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Abstract 20 

While studies increasingly document long-term change in community composition, whether 21 

long-term change occurs gradually or via rapid reorganization events remains unclear. We used 22 

Latent Dirichlet Allocation (LDA) and a change-point model to examine the long-term dynamics 23 

of a desert rodent community undergoing compositional change over a 38-year span. Our 24 

approach detected three rapid reorganization events, where changes in the relative abundances of 25 

dominant and rare species occurred, and a separate period of increased variance in the structure 26 

of the community. These events coincided with time periods—possibly related to climate 27 

events—where the total abundance of rodents was extremely low. There are a variety of 28 

processes that could link low abundance events with a higher probability of rapid ecological 29 

transitions, including higher importance of stochastic processes (i.e., competitive interactions or 30 

priority effects) and the removal of structuring effects of competitive dominants or incumbent 31 

species. Continued study of the dynamics of community change will provide important 32 

information not only on the processes structuring communities, but will also provide guidance 33 

for forecasting how communities will undergo change in the future. 34 

 35 

Key words: community dynamics, Latent Dirichlet Allocation, desert rodents, temporal 36 

dynamics, extreme climatic events 37 

 38 

Introduction 39 

As humans alter the template of nature by increasing temperature, changing nutrient 40 

distributions, and altering land cover (Walther 2010), the composition of species living in these 41 

places also changes. Compositional changes occur both directly as each species responds to the 42 
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environment in the context of its own needs or preferences, and indirectly through changes in the 43 

competitive landscape and other species interactions. Depending on the mechanisms driving 44 

community change, this change can be gradual or rapid. Gradual change can occur through 45 

stochastic turnover events, or niche-based turnover as species’ ability to thrive gradually 46 

improves or degrades as the environment changes (e.g. Tingley et al. 2009). Rapid changes in 47 

communities can emerge as ecosystems respond to intrinsic or extrinsic drivers (Williams et al. 48 

2011). With intrinsically-driven rapid change, sometimes referred to as regime shifts, gradual 49 

changes in the environment eventually push the ecosystem past a threshold, triggering rapid 50 

shifts to an alternate stable state (Scheffer and Carpenter 2003). Extrinsically-driven rapid 51 

changes can occur either from niche-based tracking as the environment rapidly shifts from one 52 

state to another (Beaugrand 2004), or via extreme events, which cause cascading changes in 53 

species populations that alter how the community recovers post-disturbance (Smith 2011).   54 

While a growing number of studies document the occurrence of rapid ecological 55 

transitions (Beaugrand 2004, Thibault and Brown 2008), meta-analyses compiling data from 56 

many long-term studies indicate that most communities are changing gradually over time (La 57 

Sorte and Boecklen 2005, Dornelas et al. 2014). This discrepancy may arise because studies 58 

focused on rapid ecological transitions are asking different questions than meta-analyses 59 

examining community change. Because these events are unpredictable and abrupt, studies of 60 

rapid ecological transitions typically focus on relatively short time-scales and include only the 61 

dynamics immediately before and after the specific event being studied (e.g. Thibault and Brown 62 

2008). In contrast, meta-analyses of community change focus on the trends occurring over 63 

decades and may intentionally average out or avoid periods of rapid transition. Because studies 64 

of rapid ecological transitions and meta-analyses are focused on different patterns at different 65 
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time scales, it is unknown whether rapid ecological transitions are truly rare events. Answering 66 

this question requires high frequency, long-term monitoring data and methods that are able to 67 

detect these dynamics in ecological time series. 68 

Here, we examine community change through time in a desert rodent community. 69 

Surveyed monthly from 1977 to 2015, this rodent community has undergone significant 70 

turnover. Both rapid and gradual reorganization have been invoked to explain these changes in 71 

rodent composition. Using linear approaches typically used in meta-analyses and applied to 72 

annual or seasonal data, rodent species turnover was interpreted as indicative of gradual long-73 

term response to habitat shifts from open arid grassland to shrubland (Ernest et al. 2008). Other 74 

studies, focused on the impacts of specific climate events on the rodent community, have 75 

proposed that these events triggered rapid shifts in community composition (Valone et al. 1995, 76 

