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ABSTRACT 

 

Bacterial cold water disease (BCWD) causes significant mortality and economic losses in 

salmonid aquaculture. In previous studies, we identified moderate-large effect QTL for BCWD 

resistance in rainbow trout (Oncorhynchus mykiss). However, the recent availability of a 57K 

SNP array and a genome physical map have enabled us to conduct genome-wide association 

studies (GWAS) that overcome several experimental limitations from our previous work. In the 

current study, we conducted GWAS for BCWD resistance in two rainbow trout breeding 

populations using two genotyping platforms, the 57K Affymetrix SNP array and restriction-

associated DNA (RAD) sequencing. Overall, we identified 14 moderate-large effect QTL that 

explained up to 60.8% of the genetic variance in one of the two populations and 27.7% in the 

other. Four of these QTL were found in both populations explaining a substantial proportion of 

the variance, although major differences were also detected between the two populations. Our 

results confirm that BCWD resistance is controlled by the oligogenic inheritance of few 

moderate-large effect loci and a large-unknown number of loci each having a small effect on 

BCWD resistance. We detected differences in QTL number and genome location between two 

GWAS models (weighted single-step GBLUP and Bayes B), which highlights the utility of using 

different models to uncover QTL. The RAD-SNPs detected a greater number of QTL than the 

57K SNP array in one population, suggesting that the RAD-SNPs may uncover polymorphisms 

that are more unique and informative for the specific population in which they were discovered.  
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INTRODUCTION 

 

Bacterial cold water disease (BCWD) causes significant mortality and economic losses in 

salmonid aquaculture (NEMATOLLAHI et al. 2003; BARNES AND BROWN 2011). The etiological 

agent of BCWD is a gram-negative bacterium, Flavobacterium psychrophilum (Fp), and current 

methods to control BCWD outbreaks are limited. At the National Center for Cool and Cold 

Water Aquaculture (NCCCWA), we have developed a selective breeding program to increase 

rainbow trout genetic resistance against BCWD and have shown that BCWD resistance is a 

moderately heritable trait that responds to selection (LEEDS et al. 2010). Furthermore, we 

revealed complex genetic architecture of BCWD resistance (VALLEJO et al. 2010) and identified 

several moderate-large effect quantitative trait loci (QTL) for this trait in the NCCCWA odd- and 

even-year rainbow trout selective-breeding populations (WIENS et al. 2013; VALLEJO et al. 

2014a; LIU et al. 2015b; PALTI et al. 2015b). While those loci can be fine mapped to identify 

positional candidate genes, the complex genetic architecture of BCWD resistance and high 

genetic variability discovered in past studies (VALLEJO et al. 2014a) suggest that whole genome-

enabled selection is more effective for improving genetic resistance against BCWD in rainbow 

trout aquaculture, and we were able to empirically demonstrate that whole genome-enabled 

selection can double the accuracy of predicted genetic merit of potential breeders compared to 

traditional family-based selection (VALLEJO et al. 2017). 

 

For agricultural livestock species, single nucleotide polymorphism (SNP) chips have 

been the platform of choice for whole genome genotyping of at least 50K SNPs (MATUKUMALLI 

et al. 2009; RAMOS et al. 2009; GROENEN et al. 2011); including the recently developed 57K 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 17, 2017. ; https://doi.org/10.1101/163964doi: bioRxiv preprint 

https://doi.org/10.1101/163964


 

5 

 

SNP chip for rainbow trout (PALTI et al. 2015a). However, sequencing-by-genotyping methods 

that do not require a priori marker discovery or a reference genome sequence and are capable of 

simultaneous marker discovery and genotyping in many individuals were developed for genetic 

analyses (DAVEY et al. 2011). One such technique is restriction-site-associated DNA (RAD) 

sequencing (MILLER et al. 2007; BAIRD et al. 2008). In recent years, the method of RAD 

genotyping by sequencing has been widely used in salmonid species for SNP discovery, 

generating linkage maps, QTL mapping, genome-wide association studies (GWAS) and for 

evaluating genome-enabled selection (HECHT et al. 2012; HOUSTON et al. 2012; MILLER et al. 

2012; HALE et al. 2013; HECHT et al. 2013; NARUM et al. 2013; BRIEUC et al. 2014; CAMPBELL 

et al. 2014; GONEN et al. 2014; HOUSTON et al. 2014; PALTI et al. 2014; LIU et al. 2015a; LIU et 

al. 2015b; PALTI et al. 2015b; VALLEJO et al. 2016).  

 

Several moderate-large effect QTL associated with BCWD resistance have been 

identified on 24 of the 29 rainbow trout chromosomes using linkage analysis mapping (JOHNSON 

et al. 2008; WIENS et al. 2013; PALTI et al. 2014; QUILLET et al. 2014; VALLEJO et al. 2014a) 

and GWAS methods (CAMPBELL et al. 2014; LIU et al. 2015b; PALTI et al. 2015b). However, 

these previous studies had limitations on QTL detection. First, most of the reported genome-wide 

association analyses have tested one SNP at a time using single-regression or mixed linear 

models with a fixed SNP effect along with a random polygenic effect to capture the effects of all 

other genes. Although those studies have been successful in detecting associations, those 

associations typically explain only a small fraction of the trait genetic variance (VISSCHER et al. 

2010). Conversely, in GWAS analysis using whole-genome selection models that simultaneously 

fit all SNPs as random effects, the SNPs jointly explain a larger proportion of the genetic 
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variance which highlights the utility of using multiple-regression GWAS models with the SNPs 

joined into genomic windows for accurate QTL mapping (HAYES et al. 2010; FAN et al. 2011; 

ONTERU et al. 2011). Second, most of the reported QTL for BCWD resistance were identified 

using linkage-based methods and GWAS was performed within individual segregating families 

with relatively small sample size and low detection power. Consequently about half of the 

reported findings from such QTL mapping studies are expected to represent false positives 

(HIGGINSON AND MUNAFO 2016). Third, the previous studies used lower density genotyping 

platforms and did not have a reference genome physical map for accurate prediction of the order 

and physical proximity of the genetic markers. Furthermore, to our knowledge, in the current 

study we are using for the first time SNP genotype data with the genome physical map 

coordinates for GWAS in rainbow trout. 

 

There is ambiguity on the best computational algorithm when using multiple-regression 

based models in genomic selection (GS) and GWAS experiments. The genetic architecture of the 

trait and the population structure can have a significant impact on the accuracy of the genomic 

predictions and estimated marker effects. Therefore, it is important to compare the performance 

of the best competing algorithms on GS and GWAS when evaluating a trait with complex 

inheritance for the first time in a population. This will allow effective discovery of QTL 

underlying the genetic basis of the complex trait and control the type I error rate, which is often 

high in genome-wide discovery experiments.  

