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Abstract 
First-order tactile neurons have spatially complex receptive fields. Here we use machine 
learning tools to show that such complexity arises for a wide range of training sets and 
network architectures, and benefits network performance, especially on more difficult 
tasks and in the presence of noise. Our work suggests that spatially complex receptive 
fields are normatively good given the biological constraints of the tactile periphery.  

Results 
First-order tactile neurons in the glabrous skin of the human hand have distal axons that 
branch in the skin and form many transduction sites1–3, yielding spatially complex 
receptive fields with many highly sensitive zones4,5 (Fig. 1a). We have recently shown that 
this arrangement permits first-order tactile neurons to signal high-level features of 
touched objects such as the orientation of a touched edge4, a capacity previously 
considered a hallmark of processing in the somatosensory cortex6–8. Here we leverage 
machine learning tools to investigate why complex receptive fields arise and what 
computational benefits they yield. We show that complex receptive fields arise under a 
wide range of training sets and biologically realistic network constraints. We also show 
that complex receptive fields benefit network performance, especially on more complex 
discrimination tasks and in the presence of noise.  

We abstracted the tactile processing pathway with a four-layer feedforward neural 
network (Fig. 1b, c). The input layer of our network consisted of 784 units, representing 
mechanoreceptors distributed over a small patch of skin. In this arrangement, the weight 
matrix between the input and first hidden layer - which we call 𝑊(#)  - represents the 
receptive fields of first-order tactile neurons. Our network was trained on a range of 
stimuli including single points, multiple points, as well as Roman and Braille characters 
(Fig. 1d). These stimuli were subjected to translation and rotation and were spatially 
filtered to crudely approximate skin mechanics. Importantly, we introduced three 
biologically-inspired constraints. First, non-negative regularization in 𝑊(#) to simulate the 
fact that first-order tactile neurons can only be excited when their transduction sites are 
stimulated9. Second, convergence from the input to the first hidden layer to simulate the 
many-to-one convergence from mechanoreceptors in the skin to first-order tactile 
neurons traveling in the nerve1–3. Third, two distinct unsupervised and supervised training 
phases, representing the encoding and interpreting aspects of the tactile processing 
pathway, respectively.  

We first asked under what conditions, if any, our network learns spatially complex 
receptive fields. In our main analysis, the 784 units in the input layer converged to 81 
units in the first hidden layer, estimating the fact that first-order tactile neurons innervate 
on the order of ten mechanoreceptors1–3. We reasoned that the complexity of the training 
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set would influence the complexity of the receptive fields10. We tested this idea with four 
training sets: Gaussian single points, mixed one and two Gaussian-points, Roman letters, 
and a mixed set that included one and two Gaussian points, Roman letters and Braille 
characters in equal proportions (see Methods). These training sets represent different 
degrees of structural complexity, and consist of stimuli that have been used in tactile 
studies in both human and animal models11–15 but were not meant to represent the 
natural statistics of tactile stimuli, which are unknown.  

We trained our network on each of these training sets in an unsupervised fashion and 
examined the resulting receptive fields (i.e. the 𝑊(#)  matrix). All networks, even those 
trained with the simplest training set, exhibited receptive fields with multiple areas of high 
sensitivity (Fig. 2a). Overall, there was a clear effect of training set on receptive field 
complexity (F(3, 76) = 1642, P<0.01) where the number of highly sensitive zones 
increased with the complexity of the training set (Fig. 2b). A similar effect was evident 
when analyzing receptive fields in the spatial frequency domain, with more complex 
training sets yielding higher spatial frequency content. 

