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Abstract 
Motivation: Statistical power calculations are crucial in designing genetic association studies. They 
help guide tradeoffs between large sample sizes and detailed assessments of genotype and 
phenotype, help determine which studies are viable, and help interpret research findings. To facilitate 
widespread use of power analysis in the design and interpretation of genetic studies, it is important to 
enable users to calculate power and visualize the effect of different models and design choices in 
convenient, interactive tools that are easily accessible.  
Results: We developed the Genetic Association Study (GAS) Power Calculator to provide users with 
a simple interface that can be compute the power of genetic association studies in a convenient 
browser based interface.  
Availability: The GAS Power Calculator can be accessed from the web interface 
at http://csg.sph.umich.edu/abecasis/gas_power_calculator/. Source code is available 
at https://github.com/jenlij/GAS-power-calculator.  
Contact: jenlij@umich.edu, goncalo@umich.edu 

 
 

1 Introduction  
Statistical power is the probability that a study will detect a true effect 
when there is one – for example, when attempting to establish a 
connection between a genetic variant and a disease of interest (Purcell et 

al, 2003). Power depends on several factors and calculating it plays a 
vital role in designing and interpreting scientific studies. In modern 

genetic studies, power considerations can guide choices between whole 
genome sequencing (which accesses all genetic variation but is relatively 
expensive), exome sequencing (which accesses only coding variation 
and is intermediate in cost) and array genotyping (which accesses mostly 
common variation but is relatively affordable) (Skol et al, 2006; 
Goodwin et al, 2016; McCarthy et al, 2008). Calculating the power of a 
study can help interpret published findings, as interpretation should be 
different for large, adequately powered studies than for small 
underpowered studies (Ioannidis, 2005). Recognizing the importance of 

power in study design and interpretation, granting agencies routinely 
require power calculations to demonstrate that a proposed study is viable 
and likely to succeed (Purcell et al, 2003). In designing the Genetic 
Association Study (GAS) Power Calculator, our goal was to make 
accurate and informative genetic association study power calculations 
accessible to any scientist. We adapted the widely used algorithms from 
the CaTS power calculator for two stage association studies (Skol et al. 
2006) to work in a modern browser environment and to focus on the 
types of studies that are now common. The original CaTS tool, which 

has been used in nearly 1,000 studies (per Google Scholar, as of July 
2017), relies on older Windows and Macintosh interactive frameworks 

that are no longer supported in modern operating systems. Our new GAS 
implementation works on modern browsers and includes built-in plotting 
functionality to help users understand the impact of different model 
parameters and design choices on the power of their study.    

2 Methods 
2.1 Features and Functionality 
The GAS Power Calculator uses a JavaScript web interface comprised of 
three sections: inputs, graphs, and results. Users describe the study 
design by selecting the number of cases and controls, target significance 

level (which typically depends on the number of markers that will be 
tested for association), the disease model (multiplicative, additive, 
dominant, or recessive), prevalence, and allele frequency, as well as 
genotype relative risk. The calculator then performs relevant 
computations (detailed on the website) and displays the estimated power, 
the expected disease allele frequency in cases and controls, the 
probability of disease for different genotypes, and the frequency of those 
genotypes. These results are calculated using algorithms adapted from 
the original CaTS Power Calculator C++ code. The power is computed 

using implementations of the standard normal based on Hill, (1973) and 
of the inverse normal distributions based on Wichura (1988). All the 
source code is freely available on GitHub. 
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In the graphs section, users can select any of the input parameters to see 
how its range of values impact power, while the remaining parameters 
are held constant. This allows, for example, users to graphically explore 
the consequences of increasing the number of controls, of focusing on 

rare versus common variants, or of changing significance thresholds. 
This feature is useful in determining which variables most influence 
statistical power. The graphs are computed at pre-selected data points 
that cover the range of the independent variables. 
 
2.2 Uses 
The following example is a use case for the GAS Power Calculator (Fig. 
1). Suppose a user is planning a genome-wide association study with 
1,500 cases and 1,500 controls. The plan is to genotype these samples on 

300,000 independent SNPs and the user is willing to tolerate a genome-
wide false positive rate of 3 (Skol, 2006). Therefore, the target 
significance level will be 3/300,000, or 0.00001. From previous studies, 
the user estimates that the disease prevalence is 0.10. Assuming an allele 
frequency of 0.30 in the general population and a multiplicative model 
for disease risk, the user wants to determine the genotype relative risk 
that will result in a power of 80%. To do so, the user enters the fixed 
parameters and then selects "Genotype Relative Risk" (GRR) as the 
independent variable to plot against power. Quickly, they learn that a 

power of 80% requires genotype relative risk of ~1.30, which they can 
then judge to be reasonable (or not) for the trait of interest.  
 
Each study will have unique constraints. Typically, we recommend 
significance thresholds of ~5x10-8 for array-based genomewide 
association studies (which typically comprise ~1 million independent 
tests; McCarthy et al, 2008), of ~5x10-9 for sequence-based association 
studies (which typically comprise additional independent tests; The 1000 
Genomes Project, 2015), and of ~5x10-6 for exomewide association 

studies (which consider only about 1% of the genome; Huyghe et al, 
2013). Plausible numbers of cases and controls will depend on the 
resources available to each study and on whether the disease is common 
or rare. For estimating effect sizes, we recommend users consider the 
landscape of known genetic findings for other complex traits. Currently, 
there are many examples of common variants with additive contributions 
to disease risk and genotype relative risks of ~1.1 – 2.0, of low frequency 
variants with modestly higher genotype relative risks of ~1.5 – 3.0, and 
of rare variants with even higher genotype relative risks of ~2.0 – 5.0 

(Welter et al, 2014).  

3 Results 
We have modernized the original CaTS application to ensure it runs on 
modern browser environments, converting the original C++ code to 
JavaScript and incorporating web based interface elements that require 

no installation. GAS not only performs power calculations, but also 
allows the user to visualize changes in power over the range of each 
parameter. The data points used in the plots are hardcoded, therefore the 
tool currently only has the capability to help the user estimate the power 
over a range of values, rather than serve as a graphing tool that allows 
for user uploaded values to plot. We welcome user feedback and 
suggestions for additional features and improvements. We hope the GAS 
power calculator will make power calculations for genetic association 
studies much easier and that it will be useful for many studies to come.  

 
 

Figure 1. Example screen shot for the GAS power calculator. User specifie
settings are described in the “Inputs” section in the top-left, graphical summarie
can be browsed on the top-right panel, and main power calculation results ar
summarized in the bottom panel.  
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