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Abstract  39 

Transient species occur infrequently in a community over time and do not maintain viable 40 

local populations. Because transient species interact differently than non-transients with their 41 

biotic and abiotic environment, it is important to characterize the prevalence of these species and 42 

how they impact our understanding of ecological systems. We quantified the prevalence and 43 

impact of transient species in communities using data on over 17,000 community time series 44 

spanning an array of ecosystems, taxonomic groups, and spatial scales. We found that transient 45 

species are a general feature of communities regardless of taxa or ecosystem. The proportion of 46 

these species decreases with spatial scale leading to a need to control for scale in comparative 47 

work. Removing transient species from analyses influences the form of a suite of commonly 48 

studied ecological patterns including species-abundance distributions, species-energy 49 

relationships, species-area relationships, and temporal turnover. Careful consideration should be 50 

given to whether transient species are included in analyses depending on the theoretical and 51 

practical relevance of these species for the question being studied. 52 

 53 

  54 
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Introduction 55 

Ecologists frequently conduct taxonomic surveys to characterize the diversity and 56 

composition of ecological assemblages. While many of the species observed in these surveys 57 

represent local populations, some may be irregular visitors that do not maintain viable local 58 

populations, are poorly suited to the local conditions, and rarely interact with other members of 59 

the community. Grinnell (1922) first coined the term "accidental" to refer to this kind of species, 60 

which is observed inconsistently at a site over time in contrast to the more regular and predictable 61 

members of an assemblage. This group of species has also been referred to as "occasional", 62 

"vagrant", "transient", and "tourist" (Southwood et al. 1982; Costello and Myers 1996; Novotný 63 

and Basset 2000; Magurran and Henderson 2003; Ulrich and Ollik 2004; Dolan et al. 2009; Coyle 64 

et al. 2013; Petersen et al. 2015; Supp et al. 2015). Regardless of the name applied, these species 65 

(hereafter "transients") have generally been identified based on the low frequency of observations 66 

recorded in samples or surveys over time at a given location (i.e., low temporal occupancy). 67 

Several studies ranging from birds to fish to amphipods have found that temporal occupancy is 68 

frequently bimodally distributed within communities, with one distinct mode at very low 69 

occupancy reflecting transient species, and another mode at high occupancy reflecting temporally 70 

persistent "core" species (Figure 1A; Costello and Myers 1996; Magurran and Henderson 2003; 71 

Coyle et al. 2013; Umaña et al. 2017). The existence of a mode at low occupancy indicates that 72 

transient species may make up a larger proportion of ecological assemblages than has typically 73 

been acknowledged. 74 

Transient species are expected to interact with their biotic and abiotic environments 75 

differently than core species since by definition they do not maintain viable local populations and 76 

are not necessarily well adapted to the local environments in which they are found (Magurran and 77 

Henderson 2003; Coyle et al. 2013; Umaña et al. 2017). Previous studies found that core 78 
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79 

 
Figure 1. (A) Bimodal distribution of temporal occupancy for North American birds from 

Coyle et al. (2013) illustrating one mode of "core" species observed consistently at sites and a 

mode of low occupancy "transient" species observed irregularly. (B) Core and transient 

species exhibit different species abundance distributions for the Hinkley Point fish assem-

blage (Magurran and Henderson 2003). (C) Four contiguous quadrats in which species 

(different shapes) may be core (shaded) or transient (open). (D) The species-area relation-

ships for (C) depending on whether transient species are excluded or not, using the lower 

right panel to represent the smallest area. Because every species is core in at least one quad-

rat, species richness at the largest scale is the same for the two relationships. (E) Temporal 

turnover (the Jaccard index of dissimilarity) is much lower when transient species are 

excluded from the calculation, since they are the species most driving turnover. 
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species presence is more strongly tied to the environment and other deterministic factors, while 80 

transient presence is more strongly determined by stochastic factors (e.g., Magurran and 81 

Henderson 2003; Coyle et al. 2013; Umaña et al. 2017). Because much of the ecological theory 82 

related to species coexistence, niche partitioning, and biodiversity assumes that species directly 83 

interact and occur only in suitable environments, the presence of these transient species has the 84 

potential to skew our understanding of ecological systems. Indeed, transient species have been 85 

shown to differ from core species with respect to the shape of species abundance distributions 86 

(Figure 1B; Magurran and Henderson 2003), the relative importance of density-dependence versus 87 

environmental stochasticity (Magurran and Henderson 2003; Ulrich and Ollik 2004), the primary 88 

drivers of species richness (Coyle et al. 2013), and life history traits (Supp et al. 2015). We expect 89 

transient species may influence the slope of species-area relationships, since species that are 90 

transient may make up a disproportionate fraction of the community at smaller spatial scales, while 91 

at large scales most species are expected to maintain persistent populations over at least some 92 

subset of the domain (Figures 1C, D). Transient species are also likely to contribute 93 

disproportionately to estimates of temporal turnover since by definition they are present in only a 94 

small proportion of samples over time (Figure 1E). Thus, a wide variety of classic ecological 95 

patterns may differ depending on whether transient species are considered, including biodiversity 96 

patterns that have the potential to influence conservation and management decisions. 97 

Given the potential impact of transient species on understanding and managing ecological 98 

systems, it is important to understand more about how common transient species are and how their 99 

prevalence varies with taxonomic group, ecosystem types, environmental context, and scale. There 100 

are reasons to expect that several of these factors may influence the prevalence of transients. First, 101 

species from taxonomic groups with strong dispersal abilities like birds commonly show up in 102 
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habitats and regions in which they are not expected (Grinnell 1922; Coyle et al. 2013), whereas 103 

organisms with limited dispersal should do so much less frequently. Second, assemblages located 104 

in regions of high habitat heterogeneity are expected to receive more transient individuals from 105 

adjacent habitats via mass effects (Shmida and Wilson 1985). Coyle et al. (2013) found that 106 

mountainous regions had a greater proportion of transient bird species, consistent with these 107 

predictions. Third, at small scales (e.g., below the average home range size), most organisms will 108 

only be observed occasionally and the majority will therefore be classified as transients. At large 109 

scales (e.g., an entire continent), nearly all species will maintain viable populations and be 110 

consistently observed, and almost none will be classified as transient. Understanding variation in 111 

the prevalence of transient species will improve our understanding of the factors structuring 112 

communities and help identify study systems where our understanding of ecological systems is 113 

most prone to being influenced by their presence. Making comparisons across ecosystems and 114 

taxonomic groups will require understanding the scale-dependence of transient species' prevalence 115 

because the scale at which assemblages are sampled can vary by several orders of magnitude.  116 