We next asked how the degree of convergence between the input and first hidden layers 
influenced receptive fields. That is, how physical constraints placed on the number of 
first-order tactile neuron axons traveling within the peripheral nerve should affect 
connectivity to mechanoreceptors in the skin. We reasoned that increasing convergence 
would increase receptive field complexity, since this smaller set of units must still encode 
the same set of inputs. We tested this idea by decreasing the size of the first hidden layer 
from 81 to 36 units, closer to the lower limit of biologically relevant convergence1–3, and 
training the network on the same four training sets described above. Increasing 
convergence did result in more complex receptive fields for alphabet and mixed networks 
(Fig. 2b). On average, the 36-unit alphabet network had 3.0 more peaks than the 81-unit 
alphabet network (t(38) = 46.39, P<0.01), and the 36-unit mixed network had 4.0 more 
peaks than the 81-unit mixed network (t(38) = 56.93, P<0.01). Interestingly, however, the 
one point and the one and two point networks (our simplest training sets) did not show 
increased complexity with increased convergence (Fig. 2b). In fact, the 36-unit one point 
network had 0.3 fewer peaks than the 81-unit one point network (t(38) = -8.55, P<0.01), 
and the 36-unit one and two point network had 0.5 fewer peaks than the 81-unit one 
point two point network (t(38) = -10.00, P<0.01). 

At this point we further abstracted our network constraints to examine how they 
influenced the learned receptive fields. First, we trained our network on the mixed 
stimulus set without non-negative regularization in 𝑊(#) and found qualitative changes in 
receptive field morphology such that they no longer had structural similarities to our 
previously documented empirical receptive fields4 (Fig. 3a). Second, we trained our 
network on the mixed stimulus set with extreme convergence (4 units in the first hidden 
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layer) and, again, found the resulting receptive fields did not resemble our empirical 
receptive fields (Fig. 3b). Last, we trained our network on each of the four stimulus sets 
without convergence (i.e. 784 units in the first hidden layer). We reasoned that such a 
network may not develop complex receptive fields because it did not need to compress 
the input space, especially for the single dot training set given its simple spatial statistics. 
However, receptive fields with multiple highly sensitive zones emerged for all training sets 
to varying degrees (Fig. 3c). 

Given that our networks developed complex receptive fields under all network constraints 
and training sets, we investigated the functional consequences that such an arrangement 
had on sensory processing. In these analyses, we trained the network on unlabelled 
Mixed stimuli, then fixed 𝑊(#)  and trained the remaining layers as a classifier using 
labelled Mixed stimuli. In our approach, the unsupervised training phase represents the 
encoding function of the tactile processing pathway, while the supervised training phase 
abstracts the more interpretive functions of the central nervous system. We compared 
this learned network against a network engineered to have single-peaked Gaussian 
receptive fields in 𝑊(#)  on discrimination and identification tasks. For the engineered 
network, we selected the width of the Gaussian receptive field (SD = 3.0 steps) that 
resulted in best performance.  

We first asked whether complex receptive fields benefit spatial accuracy. We had the 
network perform two-point discrimination, a task central to many studies of tactile 
acuity11,16,17. Specifically, we used a two-alternative forced choice paradigm and defined 
the difference limen as the separation distance between stimuli at which the network 
classified 75% of the stimuli correctly. The learned network had a mean difference limen 
of 6.94 (SD = 1.36) steps on our input space, which corresponds to a modelled distance 
of ~1-3 mm, depending on assumptions about mechanoreceptor innervation density. 
Overall, performance of learned and engineered networks were not significantly different 
with 81 units in the first hidden layer (t(45) = -1.85, P = 0.071; Fig. 4a). Moreover, 
changing the degree of convergence from 81 to 36 units did not cause a statistically 
significant change in performance for either the learned or the engineered network (F(1, 
82) = 0.31, P = 0.58; Fig. 4a). 

We then asked whether complex receptive fields benefit network performance in a more 
difficult identification task. We assessed the network's ability to correctly classify 
characters from the Roman alphabet, as has been previously done with human 
participants12. In this case, engineering 𝑊(#) to have single-peaked Gaussian receptive 
fields and increasing convergence both decreased network accuracy (F(1,79) = 103.78, P 
< 0.01, F(1, 39) = 107.23, P < 0.01, respectively), and the interaction between these 
factors was also significant (F(1, 79) = 7.05, P = 0.0096). That is, both learned and 
engineered networks performed well, but the learned networks outperformed engineered 
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networks for both levels of convergence and the benefit of complex receptive fields 
increased with increased convergence (Fig. 4b). 

