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Abstract 
Many intracellular membraneless bodies appear to form via reversible phase transitions of 
multivalent proteins. Two relevant types of phase transitions are sol-gel transitions (gelation) 
and phase separation plus gelation. Gelation refers to the formation of a system spanning 
molecular network. This can either be enabled by phase separation or it can occur independently. 
Despite relevance for the formation and selectivity of compositionally distinct protein and RNA 
assemblies, the determinants of gelation as opposed to phase separation plus gelation remain 
unclear. Here, we focus on linear multivalent proteins that consist of interaction domains that are 
connected by disordered linkers. Using results from computer simulations and theoretical 
analysis we show that the lengths and sequence-specific features of disordered linkers determine 
the coupling between phase separation and gelation. Thus, the precise nature of phase transitions 
for linear multivalent proteins should be biologically tunable through genetic encoding of or 
post-translational modifications to linker sequences. 
Introduction 

There is growing interest in intracellular phase transitions that are thought to be important 
in the formation of membraneless organelles and other protein / RNA bodies, collectively known 
as biomolecular condensates (1). These are two- or three-dimensional assemblies that comprise 
of multiple proteins and RNA molecules and lack a surrounding membrane. Many biomolecular 
condensates are manifest as different types of membraneless organelles and other assemblies that 
are involved in cell signaling (2), ribosomal biogenesis (3-5), cytoskeletal regulation (6, 7), stress 
response (8-11), cell polarization (12, 13), and cytoplasmic branching (14). It has been proposed 
that the protein components of biomolecular condensates can be parsed into scaffolds and clients 
(15). Scaffolds are thought to drive phase transitions, whereas client molecules preferentially 
partition from the cytoplasm or nucleoplasm into the biomolecular condensates (15, 16). Scaffold 
proteins have distinct features, the most prominent being multivalency of well-folded protein 
domains or short linear motifs (SLiMs) that are encompassed in low complexity disordered 
regions (1, 6, 17-19). The concept of valence refers to the number of interaction domains or 
SLiMs within a multivalent protein. Ligands of multivalent proteins can be other multivalent 
proteins or polynucleotides. The simplest multivalent proteins are linear polymers that consist of 
multiple protein interaction domains or SLiMs that are connected to one another by intrinsically 
disordered linkers that may or may not lack specific interaction motifs (Figure 1a). These 
systems can undergo two types of reversible phase transitions, namely a solution-to-gel (sol-gel) 
transition (gelation) or phase separation plus gelation.  

Gelation refers to a switch from a solution of dispersed monomers and oligomers – a sol 
– to a system-spanning network – a gel (Figure 1b). This connectivity transition is characterized 
by the existence of a concentration threshold, known as the percolation threshold (20) that 
defines the gel point (21-23). If the bulk concentration of interaction domains is below the gel 
point, then the multivalent proteins form a sol. Above the gel point, the multivalent proteins and 
their ligands are incorporated into a system spanning network known as a gel. Here, we focus on 
physical gels (24), which are defined by specific, reversible non-covalent interactions, that 
represent physical crosslinks between protein modules / SLiMs and their ligands (2, 25). Our 
definition of a physical gel is based on Flory’s work (26) and is consistent with criteria outlined 
by Almdal et al. (27). By these definitions, a gel is a percolated network characterized by system 
spanning physical crosslinks. These definitions are agnostic about the material properties of gels. 
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Specifically, gels are not automatically conflated with solids nor do we postulate that gels have 
to be pathological states of matter.  

Polymer solutions can also undergo phase separation (17, 28-30). Given the three-way 
interplay among polymer-solvent, solvent-solvent, and polymer-polymer interactions, a 
necessary condition for phase separation is that inter-polymer attractions are more favorable, on 
average, than all other interactions (17, 24, 31). Above a saturation concentration, the polymer 
solution will undergo liquid-liquid phase separation (LLPS) by separating into a dense polymer-
rich phase that coexists with dilute liquid, deficient in polymers (28, 29). The formation of two 
distinct phases characterized by LLPS represents a density transition, with the dense phases 
typically forming spherical droplets (Figure 1c). 

 
Figure 1: Depiction of gelation without phase separation as opposed to phase separation plus gelation. (a) 
Schematic of a synthetic multivalent system. SH3 domains bind to proline-rich modules (PRMs). Multivalent SH3 
and PR proteins result from the tethering of multiple SH3 domains (or PRMs) by linkers. (b) Schematic of gelation 
without phase separation: If the bulk concentration of interaction domains is above the gel point but below the 
saturation concentration then a system spanning network forms across the entire system volume. In this scenario, a 
percolation transition is realized without phase separation. (c) Schematic of phase separation plus gelation. Linker-
mediated cooperative interactions of multivalent proteins drive phase separation, depicted here as a confinement of 
molecules into a smaller volume (gray envelope) when compared to the system volume (dashed bounding box). If 
the bulk concentration of interaction domains is higher than a saturation concentration then a dense phase 
comprising of multivalent SH3 and PRM proteins will be in equilibrium with a dispersed phase of unbound proteins. 
A droplet-spanning network will form because the concentration of interaction domains within the dense phase is 
above the gel point. 
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Although phase separation and gelation involve changes to two distinct physical 
properties of the system, these transitions can be coupled to one another. Phase separation of 
multivalent proteins will always promote gelation if the concentration of interaction domains 
within the dense phase is above the gel point (Figure 1c). Therefore, there are clearly two 
distinct types of phase transitions to consider for multivalent proteins: sol-gel transitions 
(gelation) as opposed to phase separation plus gelation. Sol-gel transitions are continuous 
transitions. Prior to gelation there is a pure sol of monomers and oligomers. Gelation refers to the 
crossover in the extent of crosslinking that yields a percolated or system spanning network, i.e., a 
gel. In sol-gel transitions, sols and gels do not coexist. Instead, a sol changes continuously to a 
gel. Phase separation plus gelation is a discontinuous, first-order transition because the dilute 
phase, a sol, will coexist with the dense phase, a gel. In this scenario, the gel is actually a droplet-
spanning network.  

The question of interest is what drives the extent and type of coupling between phase 
separation and gelation in multivalent proteins? Using computer simulations and theories we 
show that the physical properties of linkers and the affinities between interaction domains are 
key determinants of the coupling between phase separation and gelation in linear multivalent 
proteins. Specifically, we show that for linear multivalent proteins of fixed binding-module 
affinity and valence, the disordered linkers determine the preference for phase separation plus 
gelation as opposed to gelation without phase separation. This behavior is determined by the 
sequence-specific properties of linkers, which can be quantified in terms of a single parameter 
known as the effective solvation volume. 

Effective solvation volumes are defined as the volumes associated with pairs of linker 
residues for interactions with the surrounding solvent as opposed to interactions with themselves 
(31). The effective solvation volume (ves) of a linker can be pictured in terms of the impact a 
linker has on bringing together interaction modules that are connected to either end (see Figure 
2). Qualitatively, we can think about this in terms of a hypothetical outwards force that acts on 
the two interaction modules at either end of the linker. When ves is positive, the linker is highly 
expanded and this outwards force repels the two interaction modules, driving them apart. A 
positive ves is realized because the linker is self-repelling, carving for itself a large volume in 
space for favorable interactions with the solvent. When ves is negative, the linker is compact, and 
the hypothetical outwards force pulls the two interaction modules in, driving them close together. 
A negative ves is realized because the solvent is squeezed out, the linker is self-attractive, and this 
causes the interaction domains to be pulled towards one-another.  When ves is close to zero, the 
linker does not have strong interaction preferences and mimics a passive tether. Accordingly, 
both expanded and compact linker conformations are equally likely. The hypothetical outwards / 
inward force is negligible – the preferences for compact versus expanded conformations cancel 
one another – and the interaction modules meander around in three-dimensional space with 
respect to one another, restrained only the connectivity of the linker. A value of ves ≈ 0 is realized 
due to a counterbalancing of attractive and repulsive interactions in the linker. 

The effective solvation volume of a linker can be quantified in terms of the solvent-
mediated pairwise interactions between pairs of linker residues and the details are discussed in 
Appendix A. If the linker sequence is such that there are net attractions between all pairs of 
residues, then ves will be negative and this will be true for linkers that form compact globules. 
Conversely, if there are net repulsions between all pairs of residues, then the residues prefer to be 
solvated and ves will be positive. This is the case for so-called self-avoiding random coil (SARC) 
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linkers. Finally, if the effects of inter-residue attractions offset the effects of inter-residue 
repulsions, then ves ≈ 0 and this is the scenario for so-called Flory random coil (FRC) linkers. 
The effective solvation volume is directly proportional to the second virial coefficient denoted as 
B2 (31, 32). Negative, zero, or positive values of ves correspondingly imply negative (attractive 
interactions), zero (non-interacting), or positive (repulsive interactions) values of B2. Therefore, 
ves can be inferred using either atomistic simulations (as shown in this work) or via 
measurements of B2 as shown by Wei et al. (32).  