Here, we undertake the first systematic evaluation of the prevalence and predictors of 117 

transient species in ecological communities. We use data from over 17,000 community time series 118 

from terrestrial, aquatic, and marine ecosystems across seven major taxonomic groups to: 1) 119 

evaluate the prevalence of transient species and how it varies with taxonomic group, ecosystem 120 

type, and habitat heterogeneity; 2) assess the scale-dependence of transient species prevalence and 121 

correct for scale to make consistent comparisons across groups; and 3)  examine how the inclusion 122 

of transient species in community-level analyses impacts four commonly analyzed ecological 123 

patterns including the shape of species-abundance distributions, drivers of species richness, 124 

species-area relationships, and temporal turnover.  125 
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Methods 126 

Data 127 

We conducted an extensive search for datasets of community composition over time both 128 

online and published in the literature. We identified datasets using a combination of existing 129 

compilations (Dornelas et al. 2014; Yenni et al. 2016), searching online data catalogs such as the 130 

Ecological Data Wiki (ecologicaldata.org, White 2016),  exploring datasets available from Long- 131 

Ecological Research sites, exploring datasets in the data journal Ecological Archives, and 132 

conducting literature searches. We initially identified 330 datasets spanning seven broad 133 

taxonomic groups. We filtered these datasets to those meeting the following criteria: 1) each 134 

assemblage was sampled on at least six occasions (typically years, but occasionally for smaller 135 

organisms like plankton samples were monthly or bimonthly), 2) at least ten species were observed 136 

over the course of the study, and 3) the study had a spatially well-defined location with a fixed 137 

environmental context (e.g. communities based solely on the geographic coordinates of individual 138 

organisms, as in many marine pelagic transect studies, were not included). Of the 330 datasets 139 

examined, 86 satisfied our criteria and yielded 17,921 unique assemblages spanning terrestrial, 140 

marine and freshwater ecosystems. A complete list of datasets and sources is provided in T. The 141 

majority of datasets and community time series come from terrestrial bird and plant assemblages, 142 

with fewer datasets from marine and freshwater systems (Figure 2A-D). The duration of the studies 143 

ranged from six to 57 years and assemblage richness ranged from 10 to 276 species, with most 144 

assemblages having between 20 and 61 species (Figure 2E, F). All species names were checked 145 

for typos, and any taxa not identified to species (e.g. "Unidentified grass") were removed unless 146 

the taxon clearly did not overlap with any other taxa in the dataset (e.g. "Sigmodon sp." was 147 

retained only if no other Sigmodon species were present in the region). For datasets with uneven 148 
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149 

sampling in either space or time (e.g. variable numbers of surveys per year, or variable numbers 150 

of spatial units per survey), we standardized the level of spatial or temporal subsampling for that 151 

site in each year of the time series (see details in Appendix, Figure A1). 152 

 
 

Figure 2. Description of the compiled time-series datasets. The number of (A) datasets and 

(B) number of assemblages (log scaled) by ecosystem type (terrestrial, freshwater, marine) 

and by taxonomic group (C, D). (E) Boxplots of the number of species per assemblage by 

taxonomic group. Several high richness outliers for plant and plankton assemblages were 

excluded to improve visualizing the bulk of the data (*). (F) Boxplots of time series length by 

taxonomic group. 
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 153 

Analysis 154 

  Following Coyle et al. (2013), we operationally defined a species as transient at a site 155 

if it was observed in 33% or fewer of the temporal sampling intervals, and assessed the prevalence 156 

of transients as the proportion of species in the assemblage below this threshold (Figure 1A). We 157 

also evaluated more restrictive definitions using maximum temporal occupancy thresholds of 10% 158 

and 25% to evaluate the impact of this decision. Results were qualitatively similar for the three 159 

different thresholds (Figure A2-A6).  160 

Although many authors have used the bimodality of temporal occupancy distributions (e.g., 161 

Figure 1A) to identify transient species in this way (Magurran and Henderson 2003; Dolan et al. 162 

2009; Coyle et al. 2013), some species will be incorrectly classified due to imperfect detectability. 163 

Species with low detectability due to low density or traits or behaviors that make them difficult to 164 

detect may be persistent at a site but only detected in a small proportion of samples (MacKenzie 165 

et al. 2006). As such, estimates of the proportion of transient species based on observed temporal 166 

occupancy are likely higher than the true numbers. A full exploration of the detailed influence of 167 

imperfect detection is beyond the scope of this paper, but we are developing simulation-based 168 

approaches to understand precisely how it influences estimates of the proportion of transients as 169 

well as the identification of individual species (Hurlbert unpublished data). 170 

While imperfect detection is clearly a concern for analyses of this type there is also 171 

evidence that using observed occupancy provides a reasonable first approximation of transient 172 

status. Magurran and Henderson (2003) showed that using occupancy to identify species as 173 

transient is consistent with using habitat preferences. In an examination of nearly 500 bird 174 

communities, Coyle et al. (2013) showed that transient species richness was correlated with 175 
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regional habitat heterogeneity as would be expected of true transients while it was not positively 176 

correlated with vegetation which would be expected to impede species detections. In addition, 177 

similar studies using habitat preference-based transient designations (Belmaker 2009) have yielded 178 

similar conclusions to those using occupancy based approaches (Coyle et al. 2013).  Finally, the 179 

results in this paper are similar for species that are comprehensively surveyed and those that are 180 

less thoroughly sampled (see Results and Considerations). So, while there is no doubt that 181 

misclassifications will occur, for large data compilations like this one that lack both detailed habitat 182 

preference data for species and the necessary sampling methods to estimate detection probabilities, 183 

occupancy based approaches appear to provide a reasonable approximate classification. We 184 

address these issues further in the Considerations section of the Discussion. 185 

 We evaluated the effect of spatial scale on the perceived prevalence of transient species 186 

using the subset of datasets that included sampling at hierarchically nested spatial scales. We used 187 

a linear mixed model to quantify how the proportion of transient species in an assemblage varied 188 

with the spatial scale over which the assemblage was characterized. The model included taxonomic 189 

group as a fixed effect and dataset as a random effect, with both variables having the potential to 190 

influence both the slope and intercept of the relationship. Area was log-transformed for analysis. 191 

Because scale will be perceived differently for organisms of different size—e.g. a 1 ha quadrat is 192 

effectively much larger for ants than for birds—it may not allow for direct comparisons of "scale" 193 

among taxonomic groups. As such, we also built a similar mixed model using the median 194 

community size for all assemblages (i.e., the total number of individuals sampled in an assemblage, 195 

median = 102) as an alternative, potentially more generalizable, measure of scale. 196 

To explore the influence of habitat heterogeneity on the prevalence of transients we used a 197 

linear mixed model to predict the proportion of transients as a function of elevational heterogeneity 198 
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(the variance in elevation within a 5 km radius of the site), with spatial scale (using community 199 

size as a proxy) as a covariate and taxonomic group as a random effect. P-values were estimated 200 

from the t-statistics using a normal approximation. All terrestrial datasets with geographic 201 

coordinates were used to fit the model. We used a 30 arc-second digital elevation model DEM of 202 

