Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Defining the synaptic mechanisms that tune CA3-CA1 reactivation during sharp-wave ripples

View ORCID ProfilePaola Malerba, Matt W. Jones, Maxim A. Bazhenov
doi: https://doi.org/10.1101/164699
Paola Malerba
1University of California San Diego, Department of Medicine, La Jolla 92093, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Paola Malerba
Matt W. Jones
2University of Bristol, School of Physiology, Pharmacology & Neuroscience, Bristol BS8 1TD, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maxim A. Bazhenov
1University of California San Diego, Department of Medicine, La Jolla 92093, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

During non-REM sleep, memory consolidation is driven by a dialogue between hippocampus and cortex involving the reactivation of specific neural activity sequences (‘replay’). In the hippocampus, replay occurs during sharp-wave ripples (SWRs), short bouts of excitatory activity in area CA3 which induce high frequency oscillations in the inhibitory interneurons of area CA1. Despite growing evidence for the functional importance of replay, its neural mechanisms remain poorly understood. Here, we develop a novel theoretical model of hippocampal spiking during SWRs. In our model, noise-induced activation of CA3 pyramidal cells triggered an excitatory cascade capable of inducing local ripple events in CA1. Ripples occurred stochastically, with Schaffer Collaterals driving their coordination, so that localized sharp waves in CA3 produced consistently localized CA1 ripples. In agreement with experimental data, the majority of pyramidal cells in the model showed low reactivation probabilities across SWRs. We found, however, that a subpopulation of pyramidal cells had high reactivation probabilities, which derived from fine-tuning of the network connectivity. In particular, the excitatory inputs along synaptic pathway(s) converging onto cells and cell pairs controlled emergent single cell and cell pair reactivation, with inhibitory inputs and intrinsic cell excitability playing differential roles in CA3 vs. CA1. Our model predicts (1) that the hippocampal network structure driving the emergence of SWR is also able to generate and modulate reactivation, (2) inhibition plays a particularly prominent role in CA3 reactivation and (3) CA1 sequence reactivation is reliant on CA3-CA1 interactions rather than an intrinsic CA1 process.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted August 29, 2017.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Defining the synaptic mechanisms that tune CA3-CA1 reactivation during sharp-wave ripples
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Defining the synaptic mechanisms that tune CA3-CA1 reactivation during sharp-wave ripples
Paola Malerba, Matt W. Jones, Maxim A. Bazhenov
bioRxiv 164699; doi: https://doi.org/10.1101/164699
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Defining the synaptic mechanisms that tune CA3-CA1 reactivation during sharp-wave ripples
Paola Malerba, Matt W. Jones, Maxim A. Bazhenov
bioRxiv 164699; doi: https://doi.org/10.1101/164699

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4865)
  • Biochemistry (10821)
  • Bioengineering (8065)
  • Bioinformatics (27374)
  • Biophysics (14020)
  • Cancer Biology (11160)
  • Cell Biology (16105)
  • Clinical Trials (138)
  • Developmental Biology (8807)
  • Ecology (13329)
  • Epidemiology (2067)
  • Evolutionary Biology (17395)
  • Genetics (11705)
  • Genomics (15961)
  • Immunology (11057)
  • Microbiology (26155)
  • Molecular Biology (10679)
  • Neuroscience (56730)
  • Paleontology (422)
  • Pathology (1737)
  • Pharmacology and Toxicology (3012)
  • Physiology (4567)
  • Plant Biology (9666)
  • Scientific Communication and Education (1617)
  • Synthetic Biology (2699)
  • Systems Biology (6994)
  • Zoology (1513)