For generic homopolymers, the sign and magnitude of ves are determined by the effective 
chain-solvent interactions, which in turn depend on the chemical makeup of the chain. For 
proteins, the interplay between chain-chain and chain-solvent interactions is specified by the 
amino acid sequence, whereby the composition and patterning of a disordered linker will 
determine the balance of chain-chain and chain-solvent interactions (33-35). Therefore, the 
effective solvation volume of a disordered linker is determined directly by its primary sequence. 

 
Figure 2: Illustration of the impact of linker effective solvation volumes on the conformational fluctuations 
and inter-domain distances in linear multivalent proteins. (a) Schematic of three SH3 domains connected by 
positive ves linkers. In a cartoon schematic, the SH3 domains are shown as blue squares and the linkers are depicted 
as red tethers. The bidirectional arrows indicate the mapping between the molecular structures and the cartoon 
schematic. (b) Comparative schematics of SH3 domains connected by different types of linkers. The top row shows 
a pair of domains connected by linkers of high positive effective solvation volumes. For linkers with near zero 
effective solvation volumes, the inter-domain distances are characterized by large fluctuations and this engenders 
large concentration fluctuations. The bottom row shows the scenario for domains connected by linkers with negative 
ves values. In this scenario, the inter-domain distances seldom exceed the sum of the individual radii of gyration.  

Our work is designed to answer a simple question: How do changes to the effective 
solvation volumes and lengths of disordered linkers influence the coupling between phase 
separation and gelation for linear multivalent proteins? To set the stage for our investigations, 
we first performed proteome-wide bioinformatics analysis combined with all-atom simulations to 
quantify conformational consequences of sequence-specific effective solvation volumes of 
disordered linkers in naturally occurring multi-domain human proteins. This analysis shows that 
the sub-proteome of linear multivalent proteins comprises of linkers of varying lengths that span 
a range of effective solvation volumes, from significantly negative to significantly positive 
values. Using coarse-grained numerical simulations and analytical theories we then show that the 
coupling between phase separation and gelation in linear multivalent proteins is directly 
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determined by the physical properties of linkers, which include the lengths of linkers and their 
sequence-specific effective solvation volumes.  

Results 
Disordered linkers between folded domains in the human proteome span the entire 

range of effective solvation volumes: We first sought to obtain accurate and efficient estimates 
of the effective solvation volume (ves) for a large set of disordered segments. For this we used 
all-atom simulations, which have a proven track record of describing sequence-specific 
conformational properties of intrinsically disordered proteins (33, 35-37). Although a formal and 
rigorous calculation of ves is technically possible using these simulations, this approach is 
computationally expensive and non-trivial for large numbers of sequences. Recognizing that the 
effective solvation volume directly determines the global dimensions of a linker, we used the 
ensemble-averaged conformational properties to calculate a proxy for ves (38). Specifically, we 
leverage the profile of inter-residue distances to determine how a given linker sequence deviates 
from a sequence-specific theoretical reference that recapitulates ves = 0, which is the Flory 
Random Coil (FRC) (39). These profiles (Figure 3a) describe the average spatial separation 
between all pairs of residues as a function of their separation along the polypeptide sequence.  

We obtained sequence-specific inter-residue distance profiles by performing all-atom 
Metropolis Monte Carlo simulations using the ABSINTH implicit solvent model and forcefield 
paradigm (40) as described in the methods section. Figure 3a shows the calculated inter-residue 
distance profiles for fourteen distinct sequences, each of length 40 residues. Details of the 
sequences are shown in (Table 1). Figure 3a illustrates changes to the inter-residue distance 
profiles as a function of changes to the fraction of charged residues. Figure 3a also shows the 
inter-residue distance profile for a reference FRC linker. Sequences with positive ves will have 
inter-residue distance profiles that lie above the FRC reference. Conversely, sequences with 
negative ves will have profiles with uniformly smaller inter-residue spatial separations for given 
sequence separations when compared to the FRC reference. Accordingly, Figure 3a shows that 
sequences deficient in charged residues are expected to have negative ves values, whereas 
sequences enriched in charges are expected to have positive ves values.   

Since inter-residue distance profiles are direct manifestations of sequence-specific 
effective solvation volumes (38), we use these profiles to calculate a parameter ∆ that serves as a 
proxy for estimating sequence-specific ves values. This parameter is defined as the mean signed 
difference between the sequence-specific inter-residue distance profile and the corresponding 
profile for a FRC reference. In Figure 3b we plot the calculated ∆ values against the fraction of 
charged residues for the fourteen disordered sequences from Figure 3a. The value of ∆ can be 
negative, equal to zero, or positive and this depends on whether the value of ves is negative, zero, 
or positive, respectively. Sequences that form compact globules have negative values of ves and 
negative values of ∆. This is true for sequences with fractions of charged residues below 0.3. 
Within an interval between 0.3 and 0.5 for the fraction of charged residues, sequences mimic the 
FRC limit, where ves ≈ 0. This is manifest as –0.1 ≤ ∆ ≤ 0.1. Sequences that prefer chain-solvent 
interactions to intra-chain interactions will be expanded relative to the FRC limit. This leads to 
positive values of ves and corresponds to values of ∆ that are greater than 0.1.  

We extended our analysis of sequence-specific effective solvation volumes to naturally 
occurring disordered linkers in multi-domain proteins within the non-redundant human proteome. 
Using a stringent set of criteria (see methods section) we identified approximately 100 linear 
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multivalent proteins from the non-redundant human proteome (20,162 sequences) and extracted 
226 unique linker regions (see methods for details). For each of the 226 linkers we performed 
all-atom simulations to quantify the sequence-specific values of ∆. The 226 unique linker 
sequences span a range of lengths (Figure 3c). We calculated the distribution of ∆ values for all 
linkers using results from all-atom simulations (Figure 3d). This distribution shows that 
sequences of naturally occurring disordered linkers span the entire range of ∆ values.  

 
Figure 3: Effective solvation volumes for disordered linkers from the human proteome. (a) Inter-residue 
distance profiles for fourteen representative sequences, each 40-residues long. The legend shows the fraction of 
charged residues within each linker. The green dashed curve shows the inter-residue distance profile for the 
reference FRC limit. (b) Summary of the variation of ∆ as a function of the fraction of charged residues for the 

fourteen representative sequences. Here, 
  
∆ = 1

N
Rk − Rk

FRC

Rk
FRC

k
∑ , N is the number of linker residues,

 
Rk is the 

average spatial separation between residue pairs that are k apart in the linear sequence, 
  

Rk
FRC is the corresponding 

spatial separation for a FRC chain, and the summation index k runs across all sequence-separations. Linkers for 
which ∆ < –0.1 will have negative effective solvation volumes (ves < 0); linkers for which –0.1 ≤ ∆ ≤ 0.1 will have 
near zero effective solvation volumes (ves ≈ 0); and linkers for which ∆ > 0.1, will have positive effective solvation 
volumes (ves > 0). For the self-avoiding random coil (SARC) linkers, ∆ ≈ 0.5 and this is shown as a horizontal red 
line. (c) Length distribution of all 226 unique disordered linkers. (d) Distribution of ∆ values extracted from all-atom 
simulations of all 226 linkers. We delineate the ∆-distribution into three regimes: ∆ < –0.1 (blue bars), –0.1 ≤ ∆ ≤ 
0.1 (green bars), and ∆ > 0.1 (red bars). These regimes correspond, respectively to linkers for which ves is less than 
zero, near zero, or greater than zero. 
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 Of the 226 unique linker sequences, approximately 30% have negative effective solvation 
volumes (∆ < –0.1). Around 38 % of linkers have sequences defined by ∆ values in the range –
0.1 ≤ ∆ ≤ 0.1, implying that they will have near zero effective solvation volumes and are mimics 
of FRC linkers. Finally, 30% of linkers are characterized by ∆ values greater than 0.1, which 
means that their effective solvation volumes are positive. The limiting form of a positive 
effective solvation volume linker is the self-avoiding random coil or SARC for which ∆ ≈ 0.5. 
The key finding is that disordered linkers come in a range of sequence flavors, and 68% have a 
positive or near positive effective solvation volume.  

Table S1 provides requisite sequence details regarding the naturally occurring linkers, 
including the protein name, UniProt identifier (41), the value of ∆, and Gene Ontology (GO) 
annotations. The linkers are derived from multivalent proteins associated with a range of 
different functions. The proteins we identified were significantly enriched for RNA / DNA 
binding and RNA localization, as assessed by PANTHER-GO enrichment analysis (42) (p < 
0.005). This is of particular interest, given that many micron-sized biomolecular condensates 
contain protein and RNA molecules (1). With this analysis in hand, our next goal was to 
understand how different types of linkers modulate the phase behavior of linear multivalent 
proteins. 