North America (GTOPO30), acquired from the USGS Earth Resources Observation and Science 203 

Center (EROS), to calculate the variance of elevation. We calculated a pseudo R2 for each mixed 204 

model based on the fit between predicted and observed values. 205 

Finally, we quantified the influence of transient species on a suite of commonly studied 206 

ecological patterns including species-abundance distributions, species-area relationships, temporal 207 

turnover, and correlates of species richness. We did this by comparing the form of these patterns 208 

when using data on the entire community to the same pattern generated after excluding species 209 

that were identified as transients (i.e. those species with temporal occupancy ≤ 33%). We fit two 210 

distributions for species-abundance, the logseries and the Poisson lognormal to the combined 211 

abundance data across years for each time-series. Magurran and Henderson (2003) proposed that 212 

transient species should be better fit by the logseries and core species by the lognormal, meaning 213 

that excluding transient species should result in improved fits by the lognormal. We compared the 214 

fits of the two distributions based on AICc model weights. Analysis of species-area relationships 215 

was restricted to datasets with hierarchical spatial sampling. Power function relationships were fit 216 

to each assemblage using linear regression on log-transformed data (Xiao et al. 2011) to predict 217 

the number of species observed from the area sampled. The fitted exponents of the relationships 218 

were compared. Mean temporal turnover was calculated as the mean of the Jaccard dissimilarity 219 

index (Krebs 1999; Figure 1E) between all adjacent time samples in each community time series.  220 

Analyses of the drivers of species richness were restricted to data from the Breeding Bird Survey 221 
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of North America since it was the only dataset that employed consistent sampling across large 222 

spatial scales with a large number of replicates. For this last set of analyses we used two 223 

environmental correlates that are known to be important for determining richness in this dataset, 224 

the Normalized Difference Vegetation Index (NDVI), a remotely sensed estimate of productivity, 225 

and elevation (White and Hurlbert 2010). We calculated correlation coefficients between each 226 

environmental variable and species richness (including or excluding transient species), as well as 227 

correlation coefficients for transient species richness alone to further illuminate differences. 228 

The complete set of R scripts for data cleaning and processing are available on Github 229 

(http://www.github.com/hurlbertlab/core-transient) and analysis scripts for this study are archived 230 

at Data Dryad (URL to be filled in). 231 

 232 

Results  233 

 Assemblages from all ecosystem types and taxonomic groups included a substantial 234 

proportion of transient species, and relatively few species with intermediate temporal occupancies 235 

(Figure 3). The proportion of an assemblage made up of transient species varied with taxonomic 236 

group, with means ranging from 32-58%. Benthos and invertebrates had more than 50% of species 237 

characterized as transient on average. Fish, plankton, and plant communities had 46-49% transient 238 

species on average. In mammal communities, 45% of species were classified as transient, while 239 

birds had the lowest proportion of species classified as transients at 30%.  Terrestrial ecosystems 240 

had the lowest proportion of transient species (37%) followed by marine (48%) and freshwater 241 

(55%) systems (Figure 3B). 242 
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 243 
There was a negative effect of sampling area on the proportion of transients in a community 244 

(p < 10-16), but scaling relationships varied substantially in both slope and intercept across datasets 245 

and taxonomic groups (Figure 4A; pseudo R2 = 0.01). When we characterized the scaling 246 

relationships using total community size based on the total number of individuals in an average 247 

sample instead of sample area the relationship was considerably stronger (Figure 4B; pseudo R2 = 248 

0.32).  Communities at scales in which large numbers of individuals are sampled have few transient 249 

species, while communities at scales in which small numbers of individuals are sampled have 250 

proportionally more transient species, regardless of taxonomic group. After controlling for scale 251 

(community size), birds—one of the taxonomic groups with the lowest representation of transient 252 

species based on the raw survey data—became comparable to benthic and terrestrial invertebrates, 253 

which had the highest representations of transient species based on raw data (cf. Figure 3A and 254 

 
 

Figure 3. The mean proportion of species in an assemblage that are transient (≤ 33% 

temporal occupancy), core (>66.7%), or neither, grouped by (A) taxonomic group and (B) 

ecosystem. See Figure 2 for icon key. 
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4C). Mammal and plankton communities had the lowest average proportion of transient species in 255 

scale-corrected datasets at approximately 40%. Controlling for sampling scale, the proportion of 256 

transients in an assemblage no longer varied across type of ecosystem (Figure 4D). 257 

Elevational heterogeneity was found to have a positive effect (p <0.0001) on the proportion 258 

of transient species when accounting for community size as a covariate and taxonomic group as a 259 

random effect (Table 1). There was no evidence for an interaction between elevational 260 

heterogeneity and community size (p = 0.98). 261 

 
 

Figure 4. Linear models of the proportion of transient species as a function of (A) sample 

area and (B) sample community size (number of individuals) for each dataset with a spatially 

hierarchical sampling scheme. Datasets are color coded by taxonomic group. The proportion 

of transient species expected for a hypothetical community of 102 individuals (the median 

community size across datasets) for a given (C) taxonomic group or (D) ecosystem based on 

linear mixed effects models (see text). No spatially hierarchical datasets were available to 

evaluate benthic invertebrates. See Figure 2 for icon key. 
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 262 
Table 1. Linear mixed model results for the effect of elevational heterogeneity and community 263 
size on the proportion of transients. Taxonomic group was included as a random effect. 264 

Fixed Effect Estimate Standard Error t p 

Intercept 1.08 0.054 20.0 <10-16 

log10(community size) -0.23 0.006 -36.35 <10-16 

log10(elev. variance) 0.013 0.003 3.91 9.27e-5 

log10(community size):log10(elev. variance) -4.3e-5 0.002 -0.027 0.98 

 265 

 266 

 Finally, we examined whether the inclusion of transient species impacted four 267 

fundamental ecological patterns. Species abundance distributions for full assemblages were 268 

generally best fit by a logseries distribution, although there was some support for the lognormal, 269 

whereas assemblages excluding transient species were universally better fit by a lognormal 270 

distribution (Figure 5A). The strength of species richness drivers varied depending on whether 271 

transient species were included or not, because transient species exhibited environmental 272 

correlations of opposite sign to non-transient species (Figure 5B). As such, excluding transient 273 

species led to a stronger positive correlation between richness and the vegetation index NDVI, 274 

(0.53 versus 0.48), and a stronger negative correlation with mean elevation (-0.46 versus -0.37). 275 

