IrOx layer and hence loss of sensitivity. Therefore,
it is crucial to use front-end amplifiers that have extremely low
input bias current or gate leakage current in order to prevent
sensor degradation and erroneous readings.

B. Front-end Amplifier

The chip micrograph in Fig. 2A) shows the make up of the
two varieties of front end amplifiers. The first is a modified
switched bias amplifier (MSB), which was designed to exhibit
a low input referred noise with a closed loop gain of 60 dB
and it operates over a frequency range 200 Hz to 5 kHz. The
MSB amplifier offers significant noise and area trade-off, all
details are available in [10]. The second variety is a chemical
amplifier based on the MSB amplifier with the closed loop gain
clipped to a maximum of 20 dB and a maximum frequency
range of 10 Hz. Each of these amplifiers have been arrayed

Fig. 2. Multi-channel Recording setup: A) chip microphotograph, B) evalu-
ation PCB.

to create a multichannel amplifier consisting of three MSB
based amplifiers which are used to pickup CAP signals and
the remaining three are used to pickup chemical based signals.
The amplifiers were designed and fabricated in the standard
0.35µm CMOS AMS technology. The PCB, Fig 2B) was
designed primarily to test the amplifiers mentioned above and
interface with the rest of the platform. Due to the low power
consumption it is capable of operating off a battery.

C. Neural Stimulator

The heart of the bi-phasic stimulator is a 6 bit current DAC,
Fig. 3A). The DAC has a Least Significant Bit (LSB) of 50µA,
and a maximum current output of 3.2 mA. To maintain charge
balance a current leakage estimator is included as part of the
circuitry. If there is a loss of charge when driving a current
pulse from the anode through the nerve tissue to the cathode,
an additional current pulse for the difference in charge, is sent
to the driving terminals. The design of the bi-phasic stimulator
was carried out using commercially available High Voltage
AMS H35 technology which included a low voltage 0.35µm
extension. A high voltage technology is needed to drive a
3.2 mA current into a tissue with a nominal impedance of
10 kΩ, resulting in a minimum voltage of 32 V, needing a
power supply of approximately 35 V to drive the output stage
of the bi-phasic stimulator.

As the high voltage transistors were relatively large com-
pared to the low voltage transistors a decision was made to
design the 6 bit current DAC using the low voltage extension.
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Fig. 3. Neural Stimulatior: A) chip microphotograph, B) evaluation PCB.

The H-bridge was used to drive the anode and cathode
terminals, and form the basis of the bi-phasic operation. High
Voltage cascoded mirrors were designed to interface between
the low voltage 6 bit current DAC and the H-bridge. Careful
design consideration was given to the H-bridge high voltage
transistors to ensure junction voltages do not exceed and cause
fatigue of the oxide and eventual break down. To avoid such
situations a high voltage regulator was designed to ensure
junction voltages within the H-bridge doesn’t exceed specified
typical voltage, as indicated in the design manual for the
various transistor flavours.

The stimulator PCB, shown in Fig. 3B) was designed to
interrogate the integrated stimulator IC and demonstrate that
it is capable of producing 6 bit current output depending on
the input digital code, with an LSB of 50µA. As the final
solution is expected to be battery powered the PCB has a boost
converter to up convert 3.3 V to 40 V, which is then dropped to
the 35 V needed for driving the output stage of the stimulator
integrated circuit.

D. Closed Loop Implementation

The closed loop implementation consists of three different
steps: Nerve classification, Stimulation strength determination,
Physiological Trigger Detection, an overview shown in Fig. 4.

Nerve classification is performed to determine the ex-
citabilty of the nerve, including the types of fibres present
and the stimulation thresholds for different fibre types. For this
purpose we use the Strength–Duration protocol [11]. The CAP
waveform analysis consists of partitioning the CAP waveform
to separate the contirbution of different fibre types based on
fibre conduction velocity and distance between stimulation
and recording electrode [2]. A strength duration curve is
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Fig. 4. Overview of closed loop neuromodulation system.

constructed for each fibre type based on the Lapicque equation
[2]. Stimulation strength determination is performed by setting
the stimulation parameters i.e stimulation current, pulsewidth,
and stimulation waveform based on the neuromodulatory
application. A test stimulus is performed to verify the set
stimulation parameters.

Once the stimulation parameters are verified, the next step
is to set up the platform to detect the physiological trigger
for initiating stimulation. In the application described here the
physiological trigger is the pH change due to vagus nerve
response induced by release of CCK. The incoming data which
is sampled at 20 kHz is downsampled using a decimation filter
to 50 samples per second. The decimation filter is composed
of a CIC filter and a compensation low pass filter.

1) pH Electrode Drift Removal: The chemical signal has
an overall linear drift due to the drift in open circuit potential
of the IrOx electrode as shown in Fig. 5. This drift is cancelled
using linear interpolation over a fixed time window.