For linkers with negative effective solvation volumes it follows that the linkers 
themselves can drive phase separation (43). These attractive linkers should be thought of as 
separate interaction domains that drive phase transitions and are hence distinct from regions that 
modulate the phase behavior encoded by interaction domains. Therefore, we focused our studies 
on disordered linkers with near zero or positive effective solvation volumes (ves ≥ 0).  

Design of coarse-grained simulations to model the phase behavior of linear 
multivalent proteins: Numerical simulations of phase transitions require the inclusion of 
hundreds to thousands of distinct multivalent proteins and a titration of a spectrum of protein 
concentrations. Furthermore, phase transitions are characterized by sharp changes to a small 
number of key parameters such as connectivity and density, and the observation of these sharp 
transitions is computationally intractable with all-atom simulations. Therefore, we developed and 
deployed coarse-grained lattice models to study the impact of linkers on phase transitions.  

Lattice models afford the advantage of a discretized conformational search space. This 
enables significant enhancements in computational efficiency. Key features of lattice models are 
the mapping of real protein architectures onto lattices and the design of an interaction model (3). 
The design of our simulation setup was inspired by the in vitro synthetic poly-SH3 and poly-
PRM system studied by Li et al (6). The general framework of our lattice model has been 
extended to other systems including branched multivalent proteins (3), and is transferable 
through phenomenological or machine learning approaches (44) to any system of multivalent 
proteins and polynucleotides 

We modeled each multivalent poly-SH3 and poly-PRM protein using a coarse-grained 
bead-tether model (Figure 4). A single lattice site was assigned to each SH3 domain. This sets 
the fundamental length scale in our simulations. Each PRM comprises of approximately 10-
residues, thus giving it the approximate dimensions of a single SH3 domain. Therefore, each 
PRM was also assigned to a single lattice site. Previous all-atom simulations showed that the 
spatial dimensions of a single SH3 domain corresponds to  ~7 linker residues, if ves ≥ 0 (45). 
Therefore, the linker length can be written as N ≈ 7n where n is the number of lattice sites 
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corresponding to a linker and N is the number of linker residues. All simulations were performed 
on 3-dimensional cubic lattices with periodic boundary conditions. Individual SH3 domains and 
PRMs can bind to one another and form a 1:1 complex with an intrinsic binding energy of –2kBT. 
Here, kB is Boltzmann’s constant and T is temperature. This intrinsic affinity reproduces 
measured dissociation constants for SH3 domains and PRMs (6).  

 
Figure 4: Coarse-grained bead-tether lattice models for modeling the phase behavior of multivalent proteins. 
All simulations were performed using 3-dimensional cubic lattice models. In these models, poly-SH3 and poly-PRM 
proteins were modeled as bead-tether polymers where the red beads mimic an SH3 domain, the blue beads mimic 
PRMs, and the black or gold tethers mimic linkers that connect domains / modules to one another. Two beads cannot 
occupy the same lattice site. Panel (a) shows an implicit linker model. To mimic FRC linkers, implicit linkers ensure 
that two tethered beads cannot move apart beyond a maximum distance, but the linker itself does not occupy any 
lattice sites. Panel (b) shows the explicit linker model. To mimic SARC linkers, explicit linkers consist of non-
interacting beads corresponding to a prescribed number of lattice sites. The explicit linkers tether two folded 
domains together, but other than occupying sites on the lattice they do not engage in interactions with one another or 
with the interaction domains. Note that in the explicit linker model each linker bead and interaction domain occupies 
a single lattice site. This choice was motivated by previous analysis of the comparative effective solvation volumes 
of FRC and SARC linkers (45). In the figure, the linker beads are represented as being smaller than the interaction 
beads to emphasize that they are linkers. The real simulation box used is much larger than the lattice dimensions 
pictured here, which is just for illustration purposes. 

We start with two stylized linkers namely, Flory random coil (FRC) linkers and the self-
avoiding random coil (SARC) linkers. FRC linkers correspond to chains with ves = 0. We model 
FRC linkers as implicit linkers (Figure 3a) – the linkers have a fixed length and tether the 
domains together, but do not occupy any volume on the lattice. Practically this is realized by 
imposing a cubic infinite square well potential to ensure that the lattice spacing between tethered 
interaction domains does not exceed n, the linker length in terms of the number of lattice sites. 
For the SARC linkers with positive ves, we use explicit linkers as shown in Figure 3b. A SARC 
linker of length n has n beads, where each bead is constrained to occupy vertices adjacent to its 
nearest neighbor beads on the lattice. Each explicitly modeled linker bead occupies a finite 
volume corresponding to one lattice site.  
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Distinguishing between phase separation and gelation: Phase separation results from a 
change in density. We quantify a parameter ρ, which we define as the ratio of Rlattice to  

Rg
proteins . 

Here, Rlattice is the radius that we would obtain if all proteins were uniformly dispersed across the 
lattice (Figure 5). Conversely, 

  
Rg

proteins is the actual ensemble-averaged radius of gyration over 
the spatial dimensions of the SH3, PRM, and linker beads (Figure 5). For a system that has 
undergone phase separation, the parameter ρ will be > 1. ρ is directly related to the relative 
density of the proteins and measures the extent of spatial clustering of domains and linker 
residues. If ρ is =1, then the proteins are uniformly dispersed through the lattice. 

 
Figure 5: Illustration of how ρand φ c are calculated. (a) The scenario where ρ >> 1. The radius of gyration over 
all proteins is the root mean square distance of each of the proteins from the center of mass of the system of proteins 
and is depicted as the radius of the dashed red envelope. Although the red envelope is centered on the cluster, it 
extends beyond the cluster boundary due to the presence of proteins outside of the cluster; i.e., Rg

proteins is always 
calculated over all proteins in the system. When a majority of the proteins are spatially clustered, the calculated 
Rg

proteins is considerably smaller than the radius of the lattice, and hence the ratio ρ >> 1. Rg
lattice is shown as a black 

dashed envelope. In panel (a) a majority of the proteins are found within a single droplet-spanning cluster. This 
cluster encompasses ~80% of the modules, hence φc ~80%. Modules belonging to the single largest system spanning 
clusters are shown in yellow, the crosslinks are shown in green, and the “system” here refers to the droplet. (b) The 
scenario where ρ ≈ 1. In this case, the modules are dispersed across the lattice volume as shown by the fact that the 
dashed red envelope is essentially coincident with the dashed black envelope. Here, we depict a scenario where 80% 
of the modules are incorporated into the single largest system spanning cluster, where the “system” volume 
corresponds to that of the entire lattice.  

We quantify gelation in terms of the fraction of molecules in the system that are part the 
single largest cluster. This is denoted as  φc (Figure 5). We analyze each configuration of 
multivalent proteins to detect the formation of connected clusters. Within each configuration, 
each molecule is a node. An edge is drawn between two nodes if an SH3 domain from one 
molecule interacts with a PRM from another molecule. The connected cluster with the largest 
number of nodes is designated as the largest cluster and the number of molecules corresponding 
to this cluster is recorded. This quantity is calculated across the entire ensemble of configurations 
in order to generate an ensemble averaged value of  φc for the system of interest.  
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Multivalent proteins with FRC linkers undergo phase separation plus gelation: We 
performed a series of Monte Carlo simulations using a coarse-grained lattice model for poly-SH3 
and poly-PRM systems of valence 3, 5, and 7 and all combinations of these valencies. Unless 
otherwise specified, in all of our simulations, the linker length n was set to five lattice sites, 
approximately 35 residues. This linker length corresponds to the main mode in the distribution of 
linker lengths shown in Figure 3c.  

The first row of plots in Figure 6 shows how φc changes for different simulated systems 
and provides a quantification of gelation. Each sub-plot in Figure 6a shows the value of φc as a 
function of the concentrations of SH3 domains and PRMs for a particular combination of PRM 
and SH3 domain valence. Figure 6a establishes two distinctive features of multivalent systems: 
For a given combination of SH3 and PRM valencies, we observe a sharp increase in the values of 
φc as the concentrations of SH3 domains and PRMs increase. This behavior is consistent with the 
expected features of a sol-gel transition. Second, as valence increases, there is a lowering of the 
module concentrations at which φc increases sharply.  

Figure 6b shows φc results obtained for poly-SH3 and poly-PRM systems with SARC 
linkers. Here, five beads were modeled explicitly for each of the linkers between SH3 domains 
and PRMs. Although most systems show a sharp increase in φc past a threshold SH3 / PRM 
concentration, the concentrations at which the transitions are realized are at least an order of 
magnitude higher than those observed for the systems with FRC linkers. The differences between 
FRC and SARC linkers are summarized in Figure 6c, which shows how φc changes with module 
concentrations for the symmetric 3:3, 5:5, and 7:7 systems along the diagonals for equal ratios of 
SH3 domains and PRMs. The x : y designation refers to the valence of SH3 domains : the valence 
of PRMs. The value of φc changes sharply with concentration and this change becomes sharper as 
the valence increases. For a given valence, φc increases more sharply and at lower module 
concentrations for proteins with FRC as opposed to SARC linkers. This analysis shows that the 
effective solvation volumes of linkers can have a profound impact on sol-gel transitions.  