 

In GWAS with models that fit all SNPs simultaneously, the genomic BLUP (GBLUP) 

method assumes a polygenic architecture of the trait and uses all SNP data to estimate the 
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genomic relationship (G) matrix. In contrast, the Bayesian variable selection method assumes 

that the genetic variance is explained by a reduced number of markers with small-moderate or 

large effects (HABIER et al. 2007; HAYES et al. 2009; DE LOS CAMPOS et al. 2013; FERNANDO 

AND GARRICK 2013; HOWARD et al. 2015). Based on this assumption, GBLUP is expected not to 

perform as well as Bayesian variable selection models when the trait is controlled by few 

moderate-to-large effect QTL. The GBLUP method was modified into the single-step GBLUP 

(ssGBLUP) method which allows combining the pedigree (A) and genomic-derived relationships 

into an H relationship matrix (AGUILAR et al. 2010; LEGARRA et al. 2014), and to the weighted 

single-step GBLUP (wssGBLUP) method which emulates the Bayesian variable selection 

models by fitting in the multiple regression model selected SNPs that explain moderate-large 

fraction of the trait genetic variation (WANG et al. 2012). 

 

The recent development of the 57K SNP array (PALTI et al. 2015a), a dense genetic 

linkage map with 47,939 SNP markers (GONZALEZ-PENA et al. 2016), and the release of the 

improved rainbow trout reference genome (GenBank assembly Accession GCA_002163495) 

have provided the needed tools for performing GWAS to identify genomic regions associated 

with BCWD resistance in rainbow trout. The main objectives of this study were to (1) identify 

and validate QTL associated with BCWD resistance in two commercially-relevant rainbow trout 

breeding populations; (2) characterize the genetic architecture of rainbow trout resistance to 

BCWD; (3) compare the QTL mapping efficiency and determine whether the Chip-SNP and 

RAD-SNP genotyping platforms detect the same QTL; and (4) compare the QTL mapping 

efficiency of two widely-used multiple-regression GWAS models. 
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MATERIALS AND METHODS 

 

Ethics statement 

Protocols for this study were reviewed and approved by the NCCCWA Institutional Animal Care 

and Use Committee (Kearneysville, WV).  

 

Rainbow trout rearing and BCWD challenge 

Details of the 21-day BCWD challenge have been reported elsewhere (SILVERSTEIN et al. 2009; 

LEEDS et al. 2010).  Mortalities were removed and recorded daily and fin clipped.  Fish that 

survived the challenge were euthanized in a lethal dose of Tricaine methane sulfonate (Tricaine-

S, Western Chemical, Inc., Ferndale, WA) and fin clipped.  Fin clips from all fish (mortalities 

and survivors) were individually kept in 95% ethanol until DNA was extracted using established 

protocols (PALTI et al. 2006). 

 

Rainbow trout populations used in GWAS 

Fish used in this study were sampled from two populations, and all analyses were performed 

separately by population. The first sample included fish with genotypes and phenotypes from 10 

full-sib (FS) families sampled from a total of 71 pedigreed FS families with phenotype data from 

year-class (YC) 2005 of the NCCCWA BCWD resistant line (NCCCWA) and it was described 

in our previous GS study (Vallejo et al., 2016). Briefly, the YC 2005 families represented the 

base generation of the breeding line, and thus had not previously been selected for BCWD 

resistance. Each family had n = 39−80 fish evaluated in the laboratory BCWD challenge in one 

or two tanks per family. The phenotypic dataset included disease resistance phenotypes from n = 
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4,492 fish from 71 FS families (Table 1), and the pedigree file included 4,659 records. In this 

NCCWA sample, a total of n = 583 fish had both genotype and phenotype records. Following 

pedigree quality control, the original NCCCWA sample of n = 583 genotyped fish was reduced 

into n = 577 because four fish were flagged as duplicated or cloned samples by the QC pipeline 

and two fish did not assign to the expected family based on the pedigree records. 

 

The second sample included 102 pedigreed FS families from YC 2013 of the commercial 

breeding company Troutlodge, Inc., May-spawning population (TLUM) and it was described in 

our previous GS study (VALLEJO et al. 2017). Briefly, the original study design was to sample n 

= 1500 fish with phenotypes and genotypes from 50 FS families; in practice, a total of n = 1473 

fish had both phenotype and genotype records from those 50 FS families (n = 17−40 fish per 

family). The 102 YC 2013 families represented a commercial nucleus breeding population 

undergoing selection for growth, and thus had not previously been selected for BCWD 

resistance. The fish were evaluated for BCWD survival in the laboratory challenge in two tanks 

per family with an initial stocking of 40 fish per tank. The phenotypic dataset included BCWD 

disease phenotype records from n = 7893 fish from 102 FS families (Table 1), and the pedigree 

file included 32,279 records. A summary of the experimental variables of GWAS conducted with 

fish sampled from these two rainbow trout populations is presented in Table 1. 

 

BCWD resistance phenotypes 

The discrete BCWD resistance phenotype DAYS, the number of days post-challenge until the 

fish succumbed to the disease, was recorded for all mortalities and survivors were assigned a 

value of 21. Each fish also had a binary survival STATUS record. The BCWD resistance 
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phenotype STATUS had two categories: 1 = the fish died during the 21 days post challenge 

evaluation period; and 2 = the fish survived for the duration of the challenge. The DAYS and 

STATUS records were analyzed separately using univariate GWAS models described below. 

 

SNP genotyping platforms 

The fish sampled from TLUM and NCCCWA populations were genotyped using the Rainbow 

Trout Affymetrix 57K SNP array (Chip) following previously described procedures (PALTI et al. 

2015a) and the samples were genotyped by a commercial service provider (Geneseek, Inc., 

Lincoln, NE) following the Axiom genotyping procedures described by the array manufacturer 

(Affymetrix). The quality control (QC) bioinformatics pipeline applied to the Chip-SNP 

genotype data collected in the TLUM (VALLEJO et al. 2017) and NCCCWA (VALLEJO et al. 

2016) populations were already described. After genotype data QC, a total of 41,868 and 49,468 

SNPs were included in the TLUM and NCCCWA raw Chip genotype datasets, respectively. 

 

The fish sampled from the NCCCWA population were also genotyped by sequencing of 

restriction-site-associated DNA (RAD) tag libraries as we have previously described (VALLEJO 

et al. 2016). After genotype data QC, a total of 24,465 RAD-SNPs were included in the raw 

RAD genotype dataset. The raw sequence data from the RAD libraries were deposited in the 

NCBI SRA database (Accession SRP063932).   