Species turnover was always higher when transient species were included than when they were 276 

excluded, with an average deviation of 0.11 (Figure 5C). Finally, the exponent of the species-area 277 

relationship was typically higher when excluding transients (average deviation = 0.07; Figure 5D). 278 

All results were similar using alternative occupancy thresholds to define transient species (Figures 279 

A2-6). 280 
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 281 

Discussion  282 

 We quantified the prevalence and impact of transient species in ecological communities 283 

using data on over 17,000 community time series spanning multiple ecosystems, taxonomic 284 

groups, and spatial scales. Transient species were a common element of communities in all taxa 285 

 
 

Figure 5. Comparison of common ecological patterns between full communities and 

communities excluding transient species.  (A) Histogram of Akaike weights for the logseries 

model of the species abundance distribution for all species (orange) and excluding transients 

(yellow). Because only two models were compared, Akaike weights close to 0 imply strong 

support for the lognormal model. (B) Environmental correlates of species richness (NDVI and 

elevation) including transients (orange), excluding transients (yellow), and transients only 

(pink). (C) Comparison of temporal turnover estimates when including or excluding transient 

species. Temporal turnover was quantified using the Jaccard dissimilarity index. Points are 

color coded by taxa and small blue circles represent the North American Breeding Bird Survey. 

(D) Comparison of species-area relationship exponents when including or excluding transient 

species. Points are the same as in (C).  

lognormal logseries
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and ecosystems examined, demonstrating that these species are a general feature of ecological 286 

systems. Transient species interact with their abiotic and biotic environment in distinct ways 287 

(Magurran and Henderson 2003; Ulrich and Ollik 2004; Coyle et al. 2013; Umaña et al. 2017), 288 

which highlights the need to better understand the contexts in which transient species are expected 289 

to be prevalent and the potential impact transient species may have on ecological inferences. 290 

The largest source of variation in the proportion of transient species observed in a 291 

community is related to spatial scale. For communities sampled at multiple spatial scales, the 292 

proportion of transient species decreased with increasing scale, as species were more likely to be 293 

observed and actually persist over larger sampling areas. As a result, comparisons of the prevalence 294 

of transient species between studies should account for scale. However, area per se may not be 295 

directly comparable between communities that differ substantially in body size or otherwise use 296 

space differently. An alternative measure of scale, community size, effectively controls for 297 

differences in area usage between taxonomic groups by integrating the influence of each species’ 298 

distinct life history traits and home range sizes.  Correcting for scale in this way, we found that the 299 

proportion of transient species did not vary with ecosystem type, whereas ignoring scale would 300 

have led to the conclusion that transient species were much more common in freshwater than 301 

terrestrial ecosystems.  Similarly, correcting for scale led to a more even distribution of the 302 

proportion of transient species across taxonomic groups, and some groups that would otherwise 303 

have been inferred to differ substantially in the prevalence of transients were actually found to be 304 

comparable.   305 

Differences in the prevalence of transient species were evident among taxonomic groups 306 

even when controlling for spatial scale. Invertebrate, plant, and bird communities had the highest 307 

proportion of transient species while plankton and mammal communities had the lowest. These 308 
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taxonomic groups differ in many respects precluding a rigorous analysis, but we speculate that 309 

traits such as dispersal ability and habitat specialization may increase the likelihood of species 310 

being temporarily observed in areas where they are not well adapted and hence being recorded as 311 

transients. For example, birds have strong dispersal ability relative to the other taxonomic groups 312 

and there are numerous records of individuals spotted far outside their geographic range and in 313 

unexpected habitats (Grinnell 1922). Similarly, plants with passive seed dispersal may be 314 

transported great distances and may consequently be more likely to be observed in unsuitable 315 

habitat (Willson 1993). Small mammals have more limited dispersal, which may explain why 316 

mammal communities (dominated in our dataset by small mammal communities) have a lower 317 

proportion of transient species on average. The plankton datasets examined in this study came 318 

primarily from lakes, and low rates of dispersal between lakes could explain the low proportion of 319 

transient species for this group. 320 

In addition to dispersal, groups composed of more generalist species might be expected to 321 

have a lower proportion of transient species because most species can maintain viable populations 322 

in most locations. The low prevalence of transient species in plankton communities may also be 323 

explained by this phenomenon, as Hutchinson (1961)  noted "paradoxically" that most plankton 324 

species are generalists that compete for the same limited resources. Specialist species, on the other 325 

hand, will only maintain populations in select locations with suitable conditions, allowing mass 326 

effects (Shmida and Wilson 1985) or accidental dispersal to result in transient occurrences in other 327 

areas.  328 

In addition to trait differences among taxa, variability in the prevalence of transient species 329 

was related to environmental heterogeneity. Transient species were more prevalent in communities 330 

with higher elevational heterogeneity, which extends the findings of Coyle et al. (2013) for birds 331 
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to a broader range of taxa. Homogeneous landscapes tend to have homogeneous communities 332 

(Stegen et al. 2013; Stein et al. 2014) and a site within such a landscape is unlikely to receive 333 

immigrants from poorly adapted species compared to a site in a heterogeneous landscape with a 334 

more diverse species pool from more diverse habitats. Indeed, environmental heterogeneity and 335 

species richness are frequently positively related (Stein et al. 2014), and our results indicate this 336 

may be due in part to an increase in transient species rather than an increase in habitat specialists 337 

(Gaston et al. 2007; Stein et al. 2014).  338 

 339 

Impacts of Transient Species on Ecological Inference 340 

The presence of transient species in ecological communities influenced all of the ecological 341 

patterns we examined, from measures of local community structure, to spatial and temporal 342 

turnover, to richness gradients at continental scales. This highlights the importance of considering 343 

transients when trying to manage and understand ecological communities. The species abundance 344 

distribution (SAD) characterizes the relative abundance of common and rare species in 345 

communities and different distributions have been associated with different processes structuring 346 

the community (McGill et al. 2007; Connolly et al. 2014). Building on the results of Magurran and 347 

Henderson (2003), we show that including transient species in an analysis results in more 348 

logseries-like SADs while excluding them results in more lognormal distributions. This result is 349 

consistent with the idea that different processes influence the community assembly of transient 350 

versus core species (Henderson and Magurran 2014; Supp et al. 2015). Based on theoretical 351 

grounds, many SAD models may be more appropriately applied to all species observed, or only to 352 

the set of species that strongly interact and maintain viable populations. For example, neutral 353 

theory applies to all species, as it explicitly allows for rare immigration or speciation events 354 
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(Hubbell 2001), whereas resource allocation based niche apportionment models (MacArthur 1957; 355 

Tokeshi 1990) are likely more appropriately applied only to non-transient species. While the SAD 356 

may not be sufficient on its own to infer community structuring processes (Cohen 1968; Volkov 357 

et al. 2005; Baldridge et al. 2016; but see Connolly et al. 2014), it is one of several ecological 358 

patterns that may collectively shed light on such mechanisms (McGill et al. 2007; Blonder et al. 359 