The bottom row in Figure 6 shows how ρ changes for each of the multivalent systems 
and provides a quantification of phase separation. Figure 6d, which summarizes the results for 
FRC linkers, shows sharp changes to ρ as valence increases. This recapitulates the observations 
in Figure 6a for φc indicating that changes to connectivity are coupled to changes in density. 
This is illustrated in plots for the 7:7, 7:5, 5:7, and 5:5 systems. In contrast, the 5:3, 3:5, and 3:3 
systems show gelation transitions with negligible changes to ρ. In the highly asymmetric 7:3 and 
3:7 systems, the changes in ρ are considerably less pronounced when compared to changes in φc. 
In each simulation, the initial conditions correspond to the multivalent proteins being randomly 
dispersed across the cubic lattice (see movie S1). The movie and comparative analysis of results 
in Figures 6a and 6d provide visual support for the suggestion that systems with FRC linkers 
undergo phase separation plus gelation.  
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Figure 6: Comparative analysis of the connectivity and density transitions for multivalent proteins of fixed 
linker lengths. (a) Heat maps showing φc as a function of changes to SH3 and PRM concentrations for multivalent 
proteins with FRC linkers. Progression from cool to hot colors leads to the incorporation of most of the modules into 
the single largest cluster. The module concentrations at which sharp changes in connectivity are realized will 
decrease with increasing valence. (b) Heat maps equivalent to those of panel (a) for multivalent proteins with SARC 
linkers. (c) Analysis of how φc changes with module concentration for equal concentrations SH3 modules to PRMs. 
The solid curves plot φc for proteins with SARC linkers and the dashed curves are results for FRC linkers. The 
legend provides an annotation of the color scheme for the different curves. (d) Heat maps showing ρ as a function of 
changes to SH3 and PRM concentrations for multivalent proteins with FRC linkers. Comparison to panel (a) shows 
the congruence between changes to ρ and φc, especially for the 5:5, 5:7, 7:5, and 7:7 systems. (e) Heat maps 
showing ρ as a function of changes to SH3 and PRM concentrations for multivalent proteins with SARC linkers. 
The value of ρ does not change and remains close to one irrespective of the valence or module concentration. (f) 
Analysis of how ρ changes with module concentration for equal concentrations SH3 modules to PRMs. The solid 
curves are for proteins with SARC linkers and this shows that ρ ≈ 1, irrespective of the module concentrations. The 
dashed curves, for the 5:5 and 7:7 systems with FRC linkers show a sharp change above a threshold concentration of 
the modules. The behavior at high module concentrations is partly an artifact of our approach to increasing 
concentrations in the simulations, which involves fixing the number of modules and decreasing the volume of the 
simulation box. Accordingly, the radius of the lattice will decrease, thus decreasing ρ. However, ρ is greater than 
one above a critical concentration, thus emphasizing the coupling between phase separation and gelation for proteins 
with FRC linkers.  

Figure 6e shows the results obtained for poly-SH3 and poly-PRM systems with SARC 
linkers. The results provide a striking contrast to the results obtained for proteins with FRC 
linkers (see movie S2 in the supplementary material). None of the systems show discernible 
changes to ρ. This implies that sol-gel transitions are realized only when the concentrations are 
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large enough to enable networking through random encounters. The positive effective solvation 
volumes of SARC linkers suppress phase separation and these systems undergo gelation without 
phase separation. Figure 6f summarizes the distinctions between FRC and SARC linkers by 
plotting ρ versus the concentration of modules for the symmetric cases with equal ratios of SH3 
domains and PRMs. For SARC linkers, ρ ≈ 1 across the entire concentration range for (solid 
curves). This emphasizes the suppression of phase separation for systems with SARC linkers. 
For proteins with FRC linkers, the values of ρ increase sharply above unity beyond system-
specific critical concentrations.  

Representative post-equilibration configurations for 7:7 systems with FRC and SARC 
linkers of length five are shown in Figure 7. Both snapshots correspond to values of φc being 
above the gel point. The bounding box corresponds to the volume of the simulation cell and 
provides perspective regarding the change in density and connectivity within the system. In 
Figure 7a, a dense (high ρ) spherical droplet, which is a gel (φc is above the percolation 
threshold), coexists with a dilute sol of well-dispersed proteins. In contrast, Figure 7b shows 
how a system spanning network, i.e., gelation occurs in the absence of phase separation.  

 
Figure 7: Representative, post-equilibration, snapshots for the 7:7 system above the gel points with FRC, 
panel (a), and SARC linkers, panel (b) of length n = 5. In panel (a), the SH3 modules are shown in red and the 
PRMs in blue. In panel (b), the coloring is similar to panel (a). Additionally, molecules that are part of the single 
largest, system spanning cluster are shown in orange.  

Linkers influence the degree and type of cooperativity in sol-gel transitions: If the 
linkers are short, then irrespective of the effective solvation volume, the formation of a physical 
crosslink between a pair of multivalent proteins will increase the probability that a second 
crosslink can form between the same pair of proteins. In this scenario, there is positive local 
cooperativity, in that the apparent affinities will increase (46) but the network cannot grow 
because the apparent valence is lower than the actual valence. In the limit of positive local 
cooperativity, phase separation and gelation are suppressed because collective interactions 
amongst the molecules are weakened in favor of forming network terminating dimers and 
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oligomers. This scenario corresponds to infinite negative global cooperativity. In this scenario, 
there will neither be gelation nor phase separation plus gelation. 

For long enough linkers the domains become independent of one another. Here, the 
extent of crosslinking and the gel point are determined entirely by the valence of domains and 
the intrinsic affinities between domains. This is the limit of classical Flory-Stockmayer theories 
with zero local cooperativity. The linkers are passive tethers that generate multivalency, but they 
do not make any other contributions to the transitions of multivalent systems. In the limit of zero 
local cooperativity, gelation occurs without phase separation, implying zero global cooperativity.  

For intermediate linker lengths, the signs and magnitudes of the effective solvation 
volumes of linkers will determine the overall phase behavior. Disordered linkers with negative or 
near zero ves values can enable phase transitions characterized by positive global cooperativity 
because they can drive density transitions of multivalent proteins. These linkers can be confined 
to small volumes, when compared to the volume of the entire system. This derives from the 
preference for chain-chain interactions (ves < 0) or indifference for chain-chain versus chain-
solvent interactions (ves ≈ 0). Increased concentrations of domains within confined volumes 
realized by density transitions will enable connectivity transitions because the gel point is lower 
than the concentration of domains within the dense phase. If a multivalent protein contributes to 
growth of a network by forming a crosslink with a free domain on a protein that has already 
formed a crosslink with another protein, then the increased crosslinking enables gelation. These 
collective effects can also increase the apparent affinities between domains (as in the first 
scenario) thereby increasing the concentration of interaction domains. Increased crosslinking 
enables a connectivity transition whereas increased concentration of domains enables a density 
transition. The regime of positive global cooperativity corresponds to the regime where phase 
separation plus gelation is realized.  

Linear multivalent proteins with large positive effective solvation volume linkers (ves >> 
0) will engender negative global cooperativity because the linkers prefer to be solvated and will 
resist confinement within droplets. In this sense, linkers with large positive effective solvation 
volumes are analogous to solubilizing tags. Additionally, due to their large positive effective 
solvation volumes, the linkers act as obstacles that inhibit interactions between domains. These 
linkers decrease the apparent affinity between interaction domains and reduce the degree of 
crosslinking. Accordingly, the ability to concentrate multivalent proteins is weakened, and so is 
the ability to grow a system-spanning network via a connectivity transition. In the scenario of 
negative global cooperativity, phase separation is suppressed and gelation is realized at bulk 
concentrations that are considerably higher than the Flory-Stockmayer limit. As a reminder, 
linkers do not make any contribution to determining the gel point in the Flory-Stockmayer limit 
(21-23, 26), only the valence and intrinsic affinities matter.  

To summarize, phase separation plus gelation leads to positive global cooperativity, and 
enables the formation of a percolated network at bulk concentrations that are considerably 
smaller than the Flory-Stockmayer limit. Systems with zero or negative global cooperativity 
undergo gelation without phase separation and sol-gel transitions occur at or above the Flory-
Stockmayer limit.   

A dimensionless parameter to quantify cooperativity: To put the ideas described 
above on a quantitative footing and enable comparisons across different systems we calculated 
the percolation threshold for φc, which we designate as φcc and use this to quantify the gel point 
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cg. The gel point is the concentration threshold beyond which the system crosses the percolation 
threshold. The methods for computing φcc for a system with prescribed values for the valence and 
the binding energy between interaction domains, as well as the calculation of the gel point from 
φcc, are described in the methods section.  