 

Before performing GWAS analyses, the raw marker genotype datasets were further QC 

filtered using algorithms implemented in the software BLUPF90 (MISZTAL et al. 2015). For the 

Chip data, the QC retained SNPs with a genotype calling rate higher than 0.90, minor allele 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 17, 2017. ; https://doi.org/10.1101/163964doi: bioRxiv preprint 

https://doi.org/10.1101/163964


 

11 

 

frequency higher than 0.05, and departures from Hardy-Weinberg equilibrium less than 0.15 

(difference between expected and observed frequency of heterozygotes). Parent-progeny pairs 

were tested for discrepant homozygous SNPs, and SNPs with a conflict rate of more than 1% 

were discarded from further analysis. For the RAD data, the QC retained SNPs with a genotype 

calling rate higher than 0.70. Following this final QC step, 33,838 SNPs, 39,112 SNPs and 9,534 

SNPs were retained for analyses of the TLUM, NCCCWA (Chip) and NCCCWA (RAD) 

datasets, respectively. Next, we determined the physical map position (GenBank assembly 

Accession GCA_002163495) of each of the QC filtered markers and found that a small fraction 

did not have a physical map location. The numbers of effective genotyped markers and effective 

genotyped fish that were used with each specific GWAS model and genotyping platform in the 

evaluated populations are shown in Table 1. 

 

Genome-wide association analyses 

This study was conducted to identify chromosomal regions that have the greatest impact on the 

variation of BCWD resistance because it is difficult to infer individual SNP effects from a 

multiple regression model that fits markers simultaneously at a genome-wide scale (GARRICK 

AND FERNANDO 2013). Therefore, instead of using the markers effect to make an inference on a 

particular locus, we used the markers effect to make an inference about a particular genomic 

region that encompasses a number of contiguous loci in association with the trait (FAN et al. 

2011; FERNANDO et al. 2014). Thus the GWAS analysis was performed separately for each 

population and BCWD resistance phenotype using multiple-regression GWAS models that use 

simultaneously all the SNPs in the association test. Two multiple-regression GWAS methods 
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were used: Bayesian variable selection BayesB (BayesB) (FERNANDO AND GARRICK 2009) and 

weighted single-step GBLUP (wssGBLUP) (WANG et al. 2012; MISZTAL et al. 2015).   

 

Before starting the search for genomic regions associated with BCWD resistance, we 

tested 0.5 and 1Mb exclusive-windows in GWAS with BayesB model and found that 1Mb 

windows provided Manhattan plots with less noisy baseline which was in agreement with other 

GWAS reports (KIZILKAYA et al. 2013; SAATCHI et al. 2013); so we decided to use 1Mb 

exclusive-windows in the GWAS performed with BayesB. We also used 1Mb sliding-windows 

in GWAS performed with wssGBLUP which are more informative than exclusive-windows. 

 

Bayesian variable selection model BayesB 

The BayesB model uses only fish that had both genotype and phenotype records. The TLUM 

population sample included n = 1473 fish from 50 YC 2013 families with phenotype and 

genotype records, and the NCCWA sample included n = 577 fish from 10 YC 2005 families with 

phenotype and genotype records (Table 1).   

 

The GWAS for DAYS was performed using this linear model: � � �� � �� � �; where 

� is n x 1 vector of phenotypic records; 1 is a vector of all ones;  � is overall mean of phenotypic 

records; � is an n x k matrix of genotype covariates (coded as -10, 0, or 10) for k SNP markers, � 

is a k x 1 vector of random regression coefficients of k additive marker effects, and e is a vector 

of residuals. The genotype and phenotype records were used to estimate markers effect using the 

Bayesian variable selection model BayesB implemented in the software GENSEL (FERNANDO 

AND GARRICK 2009) as we have previously described (VALLEJO et al. 2016). The GWAS for the 
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binary phenotype STATUS was performed using the option for categorical analysis implemented 

also in the software GENSEL (FERNANDO AND GARRICK 2009; FERNANDO AND GARRICK 2013; 

GARRICK AND FERNANDO 2013). 

 

The BayesB model fits a mixture model to estimate marker effects assuming there are 

two types of SNP markers: a fraction of non-zero SNP effects 	1 � �
 that are drawn from 

distributions with marker-specific variance 	��
�
, and other known fraction of markers 	�
 that 

have zero effect on the quantitative trait (MEUWISSEN et al. 2001). In this study, the mixture 

parameter � was determined empirically by testing each population dataset listed in Table 1 

(TLUM-Chip, NCCCWA-Chip and NCCCWA-RAD) with several π values (0.95, 0.96, 0.97, 

0.98 and 0.99). We then decided to use π values of 0.97 and 0.99 with TLUM-Chip and 

NCCCWA samples, respectively, in the GWAS analysis with BayesB because these π values 

yielded best accuracy genomic predictions (Results not presented).   

 

The BayesB model uses Gibbs sampling approach in the GWAS analysis (GARRICK AND 

FERNANDO 2013). In this study, the BCWD phenotypes were analyzed using 270,000 Markov 

Chain Monte Carlo (MCMC) iterations from which the first 20,000 samples were discarded as 

burn-in; from the remaining 250,000 samples, we saved one from every 50 samples so the 

marker effects and variances were estimated as the posterior means of collected 5,000 

independent samples. The proper mixing and convergence of the MCMC iterations were 

assessed with the R package CODA (PLUMMER et al. 2006).   

 

Weighted single-step GBLUP model  
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The GWAS analysis with wssGBLUP, in contrast to BayesB, uses all available information on 

sampled fish such as pedigree, genotype and phenotype records including those fish that had 

only phenotypic records (i.e., those with missing genotype data) as long as the sampled fish are 

pedigree related (AGUILAR et al. 2010; CHRISTENSEN AND LUND 2010). The TLUM sample 

included n = 7893 fish from 102 YC 2013 families with phenotype records, and the NCCWA 

sample included n = 4492 BCWD fish from 71 YC 2005 families with phenotype records (Table 

1).   

 

In GWAS with wssGBLUP, the weights for each SNP are 1’s for the 1st iteration which 

means that all SNPs have the same weight (i.e., standard single-step GBLUP). For the next 

iterations (2nd, 3rd, etc.), the weights are SNP specific variances calculated using both the SNP 

allele-substitution effect estimated in the previous iteration and their corresponding allele 

frequencies (WANG et al. 2012). In this study, we decided to use results from the 2nd iteration 

because they provide the highest accuracy genomic predictions (VALLEJO et al. 2016) and 

marker effects (WANG et al. 2012; IRANO et al. 2016; MELO et al. 2016).  