Thibault and Brown 2008). Thus this is an ideal data set for assessing how to reconcile short-77 

term events with long-term community change at the multi-decade scale.  78 

 79 

Methods 80 

To examine the dynamics of this community, we used 38 years of monthly rodent data 81 

from the Portal Project, a long-term study located on 20 hectares of Chihuahuan Desert near the 82 

town of Portal, Arizona, USA. This site has undergone considerable habitat change: a 3-fold 83 

increase in woody vegetation between 1977 and the mid-1990s transitioned this site from an 84 

open desertified grassland with widely scattered woody shrubs to a desert shrubland (Brown et 85 

al. 1997). Small mammal data is collected at this site on 24 permanent 50m by 50m plots, 86 

sampled at monthly intervals with no major changes in methodology since 1977. Here, we pool 87 

data from the 8 unmanipulated (“control”) plots, which allow unrestricted access to all species 88 
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from the regional pool, to provide one site-level estimate of the natural dynamics of the rodent 89 

community from 1977-2015. Data for our analysis consisted of a table of counts for each species 90 

for each month of the time series. This amounted to 436 time steps and 21 species.  91 

The twenty-one rodent species caught at the site consist primarily of granivorous rodents, 92 

with some insectivorous or folivorous species. The body size range of this community spans 93 

from 6 grams to nearly 200 grams. This community has experienced considerable turnover in 94 

species composition through time, with only two species captured consistently at almost every 95 

survey since 1977. Further information on the site and protocol can be found in Brown (1998) 96 

and Ernest et al. (2016). The latter paper also contains the data used in this analysis.  97 

To quantify the dynamics of species composition, we used a 2-step approach. First, we 98 

reduced the dimensionality of composition data (i.e. condensed the species-level information on 99 

presence/absence and abundances) using a method from machine learning (Latent Dirichlet 100 

Allocation; see Blei et al. 2003) that is capable of detecting subtle or abrupt changes in 101 

composition. We then quantified the dynamics of this simplified composition time series using a 102 

change-point model (Western and Kleykamp 2004). We demonstrate the 2-step approach with a 103 

set of simulated data in Appendix S1.  104 

 105 

Identifying species associations using Latent Dirichlet Allocation 106 

Latent Dirichlet Allocation (LDA) was developed as an alternative to cluster analysis for 107 

summarizing documents based on the words they contain. This machine learning approach was 108 

recently introduced to ecology as a way to quantify changes in species composition across 109 

gradients (see Valle et al. 2014). LDA takes the words in a document and identifies “topics” – 110 

collections of words that tend to be found together in specific proportions (Blei et al. 2003). 111 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 15, 2017. ; https://doi.org/10.1101/163931doi: bioRxiv preprint 

https://doi.org/10.1101/163931
http://creativecommons.org/licenses/by-nc/4.0/


6 

 

Whereas clustering approaches assign each sample (“document”) to exactly one cluster, LDA 112 

attempts to infer the relative contributions of all topics. If these contributions change gradually 113 

over time, then these changes in document composition can be tracked from sample to sample. 114 

When applied to ecological data, this technique can summarize community observations 115 

(“documents”) based on the species (“words”) they contain. Analogous to collections of words 116 

forming topics in document analysis, LDA identifies groups of species that tend to be found 117 

together in specific proportions. Rather than looking at raw species composition in a collection 118 

of community observations (for example over a gradient in space or time), LDA is able to: 1) 119 

reduce species composition at each sampling point to its community-type composition, and 2) 120 

describe each community-type in terms of the species it contains, which may reveal important 121 

information about underlying species associations.  122 

Fitting an LDA model involves simultaneously determining two sets of numbers: one 123 

defining the community-types, and one describing the observed species assemblages in terms of 124 

those types. Due to the complex relationship between the way each community-type is defined 125 

and its influence on individual assemblages, exact inference is not possible in this model. We 126 

used Blei et al.’s variational approximation, which simplifies this relationship. This 127 

approximation allowed us to use Blei et al.’s (2003) iterative “variational expectation-128 

maximization” procedure for jointly optimizing both sets of parameters, as implemented in the 129 

`topicmodels` package (version 0.2-7) (Hornik and Grün 2011) for R 3.3.2 (R Core Team 2016). 130 

Like many clustering and ordination methods, LDA requires the number of community-types to 131 

be specified as model input (it does not determine the number of community-types supported by 132 

the data). We used an approximate AIC procedure (based on a variational approximation to the 133 

full likelihood function) to inform the appropriate number of community-types needed to best 134 
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describe the data (Appendix S2: Fig. S1). See Valle et al. 2014 for a thorough description of 135 

LDA in an ecological context, and comparison of LDA to traditional clustering techniques. 136 