Finally, we asked whether complex receptive fields benefit network performance in the 
presence of noise. We introduced varying levels of normally distributed additive and 
multiplicative noise to the training data during both unsupervised and supervised training 
phases and then tested the network’s performance on a noiseless dataset. The effect of 
training noise on the network’s ability to classify characters from the Roman alphabet was 
substantial (Fig. 4b). The learned network had an accuracy of 87.7% (SD = 1.1) with low 
levels of additive noise (see Methods) compared to 75.1% (SD = 2.5) for the fixed 
network with the same amount of noise, a statistically significant performance gap (t(41) = 
20.65, P < 0.01). Convergence also significantly influenced classification accuracy under 
the different noise levels (F(6, 555) = 12.36, P < 0.01). The performance of the 36-unit 
network decreased by 1.4% compared to the 81-unit learned network with low levels of 
additive noise (t(38) = 4.25, P = 0.00013). In contrast, the performance of the 36-unit 
network with engineered Gaussian receptive fields decreased by 6.1% compared to the 
81-unit engineered network (t(41) = 9.59, P < 0.01). The performance gap grew between 
learned and engineered networks with additional additive noise (Fig 4b). For all networks, 
multiplicative noise had a similar effect but much smaller effect size (Fig. 4b).  

Discussion 
A core feature of the tactile processing pathway is that there are many more 
mechanoreceptors in the skin of the hand than there are first order tactile neurons in the 
median and ulnar nerves. It is not surprising, therefore, that first order tactile neurons 
branch1–3 since this is the only way they can innervate all the available mechanoreceptors. 
What may be surprising is the spatial complexity and apparent heterogeneity of the 
innervation pattern4,5, a feature which has been overlooked or ignored in previous models 
of the tactile processing pathway11,18–20. Our work here leverages simple machine learning 
tools to provide two fundamental insights in this respect. First, we show that spatially 
complex receptive fields are a normatively good and, perhaps, biologically parsimonious, 
arising under a wide range of training sets and network architectures. Second, we show 
that spatially complex receptive fields benefit network performance, especially in relatively 
difficult tasks and in the presence of noise.  

Heterogeneously sampling the input space is a good thing for the nervous system to do 
because the input space of sensory stimuli is inherently sparse. Neural networks like the 
one we use here implicitly learn the statistical regularities (and thus sparsity) of the stimuli 
to which they are exposed. Indeed, such a machine learning approach has been shown 
to reproduce biological receptive field properties of neurons at various levels of the visual 
processing pathway10,21. Another suggestion for a mechanism to exploit sparsity comes 
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from the field of compressed sensing, which shows that randomly sampling the input 
space can, under reasonable assumptions, allow a system to fully reconstruct a sparse 
input signal with fewer measurements than that prescribed by the Shannon-Nyquist 
theorem22–25. Given an input with sparsity 𝑆 (at most 𝑆 non-zero terms), in many situations 
the input signal can be fully reconstructed by randomly sampling at a frequency greater 
than 2𝑆 with no noise or multiplicative noise, or 4𝑆 with additive noise22,24, consistent with 
our observation that networks with more spatially complex receptive fields are particularly 
immune to additive noise. Figure 5 illustrates a cartoon compressed sensing scenario in 
our experimental setting, showing that a network with fully randomized positive weights in 
the first hidden layer can perform strikingly well on the alphabet discrimination task 
relative to the learned and fixed networks we described above. That is, the random 
network performs only slightly worse than the learned network and equivalent to the fixed 
network with no noise and, as expected, is able to better maintain its performance as the 
amount of additive noise is increased. This is not to say that the heterogeneity of how 
first-order tactile neurons innervate mechanoreceptors is random – indeed random 
connectivity yields receptive fields that are qualitatively distinct from those we record from 
humans (Fig. 5b) – but, rather, that even random sampling can outperform pixel-like 
sampling with Gaussian receptive fields. 
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Methods 