 

In GWAS with TLUM population sample, the linear and threshold models for DAYS and 

STATUS, respectively, included the effects of population mean, random animal, random 

common environment and random error. The full-sib fish progeny from each family was 

allocated into two tanks for BCWD challenge evaluation, so the variable tank nested within 

family was used to model the common environment effect. The linear and threshold models used 

with the NCCCWA sample were similar to those used with the TLUM sample. The linear model 

for DAYS and threshold model for STATUS were fitted using computer applications 
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implemented in the software BLUPF90 (MISZTAL et al. 2015). The binary phenotype disease 

STATUS was analyzed with a threshold model using a Bayesian approach which included a 

single chain with a total of 270,000 iterations; the first 20,000 iterations were discarded as burn-

in iterations; then from the remaining 250,000 samples, one from every 50 samples were saved. 

Thus, 5000 independent samples were used in the analysis. The proper mixing and convergence 

of these MCMC iterations were also assessed using the R package CODA (PLUMMER et al. 

2006). 

 

Criteria to declare QTL associated with BCWD resistance 

The results from the GWAS performed with BayesB and wssGBLUP were used to identify 

genomic windows and QTL associated with BCWD resistance. A two stage approach was used 

to identify a QTL associated with BCWD resistance. First, the genomic windows with explained 

genetic variance (EGV) greater than 1% and 2% in the TLUM and NCCCWA populations, 

respectively, were declared as genomic regions associated with BCWD resistance. The threshold 

to declare a QTL was raised to EGV≥2% in the relatively small NCCCWA sample (n = 577) to 

control the type I error rate. Second, to determine if neighboring or overlapping windows on the 

same chromosome belong to the same QTL region we used the following criteria: all windows 

associated with BCWD resistance that were bounded within a region smaller than 20Mb and 

were less than 10Mb apart from another associated window were grouped to a single QTL 

region. The QTL nomenclature we used was based on the chromosome number and QTL region 

within the chromosome, where the region with the lowest genome assembly position numbers 

determined to be QTL1 on that chromosome the next QTL2 and so on. For example, the QTL 
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regions detected on chromosome Omy3 and listed in Table 2 were separated to QTL 3.1, 3.2 and 

3.3 based on the physical genome map positions of the SNPs that flanked each QTL region. 

 

The BayesB algorithm estimated the proportion of models where the tested 1Mb-window 

was included as with non-zero variance 	� � 0
 and therefore accounted for more than 0% of the 

genetic variance. These � � 0 estimates were used to calculate the probability of false positives 

���� � 1 � 	� � 0
� for each tested window (FERNANDO AND GARRICK 2013). These PFP 

estimates enabled accounting for multiple testing to control the probability of false positive 

conclusions across all the undertaken GWAS tests with the BayesB model. Thus by using these 

EGV thresholds (PETERS et al. 2013) and PFP estimates (FERNANDO AND GARRICK 2013), the 

claims on significant QTL findings was restricted to the strongest associations with BCWD 

resistance to control the type I error rate in this study. 

 

QTL segregating in both NCCCWA and TLUM populations 

In order to identify QTL that might be overlapping between the two populations and between the 

two genotyping platforms in the NCCCWA population, we assigned the genome physical map 

positions to all flanking markers of the genomic windows associated with BCWD resistance 

using the rainbow trout reference genome sequence (GenBank assembly Accession 

GCA_002163495) and searched for overlapping QTL regions within each chromosome using the 

flanking markers physical map genome coordinates.   

 

Data availability 
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The authors state that all data necessary for supporting the conclusions of this research article are 

included within the article and it’s Supplemental Material. Figure S1 shows Manhattan plot with 

GWAS results for survival DAYS in TLUM sample genotyped with 57K Chip-SNP. Figure S2 

shows Manhattan plot with GWAS results for survival DAYS in NCCCWA sample genotyped 

with 57K Chip-SNP. Figure S3 shows Manhattan plot with GWAS results for survival DAYS in 

NCCCWA sample genotyped with RAD-SNPs. Table S1 contains summary of all genomic 

windows and QTL detected in this GWAS. Table S2 contains list of QTL associated with 

survival DAYS found in TLUM population using the 57K Chip-SNP. Table S3 contains list of 

QTL associated with survival DAYS found in NCCCWA population using the 57K Chip-SNP. 

Table S4 contains list of QTL associated with survival DAYS found in NCCCWA population 

using RAD-SNPs genotyping. Table S5 contains list of QTL that are segregating in both 

NCCCWA and TLUM populations. Table S6 contains list of QTL that are private to either 

NCCCWA or TLUM population. Table S7 contains summary of QTL for BCWD resistance 

reported in previous studies. The rainbow trout reference genome sequence is available at 

GenBank with assembly accession number: GCA_002163495.  

 

RESULTS 

 

Heritability of BCWD resistance 

The heritability or proportion of phenotypic variance explained by the markers for survival 

DAYS and the binary survival STATUS were previously reported (VALLEJO et al. 2016; 

VALLEJO et al. 2017).  Briefly, here they were moderate and relatively constant with a range of 

0.24−0.34 (DAYS) and 0.23−0.35 (STATUS) (Table 1); and the mean heritability for DAYS and 
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STATUS were similar (0.29).  The heritability of STATUS estimated on the underlying scale of 

liability using a threshold model was transformed to the observed scale of disease survival 

STATUS using already described procedures (VALLEJO et al. 2017). Overall, for both BCWD 

phenotypes and across genotyping platforms and populations, the mean heritability estimated 

with wssGBLUP (0.32) was slightly higher than that estimated with BayesB (0.27). 

 

QTL associated with BCWD resistance in the TLUM population (57K SNP Chip)   

We have previously shown that the BCWD resistance phenotypes DAYS and STATUS yielded 

similar results in QTL mapping (VALLEJO et al. 2014a; LIU et al. 2015b; PALTI et al. 2015b) and 

genomic selection experiments (VALLEJO et al. 2016; VALLEJO et al. 2017). In this study, we 

observed also that STATUS and DAYS were affected by similar QTL regions with few 

exceptions (Overall, DAYS detected three more QTL than STATUS) (Table S1). However, 

because STATUS resembles the disease resistance trait closer than DAYS; and selection 

programs for improved disease resistance would most likely favor improvement of resistance 

over endurance or tolerance (ODEGARD et al. 2011), we present the results from the STATUS 

survival phenotype in the main body of this report. The complete results from the analysis with 

the DAYS phenotype are presented in the Supplementary Material section.   

 

In the TLUM population, a total of 45 windows with EGV ≥1% were detected on 

chromosomes Omy3, 5, 8, 13 and 25 (Table 2; Figure 1; Table S1 and Figure S1).  Fourteen 

windows were detected with BayesB with EGV up to 57.6% and 31 windows were detected with 

wssGBLUP with EGV up to 28.7%.   
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Four QTL (3.2, 8.1, 13.2 and 25.1) were detected by both GWAS models (Table S1). We 

did not detect any BayesB model specific QTL (i.e., all QTL detected with BayesB were also 

detected with wssGBLUP); and four QTL (3.1, 3.3, 5.1 and 13.1) were detected only with 

wssGBLUP.   