We introduced a dimensionless parameter c* to quantify the magnitude and type of 
cooperativity that characterizes phase transitions of linear multivalent proteins. A measure of 
cooperativity also directly reveals the nature and extent of coupling between phase separation 
and gelation. The parameter c* is defined as the ratio of cg,sim to cg,FS. Here, cg,sim is the gel point 
quantified in simulations with linkers of specified length and effective solvation volume. It is 
defined as the lowest concentration of modules at which φ c > 0.17 (see methods section). This is 
percolation threshold for our system of finite-sized linear multivalent proteins (see methods 
section). In contrast, cg,FS is the gel point obtained from Flory-Stockmayer theories (21-23, 26) 
(see methods section). Therefore, the value of cg,FS provides an important touchstone for 
quantifying the influence of linkers on phase transitions, and provides a measure of the deviation 
from the mean-field behavior expected of long inert linkers. 

The value of c* can be less than one, equal to one, or greater than one, depending on 
whether the system is characterized by positive, zero, or negative, global cooperativity, 
respectively. It is worth emphasizing that c* quantifies the joint effects on changes to the 
apparent affinities of interaction modules and the extent of crosslinking. Therefore, c* measures 
the extent and nature of coupling between phase separation and gelation. Importantly, no 
temporal order of operations is implied in the calculation or analysis of c*. 

FRC linkers have an optimal range of lengths for positive cooperativity: We 
quantified the impact of linker lengths on the degree and magnitude of cooperativity for FRC 
linkers. Figure 8a shows a plot of c* as a function of linker lengths for 3:3, 5:5, and 7:7 systems 
with FRC linkers. The profile of c* is non-monotonic. In the short linker limit, n ≤ 2, the value of 
c* is greater than one. Because these linkers are too short, complexes terminate in dimers of 
poly-SH3 and poly-PRM proteins. This is the regime of positive local and negative global 
cooperativity where phase transitions do not occur. 

For multivalent proteins with a valance of 5 or 7 and linker lengths in the range 3 ≤ n < 
12 (or 21 ≤ N ≤ 84, where N is the number of linker residues), the value of c* is less than one, 
and the lowest values of c* are realized for linkers of length 3 < n < 6. FRC linkers within a 
defined length range engender positive global cooperativity and for linker lengths in this optimal 
range, positive global cooperativity increases with increasing valence. Positive global 
cooperativity weakens with increasing linker lengths. Hence, for long linker lengths, c* 
converges to one implying that the domains interact independently when the FRC linkers are 
sufficiently long. This is the regime of zero global cooperativity.  

SARC linkers lead to negative global cooperativity: Figure 8b shows a plot of c* as a 
function of linker lengths for 3:3, 5:5, and 7:7 systems with SARC linkers. Here, c* is greater 
than one for all the linker lengths. This is a signature of negative global cooperativity. Linkers 
with positive effective solvation volumes suppress phase separation and shift the gel point to 
higher concentrations when compared to the threshold predicted by Flory-Stockmayer theories. 
Explicit linkers also lower the apparent affinity through negative global cooperativity because 
their positive effective solvation volumes promote solvation thus diminishing productive 
associations among domains. This becomes less of an issue as the linkers become longer. If one 
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corrects the intrinsic affinity to account for the weakened apparent affinity, then the convergence 
of the systems with long linkers to the Flory-Stockmayer limit is recovered (not shown). 
However, the profiles do not change qualitatively and this points to fundamental differences 
between systems with FRC versus SARC linkers.  

  
Figure 8: Quantifying cooperativity and the coupling between phase separation and gelation. (a) Plot of c* as a 
function of linker length for three symmetric multivalent systems connected by FRC linkers. There is an optimal 
range for linker lengths where c* < 1, implying positive global cooperativity that gives rise to phase separation plus 
gelation. For long linkers, c* converges to unity, implying an absence of cooperativity and pure sol-gel transitions, 
in accord with Flory-Stockmayer theories. (b) Plot of c* as a function of linker length for three symmetric 
multivalent systems connected by SARC linkers. The value of c* is greater than unity for all linker lengths. This 
points to the suppression of phase separation by linkers with positive effective solvation volumes, and a shifting of 
the gel point to higher concentrations compared to the Flory-Stockmayer threshold. 

Phase diagrams delineate parameters for distinct types of phase transitions: Figure 
9 shows the phase diagram that we computed from concentration dependent simulations for a 5:5 
system and a hybrid five-site linker. This phase diagram is shown in the two-parameter space of 
the concentration of domains along the abscissa and increasing intrinsic affinities along the 
ordinate. For affinities below 3kBT, the system undergoes a continuous transition from a sol to a 
gel and the green dashed line demarcates the sol-gel line. The gels correspond to system 
spanning networks that percolate through the entire simulation volume. The critical point for this 
system, shown as a red asterisk, is defined jointly by a critical interaction affinity (3kBT) and a 
critical module concentration (~ 10–3 polymers / voxel).  

Above the critical point, the system undergoes phase separation plus gelation. As the 
interaction affinity increases above 3kBT, the system separates into two coexisting phases namely, 
a dilute phase, which is a sol, and a dense phase, which is a gel. As an illustration, for an 
interaction affinity of 4.5kBT, the coexisting concentrations that define the two phases are 
depicted as intercepts along the abscissa, and designated as csl and csh, which are respectively the 
concentrations of dilute and dense phases. Notice that the gel point, cg, defined as the 
concentration beyond which the percolation threshold, φc > 0.17, lies within the two-phase 
regime such that csl < cg < csh. Here, cg is the apparent gel point that is extrapolated by extending 
the green dashed line in Figure 9. Accordingly, the density transition, which we quantify as the 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2017. ; https://doi.org/10.1101/164301doi: bioRxiv preprint 

https://doi.org/10.1101/164301
http://creativecommons.org/licenses/by/4.0/


 17 

concentration range above which ρ becomes greater than 1.08, enables gelation because the 
concentration within the dense phase (csh) is higher than the apparent gel point (cg).  

The width of the two-phase regime increases with interaction affinity. This implies that 
phase separation is realized at lower concentrations of the interacting domains and is depicted by 
a leftward shift of the arm shown in light blue in Figure 9. Concomitantly the gel becomes more 
concentrated and this is depicted by a rightward shift of the arm shown in purple in Figure 9. 
Therefore, if the linker sequence is fixed, mutations to interaction domains or SLiMs that 
increase affinity will enhance phase separation plus gelation, giving rise to concentrated gels that 
coexist with dilute sols. 

 
Figure 9: Phase diagram for a 5:5 system with a hybrid five-site linker. Here, for each linker, two of the linker 
beads were modeled explicitly, while the other three were modeled implicitly. For low binding affinities between 
SH3 domains and PRMs (< 3kBT), the system undergoes a continuous sol-gel transition as a function of module 
concentration, and the affinity-specific gel points lie on the green dashed line. The red asterisk denotes the critical 
point located at an interaction affinity of ~3kBT and a module concentration of ~10–3 polymers / voxel. Above an 
interaction affinity of ~3kBT, the system undergoes phase separation plus gelation. Phase separation is characterized 
by a coexistence curve with two arms, shown in blue and purple. A solution with a bulk concentration that falls 
within the yellow region will never form a one-phase solution. Instead, it will separate into coexisting dilute and 
dense phases. The concentrations within these phases are equal to the concentrations taken from coexistence curves 
that intersect with the corresponding tie line (red dotted line). This is illustrated for interaction strengths of 4.5kBT. 
Any solution with a bulk concentration along the tie line will phase separate into a dense phase and a dilute phase of 
a fixed concentration csl and csh, respectively. For this system, the high concentration arm of the coexistence curve 
always lies beyond the gel-line, and therefore, the dense phase will always form a gel. The gel line within the two-
phase region is calculated based on the percolation threshold and is shown as a dotted green line, which is really an 
extrapolation of the green dashed line. It highlights the fact that csl < cg <csh throughout the two-phase regime. The 
callouts on the right show schematics of the dilute sol coexisting with a dense gel (top right) and a system spanning 
gel that forms via gelation without phase separation (bottom right).  
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Phase separation is destabilized as the effective solvation volumes of linkers 
increase: The effective solvation volumes of linkers were titrated by fixing the linker length and 
changing the number of linker beads that were modeled implicitly versus explicitly. The 
magnitude of the effective solvation volume is quantified in terms of the number of explicitly 
modeled beads within each linker. For example, if two out of five linker beads are modeled 
explicitly, then ves is proportional to the volume of two lattice units as is the case for linkers that 
yield phase diagrams shown in Figures 9 and 10c.  

 
Figure 10: Impact of linker ves values on coupling between phase separation and gelation for 5:5 systems with 
linkers of length n =5. Progressing from panel a) to panel f), the value of ves for each of the linkers increases from 0 
to 5 in terms of number of lattice units. The widths of the regimes that correspond to phase separation plus gelation 
(yellow regions) shrink as the effective solvation volumes of linkers increase. The sol-gel lines are shown as dashed 
lines in each panel. For a) and b) the sol-gel transitions without phase separation are realized for SH3 : PRM 
affinities that are weaker than 2kBT and hence they are not shown in these panels. Each panel is annotated with a 
schematic to show the design of hybrid linkers and each schematic we shown only a single linker for clarity. 