 137 

Quantifying when change occurs using a change-point model 138 

LDA is a discovery tool which simplifies multivariate species composition to better 139 

visualize community dynamics. However, it does not tell us if (or when) a change in community 140 

structure has occurred. We fit a change-point model (Western and Kleykamp 2004) to identify 141 

abrupt transitions in the time series of community-types generated by the LDA model. Change-142 

point models break up a time series into intervals, with a different set of parameters to describe 143 

the time series during each interval. Between each pair of change-points, we modeled each 144 

community-type’s prevalence as a sinusoid with a period of one year, to control for seasonal 145 

fluctuations. The community-type proportions in each interval were modeled using a separate 146 

multinomial generalized linear model fit with the nnet package (Venables and Ripley 2002). 147 

Because we were modeling proportions rather than counts, this model gave us a quasi-likelihood 148 

for each interval, rather than a conventional likelihood (McCullagh and Nelder 1989). Since our 149 

quasi-likelihoods did not inflate the variance, however, they can be interpreted on the same scale 150 

as a conventional likelihood for purposes of model comparison (Anderson et al. 1994). The 151 

product of interval-level quasi-likelihoods yields the quasi-likelihood for the full data set; this 152 

value will be largest when the change-points break the time series into relatively stable intervals 153 

that can be explained well by the generalized linear model.  154 

The number of possible change-point locations was too large to evaluate all the 155 

possibilities exhaustively, so we used Markov chain Monte Carlo (MCMC) to collect a 156 

representative sample of change-point locations that are consistent with the data. Initial 157 
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experiments with Metropolis sampling showed poor mixing, so we implemented a parallel 158 

tempering sampler (also called Metropolis-coupled MCMC and replica-exchange MCMC) to 159 

facilitate movement of the Markov chain between modes via exchanges with auxiliary Markov 160 

chains that rapidly explore the space of possible change-points (Earl and Deem 2005). We fit 161 

change-point models with up to five change-points for the rodent data, and evaluated model 162 

performance by comparing the average log-quasi-likelihood to the number of model parameters 163 

(Gelman et al. 2014).  164 

 165 

Results 166 

Rodent species composition over the 40 years of the study was best described using four 167 

different community-types (Appendix S2: Fig. S1, Table S1). Our four community-types share 168 

some species (though they differ in relative abundances), while other species are unique to one or 169 

two community-types (Fig. 1a). Our four community-types differ in which species are the most 170 

abundant. The most abundant members of community-types 1 and 2 are kangaroo rats from the 171 

genus Dipodomys: community-type 1 is co-dominated by D. spectabilis and D. merriami, while 172 

community-type 2 is dominated by D. merriami alone. In contrast, the most abundant members 173 

of community-types 3 and 4 are pocket mice from the genus Chaetodipus: community-type 3 is 174 

dominated by C. baileyi and community-type 4 by C. penicillatus. In Fig. 1a, the 21 species are 175 

arranged on the x-axes in order of decreasing body size and grassland-affiliated species are 176 

denoted with bold outlines on their bars, to demonstrate that the four community-types differ not 177 

only in the identity of species making up the community, but also the distribution of body sizes 178 

(Ernest 2013) and habitat preferences contained in the community.  179 

Through time, the different community-types varied in their prevalence and dynamics 180 
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(Fig. 1b). When the study began, the desert rodent community mainly consisted of community-181 

type 1 (Fig. 1, light blue). In the mid-1980s, the rodent community transitioned to community-182 

type 2 (Fig. 1, dark blue) and then transitioned again in the late 1990s to become a mix of 183 

community-types 2, 3, and 4 (Fig. 1, dark blue, gold, and grey, respectively). Finally, around 184 

2010, the community entered its current state which is seasonal oscillations between community-185 

types 2 and 4 (Fig. 1, dark blue and grey).  These dynamics and community-types are consistent 186 

with previous studies that documented the decline of D. spectabilis (the co-dominant species of 187 

community-type 1) in the mid-1980s (Valone et al. 1995), the colonization and rise to dominance 188 

of  C. baileyi (the dominant species in community-type 3) in the late-1990s (Ernest and Brown 189 

2001), shifts in the body size structure of the community from large species to smaller species 190 