 

Overall, we detected eight QTL (3.1, 3.2, 3.3, 5.1, 8.1, 13.1, 13.2 and 25.1) associated 

with BCWD resistance which jointly explained up to 61% of the genetic variance for BCWD 

resistance in this TLUM population when accounting only for the largest EGV window in each 

QTL (Table 2; Table S1 and S2).  Among these eight QTL, two significant large-effect QTL 

were detected on Omy8 (QTL 8.1; PFP= 0.0) and 25 (QTL 25.1; PFP= 0.01) with BayesB, each 

explaining up to 19.3% and 35.4% of the genetic variance for BCWD resistance, respectively 

(Table 2).  

 

QTL for BCWD resistance in the NCCCWA population (57K SNP Chip)   

In the NCCWA population using the 57K SNP chip, we detected a total of 11 windows 

associated with BCWD resistance on chromosomes Omy3, 5, 10, 22 and 25 (Table 3; Figure 2; 

Table S1 and Figure S2). Two and nine QTL windows were detected with BayesB and 

wssGBLUP, respectively, and each GWAS model explained up to 5.6% and 16.1% of the 

genetic variance, respectively.  

 

Only one QTL (3.2) was detected by both GWAS models (Table S1). We did not detect 

any BayesB model specific QTL, and four QTL (5.1, 10.1, 22.1 and 25.1) were detected only 

with the wssGBLUP method.   
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Overall, we detected five QTL (3.2, 5.1, 10.1, 22.1 and 25.1) associated with BCWD 

resistance that explained up to 18.2% of the genetic variance in the NCCCWA population when 

accounting only for the largest EGV window in each QTL (Table 3 and Table S3). 

 

QTL for BCWD resistance in the NCCCWA population detected with RAD SNPs 

In the NCCCWA population using the RAD SNP genotypes, we detected a total of 18 windows 

associated with BCWD resistance on chromosomes Omy3, 5, 10, 11, 13, 15 and 25 (Table 4; 

Figure 3; Table S1 and Figure S3).  Four windows were detected by BayesB with EGV up to 

17.3% and 14 windows were detected by wssGBLUP with EGV up to 26.4%.  

 

Three QTL (3.2, 15.1 and 25.1) were detected by both GWAS models (Table S1). QTL 

5.2 was detected only with BayesB, and five QTL (5.1, 10.1, 11.1, 13.1 and 25.2) were detected 

only with wssGBLUP.  

 

Overall, we detected nine QTL (3.2, 5.1, 5.2, 10.1, 11.1, 13.1, 15.1, 25.1 and 25.2) 

associated with BCWD resistance which explained up to 31.9% of the genetic variance in this 

NCCCWA population dataset when accounting only for the largest EGV window in each QTL 

(Table 4 and Table S4).   
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DISCUSSION  

 

In GWAS studies, the use of correct statistical models and computer algorithms is paramount to 

successfully identify the underlying genetic basis of resistance to complex diseases in livestock 

and aquaculture species. To date there have been several reported GWAS using single-marker 

association tests in fin fish species (CAMPBELL et al. 2014; AYLLON et al. 2015; GENG et al. 

2015; GONEN et al. 2015; LIU et al. 2015b; PALTI et al. 2015b; TSAI et al. 2015; TSAI et al. 2016) 

which generally are associated with high type I error rate because single-marker methods do not 

account for linkage disequilibrium (LD) between physically linked loci in the association test. In 

this study, we performed GWAS for loci associated with BCWD resistance using multiple-

regression models which estimate the effect of all markers simultaneously and consequently do 

account for LD between neighboring SNPs (FERNANDO AND GARRICK 2013; GARRICK AND 

FERNANDO 2013; MISZTAL et al. 2014). 

 

In the current GWAS, we detected 14 QTL associated with BCWD resistance in two 

commercially-relevant rainbow trout breeding populations from which 11 were validated QTL 

from previous studies and three were novel QTL. Here we confirmed that BCWD resistance is 

controlled by the oligogenic inheritance of few moderate-large effect loci and a large-unknown 

number of loci with small effects on BCWD resistance. However, despite the similar genetic 

architecture for this trait in both populations and the detection of overlapping QTL, we still 

detected major QTL differences between the two populations. We also found that the RAD and 

Chip genotyping platforms did not detect the same QTL in the NCCCWA population, and 

overall the RAD platform detected a greater number of QTL than the Chip platform. In addition, 
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the wssGBLUP and the BayesB multiple-regression GWAS models did not detect the same 

QTL, which highlights the utility of using different GWAS models to effectively optimize the 

discovery of QTL.   

 

The genetic architecture of BCWD resistance in rainbow trout 

Previously, we predicted that six to 10 QTL explaining 83% to 89% of phenotypic variance with 

either additive or dominant disease-resistant alleles plus polygenic effects may underlie the 

genetic architecture of BCWD resistance in the same NCCCWA population using Bayesian 

complex segregation analysis of phenotype and pedigree records (VALLEJO et al. 2010). In the 

current study we were able to confirm our prediction on the genetic architecture of the trait.  

With 10 families from that original NCCCWA population, we uncovered 10 moderate-large 

effect QTL that explained up to 27.7% of the additive genetic variance for BCWD resistance 

(Table S1). Similarly, in the TLUM odd-year population, we detected 8 moderate-large effect 

QTL that explained up to 60.8% of the additive genetic variance for BCWD resistance.  

 

Four QTL regions located on chromosomes Omy3, 5, 13 and 25 are segregating in both 

populations (Table S5). The shared QTL regions explain a substantial proportion of the additive 

genetic variance for BCWD resistance in the two populations (up to 18% and 38.6% of the 

genetic variance in NCCCWA and TLUM, respectively); suggesting a common underlying 

genetic architecture for BCWD resistance in the two populations. However, major differences 

were also detected between the two populations. Six QTL, which explained up to 9.7% of the 

genetic variance and are located on chromosomes Omy5, 10, 11, 15, 22 and 25 were found only 

in the NCCCWA population (Table S6). Conversely, four QTL which explained up to 22.2% of 
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the genetic variance and are located on chromosomes Omy3, 8 and 13 were only found in the 

TLUM population. Overall, our GWAS results confirmed the hypothesis that BCWD resistance 

is controlled by the oligogenic inheritance of several moderate-large effect QTL and many small 

effect polygenic loci (VALLEJO et al. 2010; VALLEJO et al. 2014a; LIU et al. 2015b; PALTI et al. 