Each of the panels in Figure 10 corresponds to a distinct type of linker, defined by the 
effective solvation volume, i.e., the number of explicitly modeled linker beads for a linker of 
length five. Progressing from the top left corner to the bottom right corner, we find that the 
critical point shifts to higher interaction affinities as the effective solvation volumes of linkers 
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increase. If the linkers have more of an FRC-like character, then there is a high likelihood that 
phase transitions occur via phase separation plus gelation. For a given value of the affinity, the 
width of the two-phase regime increases as the magnitude of the effective solvation volume 
decreases. In contrast, the two-phase regime becomes negligibly small as the magnitude of the 
linker effective solvation volume increases. In fact, for high linker effective solvation volumes, 
the presence of a two-phase regime is only discernible for very high affinities and phase 
transitions occur mainly via continuous sol-gel transitions. 
Discussion 

Using numerical simulations, we showed that that linear multivalent proteins can undergo 
two distinct types of phase transitions namely, sol-gel transitions and phase separation plus 
gelation. We also showed that linkers between domains / motifs in linear multivalent proteins are 
not just passive tethers. In addition to serving as scaffolds for motifs, as has been shown before 
(37, 47), the physical properties of linkers such as their lengths and effective solvation volumes 
will directly influence the coupling between phase separation and gelation (48).  

The distinction between sol-gel transitions versus phase separation plus gelation was 
formalized in the theoretical work of Semenov and Rubinstein (48, 49). In their mean-field 
“stickers on a chain” model, the stickers are akin to binding domains or SLiMs in multivalent 
proteins and the effects of linkers between stickers can be quantified in terms of their effective 
solvation volumes. Semenov and Rubinstein showed that for infinitely long polymers, phase 
separation facilitates gelation for chains with negative, near zero, or mildly positive effective 
solvation volumes. The coupling between phase separation and gelation is weakened by the 
suppression of phase separation as ves becomes positive. They also showed that the coupling 
between phase separation and gelation is modulated by the affinities between stickers.  

Our numerical results summarized in Figures 6-10 are in accord with the theoretical 
predictions of Semenov and Rubinstein. This is gratifying given that we focus on finite-sized 
polymers, to which the simplifications of mean field theories are not transferrable. We have also 
shown that the effective solvation volumes of linkers are directly determined by their primary 
sequences (Figure 3). Additionally, we find that there is an optimal range of linker lengths that 
supports phase separation plus gelation for a given interaction affinity between domains.  

We focused our simulations of phase transitions on linkers with zero or positive ves 
values. However, as shown in Figure 3d, approximately 30% of linkers in the sub-proteome of 
linear multivalent proteins have negative ves values. These linkers will be self-attractive. They 
can also engage in non-specific attractive interactions with interaction domains as well as other 
linkers of different sequence composition that have negative ves values. Linkers with negative ves 
values are best thought of as additional interaction sites. Therefore, the main effects of linkers 
with negative ves values will be an effective shortening of the linker length enabling an increase 
in the effective valence through attractive interactions. These effects were illustrated in a 
previous study that was designed to study coexisting dense phases formed by the intrinsically 
disordered RGG domain of the protein Fibrillarin-1 (FIB1). There, the RGG domain of FIB1 was 
modeled using five explicit sticky beads thus conferring an effectively negative ves value on this 
domain (3). Linkers with negative ves values are likely to yield significantly more dense droplets 
when compared to linkers with near zero or positive ves values. This is underscored in recent 
measurements of intra-droplet concentrations for disordered proteins with positive (32) versus 
negative ves values (50). The intra-droplet concentration for the RGG domain of LAF-1 (32), 
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which has a positive ves value, is two orders of magnitude smaller than the intra-droplet 
concentration measured for elastin-like polypeptides (50), which have negative ves values.  

Interestingly, the sequences of many low complexity domains that tether RNA 
recognition modules in proteins such as hnRNP-A1 and FUS are characterized by negative ves 
values. The high density within these droplets might explain why disease-associated mutations 
within these sequences engender apparently pathological sol-gel transitions that appear to be 
aided by conformational changes into beta-sheet-rich fibrils (51-56). In contrast, linkers 
characterized by mildly negative, zero, or mildly positive ves values might form reasonably dilute 
droplets and functional gels that suppress pathological transitions (6, 7, 11, 15, 47). It is also 
possible that active processes inhibit gelation within dense droplets if gelation is refractory for 
biological function. Phase separation without gelation might be realizable in the presence of 
processes that shear physical crosslinks. Such a scenario would be an example of a so-called 
active liquid (57, 58) or more precisely a non-equilibrium liquid where energy is expended to 
suppress gelation that would accompany phase separation of multivalent proteins (17). 
Competitor molecules such as specific RNA sequences might also enable a shearing of 
percolated networks (14), although this has not been formally proven.  

We speculate that the regulation of cell signaling by phase transitions might require phase 
separation plus gelation. This is evidenced by the formation of spherical droplets that is driven 
by specific multivalent proteins comprising of multiple interaction domains or linear motifs (2, 6, 
7, 15, 59, 60). Sol-gel transitions that are decoupled from phase separation may also be useful in 
biology. Halfmann has recently reviewed functional scenarios where low complexity domains 
might undergo dynamical glass transitions that can resemble sol-gel transitions without phase 
separation (61). The glass transitions of the inactive bacterial cytosol and the transition to “solid-
like” materials in fungi as a response to pH induced stresses are examples of sol-gel transitions 
on the whole cell level that do not have the characteristic hallmarks of accompanying phase 
separation of specific components (8, 9).  

We further propose that effective scaffolding proteins for phase separation are likely to 
be linear multivalent proteins with linkers that have low effective solvation volumes (ves ≈ 0). 
Proteins with linkers that have large positive ves values are likely to be clients that partition into 
the droplets formed by the scaffolds (1). Further, the precise nature of phase transitions might be 
biologically tunable. For example, the effective solvation volumes of linkers in linear multivalent 
protein can be tuned through the synergistic action of kinases and phosphatases (60, 62). This 
will alter the fraction of charged residues along linkers thus enabling a coupling / decoupling 
between phase separation and gelation. Support for this proposal comes from the observation that 
the substrates for multisite phosphorylation tend to be enriched in disordered regions with 
positive effective solvation volumes (34, 35). Additionally, posttranscriptional processing of 
mRNA transcripts via alternative splicing can also be a route for making tissue-specific 
alterations to linker sequences. Interestingly, transcripts coding for disordered regions are 
preferentially targeted by tissue-specific splice factors when compared to transcripts for folded 
domains (63, 64).  

Our inventory of linker sequences, shown in Table S1, combined with the analysis 
presented in our numerical simulations, provides a ready-made route to search for candidate 
linear multivalent proteins that drive phase separation plus gelation versus pure sol-gel 
transitions. Clearly, we need detailed experimental and theoretical characterization of phase 
diagrams of multivalent proteins, with special attention to the intersection of sol-gel lines and the 
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two-phase regime. Our work opens the door to designing systems with bespoke sequence-
encoded phase diagrams.  

Methods and analysis 
Design of the lattice model and interaction matrix: The interaction matrix includes the 

following terms: Each interaction domain (SH3 domain or PRM) or explicitly modeled linker 
bead has a finite ves such that each lattice site may have only one domain or linker bead. All 
other interactions are nearest neighbor interactions such that adjacent sites x and y on the lattice 
are assigned an interaction energy εxy in units of kBT, where kB is Boltzmann’s constant and T is 
the simulation temperature. We designate lattice sites occupied by SH3 domains using the letter 
S; sites occupied by PRMs by the letter P; and sites occupying linker beads by the letter L. In the 
default model, the interaction energies have the form: uSS = uPP = uLL = uSL = uPL = 0 and uSP = –
2kBT.  

Design of Monte Carlo moves for simulating the phase behavior of multivalent 
proteins: Five types of moves were deployed to evolve the system.  (i) In addition to occupying 
adjacent lattice sites, two interacting domains are in a bound state if and only if this is specified 
by the interaction state of the domains. Accordingly, one of the moves randomly changes the 
interaction state of a domain without changing lattice positions. (ii) The torsional state of an end 
module that is tethered on one side is altered and a new interaction state is chosen at random.  
This attempts to move the module to a new location that is within tethering range of the linker, 
which is the maximum allowable length for the linker. If the module is an interaction domain, 
then this move also changes the interaction state of the domain similar to move 1.  (iii) 
Crankshaft motions are applied to modules tethered on both sides. The module is moved to a 
new location that is within tethering range of all linkers that connect to the module in question. 
This is followed by randomly choosing a new interaction state if the module is an interaction 
domain. (iv) This move involves the collective translation of all modules that are part of a 
connected network.  The latter is calculated by analyzing the list of all proteins that are 
connected through interacting domains. An arbitrary translation in any direction is then 
attempted.  (v) Finally, individual chains are allowed to undergo reptation via a slithering motion 
of a protein by removing an end domain and its linker and appending it to the other end.  The 
domain and linker are placed in a random position that maintains the tether ranges.  After the 
new position has been assigned, the interaction state of the domain is randomly assigned.  