(White et al. 2004), and a general decline in grassland-affiliated species and an increase in 191 

shrubland-affiliated species (Ernest et al. 2008).  192 

Visually, the LDA results suggest that major shifts in community dynamics occurred 193 

multiple times over the study. Using our change-point approach, we found that a model 194 

containing four change-points was best supported by the data (for comparison of models 195 

containing 2, 3, 4, and 5 change-points see Appendix S2: Fig. S2). Histograms showing the 196 

locations of these four change-points are shown in Fig. 2c, with the distribution of each point 197 

shown in a different shade of gray. Using these distributions, we located the 95% credible 198 

interval for when each of these transitions occurred: December 1983-July 1984, October 1988-199 

January 1996, September 1998-December 1999, and June 2009-September 2010.  Fig. 1d shows 200 

the change-point model’s estimate of how the prevalence of the four community-types differs 201 

before and after each transition event, demonstrating that three of these events (1984, 1998-1999, 202 

2009-2010) are driven by a shift in which community-type is most prevalent, marking a major 203 
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shift in community structure.  204 

The 1988-1996 transition differs from the other three major reorganization events. It has 205 

a broader change-point distribution, and there is no change in which community-type is 206 

dominant. However, this change-point indicates an increase in the variance (amplitude) of the 207 

dominant community-type through this period. Minor changes in community structure also occur 208 

as community-type 1 disappears and community-types 3 and 4 increase in prevalence. Together 209 

these dynamics suggest the 1988-1996 transition is not a rapid shift in community structure like 210 

the other events, but is instead either an increase in the variance of community structure and/or a 211 

signal of a very slow shift in species composition that was abruptly terminated with the major 212 

reorganization event of 1998-1999. We also repeated analyses with three, five and six 213 

community-types in case our results were highly sensitive to the number of community-types 214 

specified, and qualitatively, the results we discuss are generally robust (see Appendix S2: Fig. 215 

S3, Fig. S4, Fig. S5 for comparison). 216 

 217 

Discussion 218 

Over nearly 40 years, the rodent community at the Portal Project has changed 219 

substantively, with shifts in species composition, dominance structure, and distributions of body 220 

sizes and habitat affiliations (Fig. 1). Our results are consistent with earlier studies which 221 

described the replacement of grassland-affiliated species by shrubland-affiliated species (Ernest 222 

et al. 2008); however our results indicate that this reorganization did not occur gradually but 223 

through relatively discrete events roughly every 10-15 years (Fig. 1). These rapid changes seem 224 

to be the primary dynamic explaining the shift at the site from a rodent community dominated by 225 

large-bodied grassland-affiliated species to a smaller-bodied shrubland-affiliated assemblage. 226 
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Given the shift in the assemblage from grassland- to shrubland-affiliated species, the primary 227 

driver of the change in our rodent community is most likely the increase in shrubs at the site. 228 

While we do not have high-frequency observations of this habitat change, shrub growth 229 

dynamics are known to be slow compared to the rapid change we observed in the rodent 230 

community (Goslee et al. 2003). While the rodent community did, in a broad sense, track this 231 

environmental change, it seems unlikely that changes in the rodent community occurred in sync 232 

with changes in habitat. The step-wise changes in the rodent community suggest that shifts in 233 

which niche traits are favored by the environment as habitat shifts is only part of the story.  234 

When we examine the timing of the rapid transitions, there is a coincidence between the 235 

location of the change-point distributions and low abundance periods for the rodents (Fig. 2). Not 236 

all low abundance events are associated with rapid shifts in composition, but all rapid transitions 237 

in composition are associated with low abundance events. The abundance of an entire 238 

community can drop for a variety of reasons (e.g., low resource availability, disturbances, 239 

disease, or predation events) and we do not have the data to examine all possibilities. However, 240 

some indirect evidence suggests that low resources and disturbances may be contributing to the 241 

occurrence of low abundance events in our system. As in many ecosystems, our ecosystem 242 

experiences both periodic droughts and extreme rainfall events. Droughts reduce resource 243 

availability in this water-limited system, and extreme rainfall events can cause sheet flooding 244 

(Thibault and Brown 2008) or saturate soils and damage food stores for granivorous rodents 245 

(Valone et al. 1995). All four of our detected change-points, including the longer transition in the 246 

1990s, overlap or occur adjacent to droughts or high rainfall events: 1) an intense tropical storm 247 

in October 1983 (Valone et al. 1995), 2) a drought in the 1990s (Allington et al. 2013; Appendix 248 