2015b). 

 

Further fine-mapping of the BCWD-QTL position and eventual identification of putative 

candidate genes or disease-causal mutations would be advantageous for applying marker-based 

selection and advancing the understanding of the mechanisms of genetic resistance to BCWD in 

rainbow trout populations. This can be achieved by genotyping and disease testing a greater 

number of SNPs from positions within and near the major QTL regions, by re-sequencing highly 

characterized BCWD resistant and susceptible individuals as was successfully done in the search 

for the IPNV resistance gene in Atlantic salmon (MOEN et al. 2015). In addition, positional and 

functional candidate genes for the QTL can be generated by interrogating the newest version of 

the rainbow trout reference genome sequence (GenBank assembly Accession GCA_002163495). 

 

Comparing the two SNP genotyping technologies in the NCCCWA population 

Overall, the RAD genotyping technology (18 windows; EGV= 32.8%; Table S1) detected a 

greater number of windows associated with BCWD resistance than the Chip technology (11 

windows; EGV= 18.2%) in the NCCCWA population. From the 10 QTL found in the NCCCWA 

population, more than half of the detected QTL were genotyping platform specific: One QTL 

was detected only with the Chip technology (QTL 22.1); and five QTL were detected only with 

the RAD technology (QTL 5.2, 11.1, 13.1, 15.1 and 25.2).  Four QTL were detected by both 
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SNP genotyping technologies (QTL 3.2, 5.1, 10.1 and 25.1). The overall better performance of 

RAD-SNPs than Chip-SNPs in detecting QTL associated with BCWD resistance in the 

NCCCWA population may be due to sample ascertainment bias effects considering that the 57K 

SNP Chip was developed using a collection of samples from different rainbow trout populations 

to maximize SNP polymorphism and discovery (PALTI et al. 2015a). Therefore, the polymorphic 

markers in the SNP Chip might be less informative than the SNPs we genotyped with the RAD 

technology, which were specifically discovered in the sampled families from the NCCCWA 

population, and are therefore more informative for characterizing genome loci polymorphisms in 

this dataset. 

 

Comparing BayesB and wssGBLUP models 

Overall, we noticed that the wssGBLUP detected higher number of windows (54) associated 

with BCWD resistance than the BayesB (20) across the three datasets (TLUM-SNP, NCCCWA-

SNP and NCCCWA-RAD) we used here (Table S1). We also noticed that the QTL detection 

power of BayesB was more negatively impacted by sample size reduction than wssGBLUP:  

BayesB detected 14, 2 and 4 QTL windows and wssGBLUP detected 31, 9 and 14 QTL windows 

in TLUM-SNP, NCCCWA-SNP and NCCCWA-RAD datasets, respectively. Performing GS 

with the Chip genotyped SNPs, we have shown that BayesB predicts GEBVs with higher 

accuracy than wssGBLUP when using a training sample size of n = 1473 (VALLEJO et al. 2017); 

however, wssGBLUP outperforms BayesB when using a smaller training sample size of n = 583 

(VALLEJO et al. 2016).  So, in agreement with these previous GS results, it seems also that the 

QTL detection power of GWAS with BayesB is more sensitive to sample size reduction than 

wssGBLUP. We think that the difference in power robustness to sample size reduction of these 
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GWAS models is due to their algorithmic differences. The BayesB model does not explicitly use 

the available pedigree information and includes in the analysis only animals that had both 

genotype and phenotype records and as a consequence is less power robust to sample size 

reduction and needs a minimum sample size for optimal performance, i.e. n ≥ 1000 animals. In 

contrast, the power of GWAS analysis with wssGBLUP is more robust to sample size reduction 

because it uses the available pedigree information and includes in the analysis animals that have 

both phenotype and genotype records, and also animals that have only phenotype records (those 

with missing genotype data).   

 

In the Chip-SNP genotyped TLUM sample, four QTL (3.2, 8.1, 13.2 and 25.1) were 

detected with both GS models, and four QTL (3.1, 3.3, 5.1 and 13.1) were detected only with 

wssGBLUP (Table S1). Similarly, in the Chip-SNP genotyped NCCCWA sample, only the QTL 

3.2 was detected with both GS models, and most of the QTL (5.1, 10.1, 22.1 and 25.1) were 

detected only with wssGBLUP. In contrast, in the RAD-SNP genotyped NCCWA sample, three 

QTL (3.2, 15.1 and 25.1) were detected with both GS models, the QTL 5.2 was detected only 

with BayesB, and five QTL (5.1, 10.1, 11.1, 13.1 and 25.2) were detected only with wssGBLUP.  

Thus, these results highlight the importance of using at least two different GWAS algorithms to 

efficiently uncover the underlying genetic basis of resistance against BCWD in the studied 

populations. 

 

Comparing QTL detected in TLUM and NCCCWA populations 

In spite of the smaller sample size of the NCCCWA population in comparison to the TLUM 

population, we detected 10 QTL in the NCCCWA population and only eight QTL in the TLUM 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 17, 2017. ; https://doi.org/10.1101/163964doi: bioRxiv preprint 

https://doi.org/10.1101/163964


 

26 

 

population (Table S1). We hypothesize that because the TLUM sample size was much larger 

than the NCCCWA sample size, it is likely that the type I error rate was smaller in the TLUM 

sample than in the NCCCWA sample. Therefore, we predict that most of the QTL detected in the 

TLUM population are real, but some of the QTL detected in the NCCCWA population are false 

positives. Specifically, the NCCCWA population had two unique QTL (5.2 and 15.1) that were 

also not reported in past studies. Thus, those two NCCCWA-specific QTL may very be false 

positives.  

 

Comparing our GWAS results with previous studies 

Eleven of the 14 QTL we detected in this study were also reported in previous studies in the 

NCCCWA germplasm and in other populations (Table S7) (JOHNSON et al. 2008; WIENS et al. 