Acceptance and rejection of Monte Carlo moves: If a move results in placement of a 
domain or module on a site that is already occupied, then the move is rejected. For rotational, 
torsional, crankshaft, and reptation moves, the moves that do not lead to steric overlap with 
occupied sites are accepted according to a modified Metropolis criterion viz., 

  
min 1,wexp −∆E( ){ } . Here, ∆E is the change in the energy of the system that results from the 
proposed move. The energy is normalized with respect to kBT. The parameter w is set based on 
the proposed type of move. For rotational moves, w=1; for torsional and crankshaft moves, 

 
w =

N p

Nc

⎛

⎝⎜
⎞

⎠⎟
, where Np and Nc are the number of possible interacting states in the proposed and 

current states, respectively; finally, for reptation moves, 
 
w =

N pVp

NcVc

⎛

⎝⎜
⎞

⎠⎟
, where Np and Nc are the 
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number of possible interacting states in the proposed and current states, respectively whereas Vp 
and Vc are the total number of conformations the domain and linker could be placed in the 
proposed state and current state respectively.  These modifications to the standard Metropolis 
Monte Carlo acceptance criterion ensure the preservation of microscopic reversibility.  The 
translation of a connected network does not create or destroy interactions, nor does it move the 
relevant linkers. Therefore, the proposed translational moves are always accepted if the move 
does not lead to steric overlaps.  

Production runs to generate phase diagrams: For a majority of the simulations, except 
those where finite size artifacts were queried or the binding affinities were titrated, the 
interaction energy between adjacent sites with SH3 domains and PRMs was set to –2kBT. In 
every system, there were 2.4 × 103 interaction domains. Concentrations of domains were titrated 
by changing the number of lattice sites.  Each simulation was run for 5 × 109 steps and the 
average over the last half was used to calculate the size of the largest connected network. 

In order to query the onset of a gelation transition, we quantified the fraction of 
molecules that make up the largest connected cluster within the system. We designate this as φc. 
The value of φc that is associated with crossing the critical concentration for percolation, defined 
as the gel point, is determined by comparing the largest connected network from a randomly 
generated network to the critical concentration predicted by Flory-Stockmayer theory. Here, the 
number of nodes in the random network is set to the number of interaction domains used in the 
lattice simulations.  The random network was generated for stoichiometric concentrations of 
complementary domains.  For each domain of type A, a random number was compared to the 
gross probability p that an individual domain would be interacting with a domain of type B.  If 
the random number was less than p, a partner was chosen randomly among the domains of type 
B that do not already have a binding partner.  

 Calculating the gel points from Flory-Stockmayer theory: The gel point or more 
precisely, the percolation threshold for multivalent polymers can be estimated by analytical 
methods, one of which is based on Flory-Stockmayer theories.  Here, the important parameters 
are the number of interacting modules within the polymers, V, and the fraction of bound modules, 
x.  For a specific multivalent protein that is incorporated into a pre-formed network, the average 
number of additional proteins recruited into the network is denoted as ε and is expressed as: ε = 
(V – 1)x. In a system with two types of multivalent proteins a and b, such as the poly-SH3 and 
poly-PRM system, the average number of proteins that are recruited into a pre-formed network 
of multivalent proteins and their ligands can be expressed as: ε = εaεb = (Va – 1)xa(Vb – 1)xb.   

If ε is greater than 1, then on average, each protein that is incorporated into the network 
will bring more than one additional protein with it thus expanding the network. This cascades 
into an infinitely large cluster of proteins.  However, if ε is less than 1 then the proteins that are 
added are more likely to terminate the network rather than propagate it.  For our synthetic poly-
SH3 and poly-PRM system, we can calculate the fraction of interactions through knowledge of 
the dissociation constant, Kd. We designate the SH3 domains as a and the PRMs as b. It follows 
that:  

 
 
Kd =

a⎡⎣ ⎤⎦ − ab⎡⎣ ⎤⎦ b⎡⎣ ⎤⎦ − ab⎡⎣ ⎤⎦( )( )
ab⎡⎣ ⎤⎦

;  (1) 
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Here, [a], [b], and [ab] are the concentrations of SH3 domains, PRMs, and bound complexes, 
respectively. The concentration [ab] can be calculated by a simple rearrangement of equation (1), 
such that:  

 
  

ab⎡⎣ ⎤⎦ =
a⎡⎣ ⎤⎦ + b⎡⎣ ⎤⎦ + Kd − a⎡⎣ ⎤⎦ + b⎡⎣ ⎤⎦ + Kd( )2

− 4 a⎡⎣ ⎤⎦ b⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

2
 ; (2) 

Accordingly,  

 

  

xa =
ab⎡⎣ ⎤⎦
a⎡⎣ ⎤⎦

=
a⎡⎣ ⎤⎦ + b⎡⎣ ⎤⎦ + Kd − a⎡⎣ ⎤⎦ + b⎡⎣ ⎤⎦ + Kd( )2

− 4 a⎡⎣ ⎤⎦ b⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

2 a⎡⎣ ⎤⎦
,

xb =
ab⎡⎣ ⎤⎦
b⎡⎣ ⎤⎦

=
a⎡⎣ ⎤⎦ + b⎡⎣ ⎤⎦ + Kd − a⎡⎣ ⎤⎦ + b⎡⎣ ⎤⎦ + Kd( )2

− 4 a⎡⎣ ⎤⎦ b⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

2 b⎡⎣ ⎤⎦
,

and ε=
a⎡⎣ ⎤⎦ + b⎡⎣ ⎤⎦ + Kd − a⎡⎣ ⎤⎦ + b⎡⎣ ⎤⎦ + Kd( )2

− 4 a⎡⎣ ⎤⎦ b⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

4 a⎡⎣ ⎤⎦ b⎡⎣ ⎤⎦
Va −1( ) Vb −1( );

  (3) 

We can solve for the percolation threshold or the concentration at the gel point of module a as a 
function of the concentration of module b by setting ε = 1. This yields:  

 
  

a⎡⎣ ⎤⎦c
=

b⎡⎣ ⎤⎦ + λ
2 b⎡⎣ ⎤⎦ − 2λKd ± λ +1( ) b⎡⎣ ⎤⎦

2
λ −1( )2

− 4λKd

2λ
;   (4) 

Here, λ = (Va – 1)(Vb –1). The percolation threshold can also be calculated for the situation 
where [a] = [b]. In this scenario,  

 

  

a⎡⎣ ⎤⎦c
=

Kd λ

1− λ( )2 ;   (5) 

We performed simulations of random percolation models that do not account for linkers 
or the structure of the lattice models. Each simulation takes the valence, the number of 
multivalent proteins, and the fraction of bound modules as inputs. The value of φc is calculated 
for prescribed values of the fraction of bound modules and these are shown as solid sigmoidal 
curves in Figure 11. The theories of Flory (21, 22) and Stockmayer (23) can be used to calculate 
φcc analytically for given values of V and the binding energies, as detailed in the methods section 
– see equations (1) – (5). These are shown as vertical dashed lines in Figure 11. For a given 
valence V, the horizontal intercept that passes through intersection of the vertical dashed lines 
and the solid curve defines the value of φcc. We find this value to be ≈ 0.17, irrespective of the 
valence. The concentration of modules at which φc becomes greater than 0.17 is taken to be the 
value of the gel point cg for the system of interest. We can calculate the value of cg directly from 
our simulations for the multivalent proteins and compare this to the value of cg that is estimated 
from Flory-Stockmayer theories.  
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Figure 11: Estimating φ cc – the critical value of the fraction of molecules in the largest cluster, φ c that defines 
the gel point: To estimate φ cc, we plot φ c against the fraction of SH3 domains and PRMs that are bound. φc was 
calculated using a random network model (see methods) and for a prescribed affinity between interaction domains. 
φc shows a sigmoidal transition that shifts to the right for systems of lower valence (V). For each system, the dashed 
vertical lines quantify the percolation thresholds, which refer to the fraction of modules for a given valence V that 
must be bound in order to make a percolated network as prescribed by the theories of Flory and Stockmayer. For a 
given system of multivalent proteins, the intersection between the solid sigmoidal curve and the dashed vertical line 
quantifies the value of φcc.  