S2: Fig. S6), 3) a sheet flood during monsoon season in August 1999 (Thibault and Brown 249 
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2008), and 4) a period of low plant productivity in 2009 (Appendix S2: Fig. S6). However, it is 250 

important to note that not all droughts and high rainfall events in this system are associated with 251 

low abundance events. For example, low plant productivity also occurred in 2003 (Appendix S2: 252 

Fig. S6), but neither abnormally low abundances nor a transition in community composition 253 

occurred during that time. If climate events are driving low abundance and rapid ecological 254 

transitions, then their impact on the rodent community must also depend on other factors that 255 

mitigate those effects.  256 

Regardless of the drivers, there are a variety of processes that could cause a community 257 

experiencing low abundance to have an increased likelihood of a rapid ecological transition. Low 258 

abundances may occur because the dominant species has been hit disproportionately hard – as 259 

happened in our 1983 transition event when the dominant species D. spectabilis experienced a 260 

population crash (Valone et al. 1995). Removing or reducing dominant species can restructure 261 

communities (e.g. Sasaki and Lauenroth 2011) by providing niche opportunities to other species 262 

(Shea and Chesson 2002). Alternatively, events that reduce all species to low abundance may 263 

increase the role of stochasticity in determining competitive outcomes and can result in the 264 

establishment of alternative community compositions (Orrock and Fletcher 2005). Low 265 

community abundance also creates opportunities for colonization. Stochasticity in the order of 266 

colonization as a community recovers from low abundance can send community assembly down 267 

different trajectories (Fukami et al. 2010). Thus low abundance events may be critical junctures 268 

where a variety of forces may operate, either singly or in concert, to drive communities toward 269 

new assembly trajectories. The prevalence of stochastic processes when abundances are low may 270 

also explain why low abundance events do not always result in sudden ecological transitions – 271 

sometimes processes will align to create new compositions, but sometimes they will recreate the 272 
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previous community structure.  273 

Given that our reorganization events appear to be tracking the shift in environment, it 274 

seems unlikely that stochastic processes alone explain why our community structure changes 275 

after low abundance events. One possibility is that processes similar to priority effects give an 276 

advantage to the previously established community, making reorganization in response to 277 

gradual changes in the environment more difficult. Through interference competition, inferior 278 

competitors can delay or prevent the colonization of a superior competitor if the inferior species 279 

is numerically dominant (Amarasekare 2002, Thibault and Brown 2008).  As our environment 280 

shifted from grassland to shrubland, species that were competitively dominant in the grassland 281 

would have slowly become competitively inferior to species better suited to shrubland. However, 282 

through numerical superiority and interference competition (e.g. territoriality and seed caching, 283 

in our system), they may have impeded the establishment and growth of more superior 284 

competitors. Reductions in abundance would remove this ‘incumbent advantage’ by creating a 285 

clean slate where superior competitors can now dominate a community. While the ability of an 286 

established community to resist new colonists is well-documented in the context of invasive 287 

species (Corbin and D’Antonio 2004), its role in determining how communities track 288 

environmental change has received less attention (but see Thibault and Brown 2008). The 289 

‘incumbent advantage’ may also explain why low abundance events do not always generate 290 

rapid transition events. If low abundances occur under conditions where the numerically 291 

dominant species is still competitively dominant, the community should simply reassemble to its 292 

pre-disturbance state. Only when there is a mismatch between which species is competitively 293 

dominant and which is numerically dominant do we expect rapid transitions after low abundance.  294 

Our results show that long-term community change in our intensively studied rodent 295 
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community did not occur gradually. Although changes in rodent community composition appear 296 

to track changes in the environment at the multi-decadal scale, this community change occurred 297 

in discrete jumps. Further study to determine whether long-term change through discrete jumps 298 

is a common phenomenon or unique to this system is critical for understanding whether systems 299 

that appear stable today may be on the verge of rapid ecological transitions. However, rectifying 300 

long-term multidecadal scale changes with the short-term dynamics that create that change 301 

requires long-term, high frequency monitoring, emphasizing growing concerns (Hughes et al. 302 

2017) that maintaining long-term studies will be critical for detecting, understanding, and 303 

predicting future changes in nature.  304 
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Figure 1305 