2013; CAMPBELL et al. 2014; QUILLET et al. 2014; VALLEJO et al. 2014a; VALLEJO et al. 2014b; 

LIU et al. 2015b; PALTI et al. 2015b). Campbell et al. (CAMPBELL et al. 2014) detected RAD 

SNPs associated with BCWD resistance in another commercial rainbow trout population that 

were about 1Mb from our QTL Omy8.1 (Table S1 and Table S7); they also reported QTL that 

overlap or are close to our detected QTL 10.1 and 25.2. Kutyrev et al. (KUTYREV et al. 2016) 

measured the expression of immune relevant genes on spleen tissue sampled from BCWD 

resistant (ARS-Fp-R) and susceptible (ARS-Fp-S) genetic lines after laboratory disease pathogen 

challenge and detected differential expression between the tested genetic lines for genes il1r-like-

1 and tnfrsf1a-like-a. Interestingly, two SNPs for the gene il1r-like-1 (Affx-88933101 and Affx-

88915186) were about 240Kb from our QTL 3.2 which explained up to 5.6% of the genetic 

variance in the NCCCWA population.  
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Previous studies also detected QTL for BCWD resistance on chromosomes Omy1 

(VALLEJO et al. 2014a; PALTI et al. 2015b), 2 (VALLEJO et al. 2014a; LIU et al. 2015b), 7 

(QUILLET et al. 2014; VALLEJO et al. 2014a; PALTI et al. 2015b), 12 (VALLEJO et al. 2014a; LIU 

et al. 2015b), 17 (JOHNSON et al. 2008; CAMPBELL et al. 2014; QUILLET et al. 2014), 26 and 28 

(LIU et al. 2015b) which were not detected in this study. These conflicting results in QTL 

mapping can be expected due to several reasons including: (1) QTL effects can be population 

and/or family specific with unique extent/phase of linkage between QTL and marker alleles; and 

(2) they can also represent false positive results due to limitations and weaknesses of 

experimental-design and power of analysis as we describe here. 

 

Conclusion 

This GWAS is the most comprehensive genome-wide scan for QTL associated with BCWD 

resistance performed to date in two commercially-relevant rainbow trout breeding populations, 

using two whole-genome SNP genotyping platforms and two multiple-regression GWAS 

models. We identified a total of 14 moderate-large effect QTL associated with resistance to 

BCWD resistance, and four of those QTL were segregating in the two populations. These GWAS 

results confirmed that the genetic architecture of BCWD resistance is controlled by the 

oligogenic inheritance of few moderate-large effect genes and many small effect resistance loci. 

Overall, the wssGBLUP detected higher number of QTL than the BayesB and both GWAS 

models did not detect the same QTL which highlights the utility of using two different GWAS 

algorithms to effectively discover QTL. The RAD genotyping platform detected higher number 

of QTL than the Chip technology and also both genotyping platforms did not detect the same 

QTL in the NCCCWA population. These GWAS results will advance the biological and 
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functional analysis of positional candidate genes using the annotation of the new rainbow trout 

reference genome (GenBank assembly Accession GCA_002163495). They are also likely to be 

used in the implementation of more efficient selective breeding strategies which will utilize the 

QTL-flanking SNPs in genome-enabled selection for BCWD resistance in rainbow trout 

aquaculture. 
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Table 1 Experimental variables of GWAS conducted in two rainbow trout populations using two SNP genotyping methods 

Populationa 
Genotyping 

platformb 

GWAS 

methodc 

BCWD 

phenotyped 

1Mb  

windows 

Genotyped 

SNPe 

Genotyped 

fishe 

Phenotyped 

fish 

Genetic parameterf 

��
�  ��

� ��
� ��

�  

TLUM Chip BayesB DAYS 1,840 31,787 1,473 1,473 13.72 Nag 44.56 0.24 

TLUM Chip BayesB STATUS 1,840 31,787 1,473 1,473 0.58 Na 1.00 0.23 

TLUM Chip wssGBLUP DAYS 1,394 31,787 2,500 7,893 15.55 0.50 32.48 0.32 

TLUM Chip wssGBLUP STATUS 1,406 31,787 2,500 7,893 1.24 0.03 1.00 0.35 

NCCCWA Chip BayesB DAYS 1,847 36,666 577 577 13.30 Na 35.71 0.27 

NCCCWA Chip BayesB STATUS 1,847 36,666 577 577 0.79 Na 1.00 0.28 

NCCCWA Chip wssGBLUP DAYS 1,420 36,666 652 4,492 13.09 0.23 30.95 0.30 

NCCCWA Chip wssGBLUP STATUS 1,408 36,666 652 4,492 0.83 0.01 1.00 0.28 

NCCCWA RAD BayesB DAYS 1,777 7,972 574 574 13.40 Na 34.88 0.28 

NCCCWA RAD BayesB STATUS 1,777 7,972 574 574 0.86 Na 1.00 0.29 

NCCCWA RAD wssGBLUP DAYS 1,243 7,972 649 4,492 15.09 0.20 29.71 0.34 

NCCCWA RAD wssGBLUP STATUS 1,253 7,972 649 4,492 1.06 0.01 1.00 0.32 

aGWAS was performed using fish from Troutlodge US May (TLUM) and NCCCWA rainbow trout populations, separately.  
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bThe sampled fish were genotyped with the 57K SNP array (Chip) and with  RAD-SNPs (RAD) generated by sequencing of RAD tag 

libraries. 

cGWAS was performed using Bayesian variable selection model BayesB and weighted single-step GBLUP at iteration 2 (wssGBLUP) 

methods. The BayesB method used 1Mb exclusive-consecutive windows and the wssGBLUP method used 1Mb moving-sliding 

windows. 

dBCWD resistance phenotypes: survival days after disease challenge (DAYS) and binary fish survival status (STATUS). 

eThese are effective number of genotyped SNPs and fish after data quality control, respectively, used in the GWAS analyses. 

fGenetic parameter estimates: �� 
� is the additive genetic variance; ��

� is the common environment variance; ��
� is the residual error; and 

��
�  is the proportion of phenotypic variance explained by the markers. For the binary phenotype STATUS, the ��

�  estimated on the 

underlying scale of liability was transformed to the observed scale. 

gNa indicates a non-available estimate. The BayesB GWAS model did not include the common environment random effect. 

 

 

 

certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as not
this version posted July 17, 2017. 

; 
https://doi.org/10.1101/163964

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/163964


 

40 

 

Table 2 Summary of QTL associated with BCWD survival STATUS in the Troutlodge US May (TLUM) populationa 

Omy QTLb 
GWAS 

methodc 

Genetic 

variance 

(%)d 

Physical Map (bp)e  Markers in Window SNPs 

per 

window 
Start End 

 
Start-SNP End-SNP 

3 3.1 wssGBLUP 1.8 17,812,341 18,600,963  Affx-88909970 Affx-88904917 22 

3 3.2 wssGBLUP 2.0 61,621,949 62,558,467  Affx-88925949 Affx-88919479 18 

3 3.3 wssGBLUP 1.2 77,108,538 78,076,592  Affx-88925305 Affx-88929879 19 

5 5.1 wssGBLUP 1.2 11,339,155 12,329,117  Affx-88916119 Affx-88936955 27 

8 8.1 BayesB 19.3 76,070,399 76,907,400  Affx-88955037 Affx-88906927 17 

25 25.1 BayesB 35.4 21,006,787 21,805,909  Affx-88924154 Affx-88936445 30 

aThe fish from TLUM population were genotyped with the 57K SNP array (Chip). 