Calculation of Phase Boundaries:  We utilized ρ as the order parameter for 
differentiating between the sol-gel transitions and phase separation. The coexisting 
concentrations corresponding to the polymer-rich and polymer-poor phases that delineate the 
two-phase boundary for a given intrinsic affinity between interaction domains were calculated by 
assuming that the polymer-rich phase is a uniform density sphere and the polymer-poor phase 
has a uniform density across the remainder of the lattice.  The radius of the polymer-rich phase is 
the radius of the sphere that is the physically relevant root of the equation:  

 
  
12
25

πNT rN
5 − 4

3
NT Rg

2rN
3 − 9

25
N N L3rN

2 +
N N − NT( )L5

4
+ NT L3Rg

2 = 0;   (6) 

Here, NT is the total number of proteins in the simulation, NN is the number of proteins within the 
largest network, L is the lattice length on a side, Rg is the radius of gyration over all the proteins 
in the simulation, and rN is the desired radius of the polymer-rich phase. This equation typically 
admits only one real root that fits within the lattice and this is true for all of our simulations.  The 
phase boundaries were calculated using: 
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csl =
NT − N N( )
L3 − 4

3
πrN

3⎛
⎝⎜

⎞
⎠⎟

 and csh =
3Nn

4πrN
3 .   (7)  

The impact of finite sampling:  In addition to starting simulations in the random coil 
state, we also calculated phase diagrams using simulations that were initialized from a dense 
phase separated state.  For each simulation we equilibrated the proteins in the gel state in a box 
size of 34 lattice units for 5×109 steps.  The resulting conformation was then used to initialize 
simulations in a larger box by expanding the lattice boundary to achieve the desired 
concentration.  For proteins that span the periodic boundary, the first domain was used as the 
reference for picking which protein image to keep. These initial conditions reproduced the 
critical concentrations as a function of valence and length. 

All atom simulations: We identified 226 disordered linkers in the human proteome 
associated with multi-domain proteins. Specifically, we defined disordered linkers in multi-
domain proteins as regions predicted to be disordered (65) that connected two Pfam domains 
(41) that were predicted or known to be folded. We then filtered for linkers that were between 15 
and 200 residues in length, and sub-selected for individual proteins where two or more linkers 
were found. For each of these sequences all-atom simulations were run to provide a general 
picture of the global conformational behavior associated with disordered linkers in the human 
proteome.  

In addition the set of disordered linkers, we also examined fourteen specifically selected 
sequences, each consisting of 40 residues. These sequences were chosen to enable a titration of 
conformational properties as a function of the sequence-encoded fraction of charged residues. 
Sequences of varying charge were extracted randomly from disordered regions in the human 
proteome. Disordered regions were identified by extracting sequences from the human proteome 
that were predicted to be disordered by at least five different disorder predictors in the D2P2 
database. We required that each stretch have at least 40 consecutive residues that are disordered. 
We calculated the fraction of residues by tallying the number of ARG, LYS, ASP, and GLU 
residues in each fragment.  

For all sequences described we performed atomistic Monte Carlo simulations using the 
ABSINTH implicit solvation models and forcefield paradigm (40). In this approach, polypeptide 
chains and solution ions are modeled in atomic detail and the surrounding solvent is modeled 
using an implicit solvation model that accounts for dielectric inhomogeneities and conformation-
specific changes to the free energies of solvation. The simulations were performed and analyzed 
using tools in the CAMPARI modeling suite (http://campari.sourceforge.net). Forcefield 
parameters were taken from the abs_opls_3.2.prm parameter set. For each of the fourteen 
sequences, we performed ten independent simulations, each initialized from a distinct self-
avoiding conformation. The methods used to evolve the systems and analyze the simulation 
results are identical to protocols used in previous studies (30, 35, 37, 66). For simulations of the 
226 disordered linkers, five independent simulations per sequence were performed. Each 
simulation started from a distinct, randomly selected non-overlapping conformation and 
comprising 5x106 equilibration steps and 5x106 production steps in 5 mM NaCl.   Simulations of 
the fourteen specifically selected sequences were run for longer to obtain higher resolution 
statistics.  
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Table 1: Details of the fourteen sequences chosen at random from the human proteome. All 
sequences have identical lengths (40 residues) and are enriched in disorder promoting residues. 
The sequences are listed in descending order of the fraction of charged residues. 

Sequence FCR1 NCPR2 

Fraction of 
disorder 

promoting 
residues 

UNIPROT 
identifier 
of protein 

from 
which the 
sequence 

was 
drawn 

EDEDSEKEEEEEDKEMEELQEEKECEKPQGDEEEEEEEEE 0.80 –0.60 0.93 P37275 
DEEGNAYGSEREEEDEEEDEEDGKRELELEEEELGGEEED 0.70 –0.55 0.88 P78415 
REKDREKYSQREQERDRQQNDQNRPSEKGEKEEKSKAKEE 0.65 0.00 0.93 Q9H0G5 
DRVVVTDDSDERRLKGAEDKSEEGEDNRSSESEEESEGEE 0.60 –0.30 0.88 Q9BQG0 
EAYRLSLEADRAKREAHEREMAEQFRLEQIRKEQEEEREA 0.55 –0.10 0.88 Q9UNN5 
RRQRRWEDIFNQHEEELRQVDKDKEDESSDNDEVFHSIQA 0.50 –0.15 0.73 Q7Z2Y5 
NNRKGRGGNRGREFRGEENGIDCNQVDKPSDRGKRARGRG 0.45 0.15 0.76 Q5T6F2 
QKQKLRLLSSVKPKTGEKSRDDALEAIKGNLDGFSRDAKM 0.40 0.10 0.75 Q9UMZ2 
AEMKVLESPENKSGTFKAQEAEAGVLGNEKGKEAEGSLTE 0.35 –0.10 0.78 Q8N3D4 
MAAAESDKDSGFSDGSSECLSSAEQMESEDMLSALGWSRE 0.30 –0.20 0.78 Q9C0C6 
DHFMKSGFASGRNFGNRDAGECNKRDNTSTMGGFGVGKSF 0.25 0.05 0.68 Q9NQI0 
TAVSTSGPEDICSSSSSHERGGEATWSGSEFEVSFLDSPG 0.20 –0.15 0.80 Q9BQQ3 
FSTLGRLRNGIGGAAGIPRANASRTNFSSHTNQSGGSELR 0.15 0.10 0.73 Q9Y252 
KSSSQTSGSLVSKSTSLASVSQLASKSSSQTSTSQLPSKS 0.10 0.10 0.85 Q9NXV6 
1FCR: Fraction of charged residues defined as (f+ + f–) where f+ and f– denote the fraction of 
positive and negative charges, respectively; 
2NCPR: Net charge per residue defined as (f+ – f–) 
Appendix A: Formal definition of ves 

We start with the effective, solvent-mediated potential of mean force, which we denote as 
W(r). This is the free energy change associated with bringing a pair of linker residues from a 
non-interacting reference point to a distance r of one another in an aqueous solvent. Therefore, 
W(r) quantifies the balance of residue-solvent, solvent-solvent, and residue-residue interactions. 
If the residues “like” one another more than they “like” the solvent, then the effective inter-
residue interactions will be attractive. If the residues “like” the solvent more than they “like” one 
another, then the effective inter-residue interactions will be repulsive (31).  

The probability that a pair of linker residues will be a distance r from one another is 
proportional to the Boltzmann weight exp[–βW(r)], where β = (RT)–1, T is the temperature and R 
is the ideal gas constant. Because residues cannot sterically overlap with one another, the 
Boltzmann weight is zero for short inter-residue distances. The Boltzmann weight is one for 
large separations where the inter-residue interactions are effectively zero. Between these two 
limits, the Boltzmann weight can be large and positive for separations r where the inter-residue 
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interactions are attractive. Conversely, the Boltzmann is negligibly small at inter-residue 
separations r where the effective interactions are repulsive. 

The effective solvation volume per each pair of residues is defined as the negative of a 
integral of a function f(r) (31, 49) over the volume available to the pair of residues. Here, f(r) = 
exp[–βW(r)] – 1 and the integral is performed over all pairs of inter-residue separations. 
Depending on the inter-residue separation r and the type of interactions, the f-function will be 
negative (short-range steric overlaps or effective inter-residue repulsions), positive (effective 
inter-residue attractions), or zero (large separations). The function f(r) is known as the Mayer f-
function and the effective solvation volume ves is defined as the negative of the integral of the 
Mayer f-function over the entire volume occupied by the pair of interacting units: 

 
  
ves = − d 3rf r( )∫ = d 3r 1− exp

W r( )
kBT

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫ ;  (8) 

The Mayer f-function is a dimensionless parameter and the integral in equation (10) has 
units of volume. It quantifies the two-body or the effective pairwise inter-residue interactions for 
the polymers in solution. In terms of a virial expansion, at low concentrations, the free energy 
per unit volume of a polymer solution is written in terms of the polymer concentration as: 

 
  

Fsolution

V
=

kBT
2

vesc
2 + wc3 +…( ) ;  (9) 

Here, ves has units of volume, and w the three-body interaction coefficient, has units of 
(volume)2 and so on. In dilute concentrations where pairwise interactions dominate, which is the 
case when ves ≥ 0, it follows that: 

 
  

Fsoution

V
≈

kBTvesc
2

2
 ; (10) 

The effective interaction energy between residues is negative, zero, or positive depending 
on the sign of ves.  
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