 306 

Figure 1. a) species composition of the four community-types produced by the LDA model, with 307 

species arranged on the x-axes by decreasing body size, and grassland-affiliated species 308 

emphasized by black boxes around the bars (see Appendix S2: Table S1); b) prevalence of the 309 

four community-types over time as estimated by the LDA model; c) histograms of four change-310 

points representing the greatest changes in the prevalence of community-types from b; and d) the 311 

change-point model’s estimate of how community-type prevalence changes before and after each 312 

transition point.  Species codes in panel a: NA = Neotoma albigula, DS = Dipodomys spectabilis, 313 

SH = Sigmodon hispidus, SF = Sigmodon fulviventer, SO = Sigmodon ochrognathus, DO = 314 

Dipodomys ordii, DM = Dipodomys merriami, PB = Chaetodipus baileyi, PH = Chaetodipus 315 

hispidus, OL = Onychomys leucogaster, OT = Onychomys torridus, PL = Peromyscus leucopus, 316 

PM = Peromyscus maniculatus, PE = Peromyscus eremicus, PP = Chaetodipus penicillatus, PI = 317 

Chaetodipus intermedius, RF = Reithrodontomys fulvescens, RM = Reithrodontomys megalotis, 318 

RO = Reithrodontomys montanus, BA = Baiomys taylori, PF = Perognathus flavus. 319 
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Figure 2 320 

 321 

Figure 2. Total rodent abundance per hectare over time.  Horizontal dotted line shows long-term 322 

mean. Grey vertical bars show the 95% confidence interval for each of the community transition 323 

events. Light blue dots are data points in the 0.15 quantile of the negative binomial distribution 324 

fit to the data. Locations in time of the two droughts and two storm disturbance events are 325 

shown. 326 

 327 
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Appendix S1: Supplementary explanation of methods, and demonstration using a simulated data 421 

set 422 

LDA is easiest to understand as a generative model, moving from the top of Figure S1 to 423 

the bottom.  LDA postulates that species assemblages are composed of random samples from a 424 

relatively small number of community-types, which are defined in terms of relative species 425 

composition (Fig. S1A).  In this context, community-types (referred to as “topics” in most of the 426 

LDA literature), could represent guilds, clades, or other groups of species whose abundances 427 

tend to rise and fall together.  Assemblages (Fig. S1C) are generated by randomly drawing 428 

species from each of these community-types, with the relative frequency of each community-429 

type determined by the proportions in Fig. S1B.  430 

Fitting an LDA model thus involves simultaneously determining two sets of numbers: 431 

one defining the community-types (Fig. S1A), and one describing the observed species 432 

assemblages in terms of those types (Fig. S1B). This requires working backwards from observed 433 

patterns to infer the parameters of a possible underlying process – i.e., moving in Figure 3 from 434 

panel D up to panels A and B 435 

We simulated the simple scenario of two community-types containing overlapping sets of 436 

species, but with different permutations of species’ relative abundances (Fig. S2a).  Using these 437 

two community-types, we simulated three types of dynamics: 1) a fast transition from one 438 

community-type to the other (Fig. S2b), 2) a slow transition (Fig. S2c), and 3) constant 439 

proportions of the two community-types over time (Fig. S2d). Applied to the simulated data, the 440 

LDA model reproduced the composition of the two simulated community-types (Fig. S2e,f) and 441 

the dynamics of the fast and slow change scenarios (Fig. S2h,i). The model failed to reproduce 442 

the simulated data when the two community-types were represented by constant proportions over 443 

time (Fig. S2g,j). This illustrates a limitation of the LDA approach: if there is no change in 444 

dominance from one community-type to another (i.e. “stable” community configuration over 445 

time), the algorithm will have difficulty distinguishing the two community-types.  446 

When change is fast, the change point model identifies a narrow range of times as the 447 

likely location of the shift from one community type to another (Fig. S2k). When change is slow, 448 

it is less certain where this shift occurs and the distribution of change-point locations is wider 449 

(Fig. S2l). A uniform distribution emerged when no change occurred (Fig. S2m).   450 
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Figure S1. Graphical representation of the LDA model.  A. Community-type definitions: the 452 

relative species composition of each community-type; B. Community-type proportions: the 453 

relative frequency of each community-type contributing to assemblages; C. Assemblages: 454 

generated by randomly drawing species from the community-type pools in A according to the 455 

proportions in B; D. Species composition of assemblages, as would be seen in actual community 456 

data. 457 

 458 
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Figure S2. Demonstrating LDA and change-point model using simulated data.  a) species 460 

composition of two community-types to be simulated; b) simulation of rapid transition from 461 

community-type 1 to community-type 2; c) simulation of gradual transition from community-462 

type 1 to community-type 2; d) simulation of unchanging community dynamics; e-g) species 463 

composition of two community-types as output from the LDA model; h-j) output of LDA model, 464 

trying to recover dynamics simulated in panel b-d; k-m) histograms showing the distribution of 465 

estimated change-point location. 466 

 467 
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Appendix S2: supplemental figures and tables 469 