2014). As such, consideration of transient species has the potential to influence our understanding 360 

of local community structure. 361 

In addition to influencing measures of local community structure, the inclusion of transient 362 

species also affected measures of how ecological systems turnover and change with scale. 363 

Estimates of temporal turnover were always higher when transients were included in assemblages. 364 

This occurs because transient species are only present over a small fraction of a time series, 365 

resulting in higher turnover in species composition within a community over time (see also 366 

Magurran and Henderson 2010). Conversely, the inclusion of transient species led to lower 367 

estimates of spatial turnover as reflected in the slope of species-area relationships. This is because 368 

a greater proportion of the species list at small spatial scales is identified as transient compared to 369 

at a larger scale. As such, including transient species increases richness more at small scales than 370 

large, resulting in a shallower species-area relationship and lower spatial turnover (Figure 1D). 371 

Turnover and associated scaling relationships have implications for assessment of community 372 

responses to global change (Brown et al. 1997; Suding et al. 2008), understanding processes 373 

structuring spatiotemporal variation in communities (Adler et al. 2005; McGlinn and Palmer 374 

2009), and up and downscaling biodiversity estimates for conservation (Shen and He 2008; Azaele 375 

et al. 2015; Kitzes and Harte 2015), further indicating that consideration of transients is important 376 

for understanding local to regional scale ecological systems. 377 
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Finally, inclusion of transient species also influenced the strength of continental scale 378 

correlates of species richness. Excluding transient species increased the explanatory power of both 379 

NDVI and elevational heterogeneity. Transient species correlations were opposite of those 380 

observed for core species, consistent with our general findings on the relationships between 381 

environment and heterogeneity (Coyle et al. 2013). Because the proportion of transient species 382 

varies along environmental gradients, analyses at large scales will potentially weight core and 383 

transient species differently in different locations and the perceived importance of environmental 384 

associations with ecological patterns may often change when excluding transient species. In this 385 

example, the inclusion of transients weakens the perceived support for a species-energy 386 

relationship (Wright 1983; Hurlbert 2004) compared to when only non-transients were considered. 387 

Given the impact on a wide range of ecological patterns, the decision to include or exclude 388 

transient species in a community analysis is an important one that should be made by explicitly 389 

considering the nature of the conceptual framework or theory being investigated. In some cases, it 390 

will be necessary to remove these species from analyses or risk making improper inferences. 391 

 392 

Considerations 393 

Conceptually, transient species are those that do not maintain persistent populations over 394 

time and therefore only appear infrequently during surveys. The bimodality of temporal occupancy 395 

distributions (e.g., Figure 1A) has led many authors to suggest that temporal occupancy can be 396 

used to distinguish these transient species from more core members of a community. However, it 397 

can be difficult to tease apart whether species of low occupancy are truly transient or simply have 398 

low density or detectability (Henderson and Magurran 2014). We followed Coyle et al. (2013) in 399 

using a maximum occupancy threshold of 33% as our operational definition of transient species, 400 
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but all of the results we report here were similar using stricter thresholds of 10% or 25% (Figures 401 

A2-A6). If the focus were on a single community, then the accuracy of identifying transient species 402 

might be improved by a combination of assessing the shape and natural break points of each 403 

community's particular occupancy distribution, and incorporating information on species habitat 404 

preference as done by Belmaker (2009) for coral reef fish. Alternatively, when the sampling design 405 

allows for the estimation of detection probabilities it should be possible to correct for these issues 406 

using occupancy modeling (MacKenzie et al. 2006). Independent validation of transient status 407 

(e.g., by evidence of breeding, or knowledge of habitat affinities) or occupancy modeling based 408 

approaches are always desirable when possible, and analyses along environmental gradients 409 

should carefully consider how detectability might vary along such gradients (Coyle et al. 2013). 410 

However, for many groups detailed information on habitat preferences or estimates of true 411 

population persistence is not readily available, and a definition based on a universal occupancy 412 

threshold is currently the most feasible option for analyzing hundreds or thousands of assemblages 413 

for cross-taxon comparisons like those presented here. 414 

 As described in the Methods, there is evidence that occupancy based thresholds provide 415 

reasonable identifications of transient species (Magurran and Henderson 2003; Belmaker 2009; 416 

Coyle et al. 2013).  There is additional evidence from our results that using this raw occupancy 417 

based approach provides a reasonable approximate classification. First, the misclassification rate 418 

should presumably be lower when defining transient species using stricter occupancy thresholds, 419 

and so the consistency of our results across multiple thresholds lends some confidence to this 420 

approach. Second, for certain communities the taxonomic group and mode of data collection 421 

provide nearly complete censuses of all individuals within a static sample (e.g. plant stems within 422 

a quadrat or fish in a seine net). In these communities, imperfect detection should have little 423 
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influence on estimates of occupancy (at the scale of sampling). The similarity of results in this 424 

study across groups that tend to be thoroughly surveyed (e.g., plants and fish) and those that are 425 

less intensively sampled (e.g., birds and butterflies) suggests that our results are not driven heavily 426 

my misclassifying imperfectly detected species. A detailed understanding of when and to what 427 

extent imperfect detection probabilities influence the assessment of the prevalence and impact of 428 

transient species will require simulation based approaches (Hurlbert unpublished data). 429 

 430 

Conclusions 431 

  Our results show that transient species are prevalent in ecological communities across 432 

all taxa, scales, and ecosystems examined. Despite the ubiquity of these species, most studies in 433 

community ecology have implicitly ignored this concept by characterizing communities using 434 

surveys that provide a snapshot of community composition in time. Because transient species 435 

interact with their biotic and abiotic environment differently—in most cases, more weakly—than 436 

non-transient species, their inclusion in community analyses impacts a wide range of ecological 437 

patterns including estimates of community structure, turnover, and biodiversity. Ecologists should 438 

explicitly consider whether to include or exclude transient species in analyses by determining 439 

whether the theories, conceptual frameworks, and conservation interests of their research are best 440 

aligned with entire communities including transient species or with only core species that maintain 441 

sustained populations at a site. A failure to do so may result in inappropriate tests of models, 442 

incorrect inferences regarding processes, and imperfect conservation efforts. When data are 443 

unavailable for distinguishing species in a community as transient or not, researchers should be 444 

aware of how this uncertainty may bias their results. While some methodological challenges 445 

remain, future studies will benefit from considering when and how the inclusion of transient 446 
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species impacts our understanding of how communities respond to environmental gradients, 447 

habitat fragmentation, climatic shifts, and other disturbances. 448 

 449 
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Appendix 609 

 610 

Sampling standardization of community time series datasets 611 

For the most accurate estimates of temporal occupancy, the sampling intensity used to 612 