2) pH Detection Algorithm Training: In order to detect the
CCK specific pH response, the temporal profile of the pH
waveform is considered over a period of 2 minutess and com-
pared with the CCK induced temporal pH profile. In general,
the CCK specific pH response exhibits a negative slope or a
downward trend for 1-1.5 minutes followed by a reverse trend
for the same length of time, see Fig. 5. However, under in vivo
conditions, the pH waveform is affected by several interefering
processes. Hence, in this algorithm a multivariate approach is
adopted by using Principal Component Analysis (PCA). This
is similar to the application of PCA on cyclic voltammetry
curves described in details in [12], [13].

PCA is performed by first mean centering the data and
constructing a training matrix using in vivo experimental data,
in which CCK was injected intravenously and the change due
to CCK was recorded, consistently over a number of trials
in different animals [6]. If necessary, this training can also
be performed chronically on-chip in an implant or using the
platform described in this paper during in vivo experiments.
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The training matrix consists of pre (2 min), response (2
min) and post (2 min) CCK injection as shown in Fig. 5. The
principal components (PC ) for pre, post and response (Ptrain)
are extracted. A scree plot is used to determine the number of
PCs to retain, which capture at least 95% of the variance in
data. These will be used for real time detection of pH response.
The training matrix is cross-validated with a set of exisiting in
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Fig. 5. The pH change measured vivo in a rat model inside the gastric branch
of the vagus nerve, before injection of CCK (pre), during the period when
CCK is active (response) and after (post-response).

vivo experimental data not included in the training matrix. The
extracted PCs are stored for real time pH response detection.

3) Real Time pH Response Detection: The incoming real
time pH data is filtered and a projection matrix of the data in
the principal component subspace is calculated:

Dproj = U ′c ×Dactual , (2)

where Dactual is the real time experimental data and Uc is
the Principal Component matrix extracted from the training
matrix. The specific response to a physiological stimulus is
detected by calculating residual values E, defined as the differ-
ence between the actual incoming data and back-transformed
projected data set:

E = Dactual − (Uc ×Dproj) . (3)

From residuals a factor Q is calculated [12]:

Q = diag(E′ × E) . (4)

In other words Q is the sum of the squares of the residual
value in each sample data. Now the value of the Q is used
to determine the presence of a specific neural response by
establishing a threshold value for Q. In our case, if the Q-
value is less than 0.01, it is treated as a neural response.

In our case three minutes of real time data is stored at any
given time. In order to capture the CCK response effectively,
two projection matrices (temporal size 2 min) are calculated
on 2 minutes of data with an overlap of 1 minute. Before
calculating the projection matrices, electrode drift is removed
over the period, followed by mean centering. The projection
matrix of the actual data is calculated using the PCs generated
from the training data.

III. RESULTS

In this section a brief exposition of our results for validation
of different components of the Prototyping Platform for Adapt-
able Neural Stimulation is presented. The IrOx sensors are first

verified to confirm their ability to record both pH and CAPs,
recorded through the analogue front-end. Details regarding the
analogue front-end are presented in [10]. The results of PCA
training and real time pH detection are also discussed here.
The closed loop implementation was eventually verified by
detecting the change in the rat’s heart rate due to electrical
stimulation of vagus from our stimulator, this is shown in [6].

A. IrOx sensor: pH calibration, CAP recording

Details about the IrOx pH sensor calibrations are given
in our previous publication [8]. For CAP recordings we first
tested the validity of using an IrOx electrode. We put an IrOx
electrode on the same nerve with a Pt electrode for comparison
and obrained very good results, see Fig.6.
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Fig. 6. The same CAPs recorded simultaneously by an IrOx and a Pt
electrode.

B. Nerve Classification

The nerve fibre classification can be performed on the basis
of CAP conduction velocity. As an example we show some of
our experimental results in Fig. 7.
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Fig. 7. CAPs elicited during in vivo stimulation of the cervical part of vagus
nerve in a rat and recording in the gastric part. The pulse widths (PWs) shown
here are: 0.1 ms (top), 0.2 ms (middle) and 0.5 ms (bottom). More PWs were
used in the experiments. There are 16 different current amplitudes for each
PW in the span between 0.2 mA-3 mA for PW=0.1 and 0.2 ms, and between
0.1 mA-2 mA for PW=0.5 ms.
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C. Stimulation Strength Determination

The strength-duration curves were used to establish the
nerve excitability. Parameters such as rheobase and chronaxie
[11] can be calculated from the recordings such as those shown
in Fig. 8. Then we can set the stimulation dose (and stimulus
profile), depending on which fibre types are targeted.
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D. pH Response Training

The scree plot demonstrates the variance of training matrix
data captured by each principle component, shown in Fig. 9.
From the scree plot it is apparent that only first three principal
components need to be retained, as more than 95% variance
in data is accounted for by them.
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E. Real Time pH Detection

Validation of our algorithm is shown in Fig.10. We show
two examples of how decision is made on the basis of the
residues and Q-value, even in the presence of a non-linear
background change.

IV. CONCLUSION

A comprehensive platform for closed-loop neuro-
stimulation integrated systems, based on dual chemical
and electrical sensors recording, has been created and
successfully demonstrated. For the demostration we used a
neurometabolic therapy related to vagus nerve stimulation.
This platform can be utilised to evaluate closed loop
neuromodulation therapies and processing algorithms in
vivo before translation into an on-chip integrated system for
implants.
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