 470 

Table S1. Species relative abundances in four community-types estimated by LDA model 471 

Figure S1. Histogram of “best” number of community-types as estimated using 200 random 472 

seeds 473 

Figure S2.  Comparison of change-point models fit with 2, 3, 4, or 5 change-points. 474 

Figure S3. Results of LDA model fit with three community-types 475 

Figure S4. Results of LDA model fit with four community-types 476 

Figure S5. Results of LDA model fit with five community-types 477 

Figure S6. Normalized Difference Vegetation Index (NDVI) yearly average for 1984-2015.  478 
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Table S1: species relative abundances in the four community-types estimated by the LDA 480 

model.  Species codes: NA = Neotoma albigula, DS = Dipodomys spectabilis, SH = Sigmodon 481 

hispidus, SF = Sigmodon fulviventer, SO = Sigmodon ochrognathus, DO = Dipodomys ordii, DM 482 

= Dipodomys merriami, PB = Chaetodipus baileyi, PH = Chaetodipus hispidus, OL = 483 

Onychomys leucogaster, OT = Onychomys torridus, PL = Peromyscus leucopus, PM = 484 

Peromyscus maniculatus, PE = Peromyscus eremicus, PP = Chaetodipus penicillatus, PI = 485 

Chaetodipus intermedius, RF = Reithrodontomys fulvescens, RM = Reithrodontomys megalotis, 486 

RO = Reithrodontomys montanus, BA = Baiomys taylori, PF = Perognathus flavus. 487 

 
Community-type 

1 
Community-type 

2 
Community-type 

3 
Community-type 

4 

NA 0.088 0.025 0.024 0.001 

DS 0.340 0.000 0.000 0.000 

SH 0.001 0.004 0.020 0.000 

SF 0.000 0.003 0.014 0.000 

SO 0.000 0.001 0.000 0.000 

DO 0.076 0.128 0.211 0.018 

DM 0.341 0.606 0.078 0.216 

PB 0.000 0.000 0.450 0.025 

PH 0.000 0.001 0.000 0.000 

OL 0.061 0.030 0.003 0.001 

OT 0.051 0.064 0.130 0.006 

PL 0.000 0.000 0.004 0.000 

PM 0.000 0.012 0.006 0.000 

PE 0.011 0.041 0.016 0.000 

PP 0.000 0.000 0.022 0.722 

PI 0.000 0.000 0.006 0.002 

RF 0.000 0.001 0.000 0.000 

RM 0.000 0.049 0.000 0.000 

RO 0.000 0.001 0.000 0.000 

BA 0.000 0.001 0.009 0.002 

PF 0.030 0.032 0.007 0.006 
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Figure S1. We estimated model fit using an approximate AIC procedure for LDA models using 489 

2 to 9 community-types.  Since LDA depends on a random seed, we repeated the LDA model fit 490 

and AIC model selection using 200 different seeds to obtain a distribution of “best number of 491 

community-types.”  This procedure always selected between 3 and 5 community-types, with 4 492 

selected by the majority of runs.   493 

   494 
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Figure S2.  Comparison of change-point models fit with 2, 3, 4, or 5 change-points.  The model 495 

containing 4 change-points was best supported. 496 

 497 
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Figure S3. Results of LDA model fit with three community-types 499 

 500 

Figure S4. Results of LDA model fit with four community-types 501 

 502 
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Figure S5. Results of LDA model fit with five community-types 504 

 505 
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Figure S6. Normalized Difference Vegetation Index (NDVI) yearly average for 1984-2015. 506 

NDVI values were obtained from a combination of data from satellites Landsat 4, 5, 7, and 8. 507 

Raster NDVI files were downloaded from earthexplorer.usgs.gov and clipped to a 5 km2 area 508 

centered over the Portal Project site. We calculated median NDVI value for each 5 km2 image, 509 

and calculated correction factors based on the periods of overlap between satellites so data from 510 

all satellites could be directly compared.  We calculated a time series of average yearly NDVI for 511 

each year for which there were at least 12 images spanning at least 6 months of the year. 512 

 513 
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