characterize the assemblage in question should be identical every year. However, for some 613 

datasets, sampling intensity was not uniform in space or in time. In some cases, the number of 614 

spatial units (e.g. plant quadrats) censused varied by sampling date, in other cases, the number of 615 

sampling dates per year with which an assemblage could be characterized varied between years, 616 

and occasionally both spatial and temporal subsampling levels varied.  617 

We used a sample-based rarefaction approach (Gotelli 2008) to standardize the effort 618 

with which an assemblage is characterized over its time series. Choosing the number of spatial or 619 

temporal subsamples to use for rarefaction is a non-trivial problem, however. On the one hand, 620 

the lowest common level of subsampling across years or sites might be chosen which will enable 621 

the inclusion of all years or sites available in the dataset. In this case, data from the best sampled 622 

sites or years will be thrown out during rarefaction in order to compare those sites or years with 623 

the less well sampled ones. On the other hand, one might choose a high level of subsampling 624 

which will provide a more thorough characterization of those well sampled assemblages. In this 625 

case, data will be lost as many sites or years will not meet this high threshold and so will not be 626 

included in the analysis. 627 

For each dataset, we attempted to maximize both the number of assemblages that 628 

would be available for analysis as well as the thoroughness with which an assemblage was 629 

characterized by choosing the lowest level of subsampling that was met by at least 50% of 630 

possible site-years (Figure A1). 631 
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 632 
 633 

 
 

 

Figure A1. (A) A hypothetical dataset with 3 sites that have been sampled with variable 

intensity over time (squares). Site-years exceeding the threshold of 3 subsamples are 

highlighted in blue. Only data from these site-years would be used in an analysis, and where 

the total number of subsamples exceeds the threshold, only 3 would be chosen at random to 

characterize an assemblage. (B) The subsampling threshold is the smallest value for which 

the % of available site-years exceeds 50% (dotted line). 
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Table A1. Table of datasets, sources, and citations used for analyses. 

Dataset Name Link System Taxa Number 

of Sites 

Years of 

Study 

Number 

of Species 

Multi-

scale 

Citation 

A multi-decade time series of kelp 

forest community structure at the 

California Channel Islands  

http://esapubs.org/archive/ecol/E094/245/ Marine Benthos 33 30 28 N Kushner et al. 

2013 

2003 Prescribed Burn Effect on 

Chihuahuan Desert Grasses and 

Shrubs at the Sevilleta National 

Wildlife Refuge, New Mexico: 

Species Composition Study (2004 

- present)  

http://sev.lternet.edu/data/sev-166 Terrestrial Plant 16 9 147 Y Muldavin and 

Collins 2016 

A 12-year study on the scaling of 

vascular plant composition in an 

Oklahoma tallgrass prairie 

http://esapubs.org/Archive/ecol/E091/124/default.

htm#data 

Terrestrial Plant 20 12 318 Y McGlinn et al. 

2010 

A long-term bird population study 

in an Appalachian spruce forest 

http://www.jstor.org/stable/4161914 Terrestrial Bird 1 22 20 N Hall 1984 
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A multi-decade time series of kelp 

forest community structure at San 

Nicolas Island, California (USA): 

benthic cover 

http://esapubs.org/archive/ecol/E094/244/#data Marine Benthos 7 27 128 Y Kenner et al. 

2013 

A multi-decade time series of kelp 

forest community structure at San 

Nicolas Island, California (USA): 

benthic fish  

http://esapubs.org/archive/ecol/E094/244/#data Marine Fish 7 26 36 Y Kenner et al. 

2013 

A multi-decade time series of kelp 

forest community structure at San 

Nicolas Island, California (USA): 

midwater fish  

http://esapubs.org/archive/ecol/E094/244/#data Marine Fish 1 17 57 Y Kenner et al. 

2013 

A multi-decade time series of kelp 

forest community structure at the 

California Channel Islands  

http://esapubs.org/archive/ecol/E094/245/ Marine Fish 32 16 86 N Kushner et al. 

2013 

Above ground plant biomass in a 

mesic acidic tussock tundra 

experimental site from 1982 to 

http://arc-

lter.ecosystems.mbl.edu/19822000gs81tusbm 

Terrestrial Plant 4 6 24 Y Shaver 2006 
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2000 Arctic LTER, Toolik Lake, 

Alaska 

An efficient light-trap for catching 

insects. Acta Entomologica 

http://www3.imperial.ac.uk/cpb/databases/gpdd Terrestrial Invertebrate 1 26 133 N Novak 1983 

Arthropod Pitfall Traps at LTER 

II NPP sites. Jornada LTER 

http://jornada.nmsu.edu/lter/project/49395/view Terrestrial Invertebrate 10 6 157 Y Lightfoot et al. 

2008 

Belgian Migrating Lepidoptera 

Survey 

https://web.archive.org/web/19990220041409/http

://users.skynet.be/bs663526/ 

Terrestrial Invertebrate 1 14 25 N Vanholder 

1997 

Bialowieza National Park bird 

assemblage 

http://www.bioone.org/doi/abs/10.3161/00016451

0X551354 

Terrestrial Bird 7 40 84 N Wesołowski et 

al. 2010  

Breeding Bird Populations at 

William Trelease Woods 

http://hdl.handle.net/2142/25182 Terrestrial Bird 1 44 60 N Kendeigh 1982 

Breeding Bird Populations on 

Abandoned Farmland in Robert 

Allerton Park 

http://hdl.handle.net/2142/25182 Terrestrial Bird 1 6 34 N Kendeigh 1982 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 15, 2017. ; https://doi.org/10.1101/163816doi: bioRxiv preprint 

https://doi.org/10.1101/163816
http://creativecommons.org/licenses/by/4.0/


36 
 

Breeding Bird Populations on 

Abandoned Farmland in Robert 

Allerton Park 

http://hdl.handle.net/2142/25182 Terrestrial Bird 1 25 53 N Kendeigh 1982 

Breeding Bird Populations 

wintering in  William Trelease 

Woods 

http://hdl.handle.net/2142/25182 Terrestrial Bird 1 48 48 N Kendeigh 1982 

Breeding Bird Censuses, 

Neotoma 

http://www.jstor.org/stable/1931793 Terrestrial Bird 1 10 56 N Preston 1960 

Canadian duck censuses http://ecologicaldata.org/wiki/redvers-waterfowl-

census 

Terrestrial Bird 2 26 13 N Vickery et al. 

1984 

Central California Butterfly 

Population Monitoring  

http://butterfly.ucdavis.edu/ Terrestrial Invertebrate 8 41 148 N Thorne et al. 

2006 

Eastern Wood Breeding Bird Data http://onlinelibrary.wiley.com/doi/10.1002/97804

70999592.app2/summary 

Terrestrial Bird 1 29 45 N Gaston et al. 