bFrom each QTL, the window with the highest explained genetic variance is presented in this Table. 

cGWAS was conducted using Bayesian variable selection model BayesB (BayesB) and weighted single-step GBLUP (wssGBLUP) 

methods. BayesB used 1Mb exclusive-consecutive windows and wssGBLUP used 1Mb moving-sliding windows. 

dExplained genetic variance by tested window (%). 

eSNP positions in base pairs (bp) based on rainbow trout reference genome sequence (GenBank assembly Accession 

GCA_002163495). 
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Table 3 Summary of QTL associated with BCWD survival STATUS in NCCCWA population detected using the 57K SNP 

array  

Omy QTLa 
GWAS 

methodb 

Genetic 

variance 

(%)c 

Physical Map (bp)d  Markers in Window SNPs 

per 

window 
Start End  Start-SNP End-SNP 

3 3.2 BayesB 5.6 55,025,670 55,964,831  Affx-88917670 Affx-88935875 24 

5 5.1 wssGBLUP 3.7 11,245,430 12,244,569  Affx-88930371 Affx-88921454 36 

10 10.1 wssGBLUP 2.7 31,536,788 32,517,865  Affx-88925834 Affx-88904643 47 

25 25.1 wssGBLUP 2.9 28,240,466 29,219,522  Affx-88919589 Affx-88945013 40 

aFrom each QTL, the window with the highest explained genetic variance is presented in this Table. 

bGWAS was conducted using Bayesian variable selection model BayesB (BayesB) and weighted single-step GBLUP (wssGBLUP) 

methods. BayesB used 1Mb exclusive-consecutive windows and wssGBLUP used 1Mb moving-sliding windows. 

cExplained genetic variance by tested window (%). 

dSNP positions in base pairs (bp) based on rainbow trout reference genome sequence (GenBank assembly Accession 

GCA_002163495). 
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Table 4 Summary of QTL associated with BCWD survival STATUS in NCCCWA population detected using RAD-SNPs 

genotyping  

Omy QTLa 
GWAS 

methodb 

Genetic 

variance 

(%)c 

Physical Map (bp)d  Markers in Window SNPs 

per 

window 
Start End  Start-SNP End-SNP 

3 3.2 BayesB 5.1 55,254,048 55,993,431  BCWD10F04977 BCWD10F00765 3 

5 5.1 wssGBLUP 2.8 11,966,155 12,948,479  BCWD10F15578 BCWD10F00357 11 

5 5.2 BayesB 3.3 41,094,726 41,686,801  BCWD10F02753 BCWD10F18861 6 

13 13.1 wssGBLUP 2.1 11,230,016 11,602,309  BCWD10F05067 BCWD10F24318 3 

15 15.1 wssGBLUP 3.7 38,446,758 39,349,228  BCWD10F00773 BCWD10F16617 3 

25 25.1 wssGBLUP 6.6 17,496,495 18,444,865  BCWD10F06483 BCWD10F14339 11 

aFrom each QTL, the window with the highest explained genetic variance is presented in this Table. 

bGWAS was conducted using Bayesian variable selection model BayesB (BayesB) and weighted single-step GBLUP (wssGBLUP) 

methods. BayesB used 1Mb exclusive-consecutive windows and wssGBLUP used 1Mb moving-sliding windows. 

cExplained genetic variance by tested window (%). 

dSNP positions in base pairs (bp) based on rainbow trout reference genome sequence (GenBank assembly Accession 
GCA_002163495). 
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FIGURE LEGENDS 

 

Figure 1  

Manhattan plot showing the association between SNP genomic windows and BCWD resistance in TLUM sample genotyped with 57K 

Chip-SNP: (A) GWAS for STATUS performed with BayesB using 1Mb exclusive windows. (B) GWAS for STATUS performed with 

wssGBLUP using 1Mb sliding windows. (PPTX file) 

Figure 2  

Manhattan plot showing the association between SNP genomic windows and BCWD resistance in NCCCWA sample genotyped with 

57K Chip-SNP: (A) GWAS for STATUS performed with BayesB using 1Mb exclusive windows. (B) GWAS for STATUS performed 

with wssGBLUP using 1Mb sliding windows. (PPTX file) 

Figure 3  

Manhattan plot showing the association between SNP genomic windows and BCWD resistance in NCCCWA sample genotyped with 

the RAD-SNPs: (A) GWAS for STATUS performed with BayesB using 1Mb exclusive windows. (B) GWAS for STATUS performed 

with wssGBLUP using 1Mb sliding windows. (PPTX file) 
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SUPPLEMENTAL MATERIAL 

 

Supplemental Figures 

Figure S1 

Manhattan plot showing the association between SNP genomic windows and BCWD resistance in TLUM sample genotyped with 57K 

Chip-SNP: (A) GWAS for DAYS performed with BayesB using 1Mb exclusive windows. (B) GWAS for DAYS performed with 

wssGBLUP using 1Mb sliding windows. (PPTX file) 

Figure S2  

Manhattan plot showing the association between SNP genomic windows and BCWD resistance in NCCCWA sample genotyped with 

57K Chip-SNP: (A) GWAS for DAYS performed with BayesB using 1Mb exclusive windows. (B) GWAS for DAYS performed with 

wssGBLUP using 1Mb sliding windows. (PPTX file) 

Figure S3  

Manhattan plot showing the association between SNP genomic windows and BCWD resistance in NCCCWA sample genotyped with 

the RAD-SNPs: (A) GWAS for DAYS performed with BayesB using 1Mb exclusive windows. (B) GWAS for DAYS performed with 

wssGBLUP using 1Mb sliding windows. (PPTX file) 
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Supplemental Tables 

Table S1  

Summary of QTL associated1 with BCWD resistance detected using two GWAS methods and two SNP genotyping platforms in 

NCCCWA and TLUM populations. (XLSX file) 

Table S2    

Summary of QTL associated with BCWD survival DAYS in the Troutlodge US May (TLUM) population. (DOCX file) 

Table S3  

Summary of QTL associated with BCWD survival DAYS in NCCCWA population detected using the 57K Chip-SNP. (DOCX file) 

Table S4 

Summary of QTL associated with BCWD survival DAYS in NCCCWA population detected using RAD-SNPs genotyping. (DOCX 

file) 

Table S5 

QTL for BCWD resistance that are shared or segregating in both NCCCWA and TLUM populations. (XLSX file) 

Table S6 

QTL for BCWD resistance that are private to either NCCCWA or TLUM population. (XLSX file) 

Table S7 

Summary of QTL for BCWD resistance reported in previous studies in rainbow trout populations. (XLSX file) 
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