2000 

El Verde Grid long-term 

invertebrate data 

http://luq2.lternet.edu/data/luqmetadata107 Terrestrial Invertebrate 33 22 19 Y Willig et 

al.2007 
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Farne Island birds http://www.jstor.org/stable/1744518 Terrestrial Bird 1 29 16 N Diamond and 

May 1977 

Fish populations on selected 

watersheds at Konza Prairie 

http://lter.konza.ksu.edu/content/cfp01-fish-

population-selected-watersheds-konza-prairie 

Freshwater Fish 1 7 17 Y Whitney et al. 

2015 

Fourteen years of mapped, 

permanent quadrats in a northern 

mixed prairie, USA 

http://esapubs.org/archive/ecol/E092/143/metadat

a.htm 

Terrestrial Plant 1 7 52 Y Anderson et al. 

2011 

Hinkley Point fish http://www.nature.com/nature/journal/v422/n6933

/full/nature01547.html 

Marine Fish 1 21 80 N Magurran and 

Henderson 

2003 

Hubbard Brook LTER birds https://portal.lternet.edu/nis/mapbrowse?packagei

d=knb-lter-hbr.81.5 

Terrestrial Bird 4 14 37 N Holmes 2016 

Indiana stream fish assemblage http://www.jstor.org/stable/2461070 Freshwater Fish 1 12 49 N Grossman et al. 

1982 

Insect Populations via Sticky 

Traps at KBS-LTER 

http://lter.kbs.msu.edu/datatables/67 Terrestrial Invertebrate 10 23 20 Y Landis and 

Gage 2015 

Ireland amphipods http://www.sciencedirect.com/science/article/pii/0

022098196000305 

Marine Invertebrate 1 12* 27 N Costello and 

Myers 1996 
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Konza LTER grasshopper 

monitoring 

http://lter.konza.ksu.edu/content/cgr02-sweep-

sampling-grasshoppers-konza-prairie-lter-

watersheds-1982-present 

Terrestrial Invertebrate 16 24 37 Y Rode et al. 

2017 

Konza LTER small mammals http://lter.konza.ksu.edu/content/csm01-seasonal-

summary-numbers-small-mammals-14-lter-

traplines-prairie-habitats-konza 

Terrestrial Mammal 14 33 15 Y Ricketts and 

Sandercock 

2016 

Lac Croche understory vegetation http://www.esapubs.org/archive/ecol/E088/197/de

fault.htm 

Terrestrial Plant 43 8 83 Y Paquette et al. 

2007 

Yanliao Bay, Taiwan, 

Ichthyoplankton 

NA Marine Plankton 3 6 137 N Hsieh 

unpublished 

Lake Kasumigaura database, 

Table 10 Phytoplankton density 

http://db.cger.nies.go.jp/gem/moni-

e/inter/GEMS/database/kasumi/contents/datalist.ht

ml 

Freshwater Plankton 2 33 172 N Takamura and 

Nakagawa 

2012 

Lake Kasumigaura database, 

Table 12-1 Density of Rotifer, 

Cladocera and Copepoda 

http://db.cger.nies.go.jp/gem/moni-

e/inter/GEMS/database/kasumi/contents/datalist.ht

ml 

Freshwater Plankton 2 21 62 N Takamura et al. 

2015 
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Lake Kasumigaura database , 

Table 14-1 Benthos data 

http://db.cger.nies.go.jp/gem/moni-

e/inter/GEMS/database/kasumi/contents/datalist.ht

ml 

Freshwater Benthos 4 22 10 N Iwakuma and 

Ueno 2010 

Lake Kasumigaura database , 

Table 15-2 Fish density data 

http://db.cger.nies.go.jp/gem/moni-

e/inter/GEMS/database/kasumi/contents/datalist.ht

ml 

Freshwater Fish 1 9 45 N Matsuzaki and 

Nohara 2017 

Long-Term Community 

Dynamics of Small Landbirds 

with and Without Exposure to 

Extensive Disturbance from 

Military Training Activities - 

Konza prairie site 

http://link.springer.com/article/10.1007%2Fs0026

7-009-9421-6 

Terrestrial Bird 1 11 62 N Rivers et al. 

2010 

Long-term dynamics of breeding 

birds in broad-leaved deciduous 

forest on Hanikatsi Island in the 

West-Estonian archipelago 

https://www.researchgate.net/publication/2537045

70_Long-

term_dynamics_of_breeding_birds_in_broad-

leaved_deciduous_forest_on_Hanikatsi_Island_in

_the_West-Estonian_archipelago 

Terrestrial Bird 1 27 33 N Leito et al. 

2006 
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Long-term mapped quadrats from 

Kansas prairie: demographic 

information for herbaceous plants 

http://esapubs.org/archive/ecol/E088/161/ Terrestrial Plant 51 41 137 Y Adler et al. 

2007 

Long-term monitoring of 

mammals in the face of biotic and 

abiotic influences at a semiarid 

site in north-central Chile: shrubs 

and herbaceous plants 

http://esapubs.org/archive/ecol/E094/084/metadat

a.php 

Terrestrial Plant 16 16 85 N Kelt et al. 2013 

Long-term monitoring of 

Mammals in the face of biotic and 

abiotic influences at a semiarid 

site in north-central Chile: 

mammals 

http://esapubs.org/archive/ecol/E094/084/metadat

a.php 

Terrestrial Mammal 4 12 12 Y Kelt et al. 2013 
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Long-Term Nitrogen Deposition: 

Population, Community, and 

Ecosystem Consequences - 

Experiment 001 

https://www.cedarcreek.umn.edu/research/data/dat

aset?ple001 

Terrestrial Plant 3 30 148 Y Tilman 2012 

Long-term stem inventory data 

from tropical rain forest plots in 

Australia: trees >10cm dbh 

http://esapubs.org/archive/ecol/E095/209/ Terrestrial Plant 20 34 488 Y Bradford et al. 

2014 

Luquillo LTER bird point counts http://luq.lternet.edu/data/luqmetadata23 Terrestrial Bird 1 19 39 Y Willig et 

al.2007 

Mapped quadrats in sagebrush 

steppe: long-term data for 

analyzing demographic rates and 

plant–plant interactions 

http://onlinelibrary.wiley.com/doi/10.1890/10-

0404.1/abstract 

Terrestrial Plant 1 17 18 Y Zachmann et 

al. 2016 

Maryland Biological Stream 

Survey Fish Data 

http://dnr2.maryland.gov/streams/Pages/mbss.asp

x 

Freshwater Fish 48 17 86 Y Roth et al. 

2005 
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Maryland Biological Stream 

Survey Macroinvertebrate Data 

http://dnr2.maryland.gov/streams/Pages/mbss.asp

x 

Freshwater Benthos 52 17 364 Y Roth et al. 

2005 

Mediterranean tintinnid ciliates http://onlinelibrary.wiley.com/doi/10.1111/j.1365-

2699.2008.02046.x/abstract 

Marine Plankton 1 18* 49 N Dolan et al. 

2009 

Monitoring the Abundance of 

Butterflies 1976-1985 

http://jncc.defra.gov.uk/page-2614 Terrestrial Invertebrate 35 10 44 N Pollard et al. 

1986 

Mosquitoes of North America 

with emphasis in the midwestern 

United States: long-term 

occurrence patterns 

http://esapubs.org/archive/ecol/E094/126/ Terrestrial Invertebrate 13 37 28 N Hellmann et al. 

2013 

Mountain Birdwatch https://knb.ecoinformatics.org/#view/doi:10.5063/

F1DN430G 

Terrestrial Bird 35 11 72 N Lambert and 

Hart 2015 

North American Breeding Bird 

Survey 

https://www.pwrc.usgs.gov/bbs/ Terrestrial Bird 1000+ 15 405 Y Pardieck et al. 

2016 
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North Temperate Lakes LTER: 

Fish Abundance 1981-current, 

ELECTRO FISH 

https://portal.lternet.edu/nis/mapbrowse?packagei

d=knb-lter-ntl.7.10 

Freshwater Fish 8 21 61 N De Stasio et al. 

1996 

North Temperate Lakes LTER: 

Fish Abundance 1981-current, 

FYKE NET 

https://portal.lternet.edu/nis/mapbrowse?packagei

d=knb-lter-ntl.7.10 

Freshwater Fish 9 31 53 N De Stasio et al. 

1996 

North Temperate Lakes LTER: 

Fish Abundance 1981-current, 

SEINE 

https://portal.lternet.edu/nis/mapbrowse?packagei

d=knb-lter-ntl.7.10 

Freshwater Fish 9 15 57 N De Stasio et al. 

1996 

North Temperate Lakes LTER: 

Macrophyte Species at Quadrat 

Level - Trout Lake 1993 - current 

https://lter.limnology.wisc.edu/dataset/north-

temperate-lakes-lter-macrophyte-species-quadrat-

level-trout-lake-1993-current 

Freshwater Plant 2 20 28 Y Magnuson et 

al. 2010 

North Temperate Lakes LTER: 

Macrophyte Transects - Trout 

Lake 1982 - current 

https://lter.limnology.wisc.edu/dataset/north-

temperate-lakes-lter-macrophyte-transects-trout-

lake-1982-current 

Freshwater Plant 2 22 29 Y Magnuson et 

al. 2010 

North Temperate Lakes LTER: 

Phytoplankton - Madison Lakes 

Area 1995 - current 

https://lter.limnology.wisc.edu/dataset/north-

temperate-lakes-lter-phytoplankton-madison-

lakes-area-1995-current 

Freshwater Plankton 2 18 315 Y Magnuson et 

al. 2011 
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North Temperate Lakes LTER: 

Phytoplankton - Trout Lake Area 

1984 - current 

https://lter.limnology.wisc.edu/dataset/north-

temperate-lakes-lter-phytoplankton-trout-lake-

area-1984-current 

Freshwater Plankton 2 10 135 N Magnuson et 

al. 2007 

North Temperate Lakes LTER: 

Zooplankton - Madison Lakes 

Area 1997 - current 

https://lter.limnology.wisc.edu/dataset/north-

temperate-lakes-lter-zooplankton-madison-lakes-

area-1997-current 

Freshwater Plankton 2 19 26 Y Magnuson et 

al. 2011 

North Temperate Lakes LTER: 

Zooplankton - Trout Lake Area 

1982 - current 

https://lter.limnology.wisc.edu/dataset/north-

temperate-lakes-lter-zooplankton-trout-lake-area-

1982-current 

Freshwater Plankton 7 29 100 Y Magnuson et 

al. 1983 

One hundred and six years of 

population and community 

dynamics of Sonoran Desert 

Laboratory perennials 

http://esapubs.org/archive/ecol/E094/083/ Terrestrial Plant 2 28 58 N Rodriguez-

Buritica et al. 

2013 

Plant species composition on 

selected watersheds at Konza 

Prairie 

http://lter.konza.ksu.edu/content/pvc02-plant-

species-composition-selected-watersheds-konza-

prairie 

Terrestrial Plant 4 18 294 Y Briggs et al. 

2002 
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Portal Plants, summer http://esapubs.org/archive/ecol/E090/118/metadat

a.htm 

Terrestrial Plant 24 14 105 Y Ernest et al. 

2009 

Portal Plants, winter http://esapubs.org/archive/ecol/E090/118/metadat

a.htm 

Terrestrial Plant 1 14 95 Y Ernest et al. 

2009 

Portal Rodents http://esapubs.org/archive/ecol/E090/118/metadat

a.htm 

Terrestrial Mammal 1 15 21 Y Ernest et al. 

2009 

Powdermill Biological Station 

Small Mammal Database 

http://ecologicaldata.org/wiki/powdermill-

biological-station-small-mammal-database 

Terrestrial Mammal 1 11 16 N Merritt 1999 

Preston 1948 moths https://www.jstor.org/stable/1930989 Terrestrial Invertebrate 2 22 291 N Preston 1948 

SBC LTER: Reef: Kelp Forest 

Community Dynamics: Fish 

abundance 

https://portal.lternet.edu/nis/mapbrowse?packagei

d=knb-lter-sbc.17.27 

Marine Fish 39 13 58 Y Reed 2013 
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Sevilleta LTER arthropods https://portal.lternet.edu/nis/mapbrowse?packagei

d=knb-lter-sev.29.175390 

Terrestrial Invertebrate 42 12 365 Y Lightfoot 2010 

Sevilleta LTER mammals http://sev.lternet.edu/content/small-mammal-
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Figure A2. The impact of different thresholds on the proportion of transient species in assemblages 

from different taxonomic groups. Taxon symbols as in Figure 2. 
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Figure A3. The impact of scale on the proportion of transient species as displayed in Figure 4 in 

the main text, but where transient species are defined as those with temporal occupancy ≤ 10%. 
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Figure A4. The impact of scale on the proportion of transient species as displayed in Figure 4 in 

the main text, but where transient species are defined as those with temporal occupancy ≤ 25%. 
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Figure A5. Impact of excluding transient species on four ecological patterns as displayed in Figure 

5 in the main text, but where transient species are defined as those with temporal occupancy ≤ 

10%. 
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Figure A6. Impact of excluding transient species on four ecological patterns as displayed in Figure 

5 in the main text, but where transient species are defined as those with temporal occupancy ≤ 

25%. 
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