Feedforward Neural Network Architecture  
We designed a four layer feedforward network model with layers 𝐿# to 𝐿) containing 𝑠# to 
𝑠+ units respectively. 𝑠# = 784	, 𝑠) = 81 or 36, 𝑠3 = 784, and 𝑠+ = 26	𝑜𝑟	2 depending on 
if the network is trained to perform alphabet classification or two-point discrimination. The 
general form of feedforward computation was as follows: 

𝑧(78#) = 𝑊(7)𝑎(7) 

𝑎(78#) = 𝑓(𝑧(78#)) 

where 𝑊(7)  denotes the weights from layers 𝐿7  to  𝐿78# , 𝑧(78#)  is the weighted sum of 
outputs from layer 𝐿7, and 𝑎(7)	is the output of layer 𝐿7, after the activation function 𝑓. For 
unsupervised training (𝐿# to 𝐿3), we used a rectified linear function 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) for 
𝑊(#)  and a softmax function for 𝑊()) . For supervised training (𝐿#  to 𝐿+ ), we used a 
rectifier for 𝑊(#) and 𝑊()) and softmax for 𝑊(3).  

Two-Phased Training and Non-Negativity Constraint 
We randomly initiated weights by drawing from distribution 𝑁(0, 0.01) . The general 
learning algorithm was mini-batch gradient descent with mini-batches of size 256. We 
trained the network in two phases. In the unsupervised learning phase, we trained 𝐿# to 
𝐿3 as an autoencoder that reproduced the input. The goal of gradient descent was to 
minimize the categorical cross-entropy cost: 

𝐽(𝑊; 𝑥)DEFDGHIJKFHL = − 𝑝(𝑥)𝑙𝑜𝑔(𝑞(𝑥)) + 𝑅(𝑊(#))
T

= − 𝑥𝑙𝑜𝑔(𝑞(𝑥)) + 𝑅(𝑊(#))
T

 

where, for training instance 𝑥, 𝑝(𝑥) is the true output (which is equivalent to input 𝑥 in the 
unsupervised learning phase), 𝑞(𝑥)  is the predicted input, and 𝑅(𝑊(#))  is the non-
negativity constraint, leading to the learning rule  

𝛥𝑊(7): = 𝛥𝑊(7) + ∇X(Y)𝐽(𝑊; 𝑥) for 𝑙 = 1, 2 

We incorporated the asymmetric regularization term26, 𝑅(𝑊(#)), where 

𝑅(𝑊KZ
(#)) = 𝑐𝑊KZ

(#) if 𝑊KZ
(#) < 0; 0 otherwise 

for each unit 𝑗 of 𝐿#  and unit 𝑖 of 𝐿) . 𝑐  denotes an arbitrarily large constant, which we 
picked as 1000, that harshly penalized the network for learning negative weights in 𝑊(#).  

In the supervised phase, we froze 𝑊(#) and trained 𝐿# to 𝐿+ as a classifier. We reinitiated 
𝑊())  between the two training phases. Depending on the discrimination task to be 
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performed, the network may operate as a binary (for two-point discrimination) or 
multiclass (for alphabet) classifier. Gradient descent minimized the cross-entropy cost:  

𝐽(𝑊; 𝑥)FDGHIJKFHL = − 𝑝(𝑥)𝑙𝑜𝑔(𝑞(𝑥))
T

 

The learning rule in this phase was: 

𝛥𝑊(7): = 𝛥𝑊(7) + ∇X(Y)𝐽(𝑊; 𝑥) for 𝑙 = 2, 3, and 𝛥𝑊(#) = 0. 

Network hyperparameters used during training varied among different network 
architectures and training sets. Networks that did not reach convergence in the number 
of iterations were removed from testing.  

Training Stimuli  
We generated all training inputs 𝑋  such that 𝑥KZ	 ∈ 	ℝ)b×)b . We generated Gaussian-
points stimuli by initializing one or two peaks |𝑥KZ	| = 10 where 𝑖, 𝑗	are integers chosen 
independently from distribution 𝑈(0, 27),  then passed through a two-dimensional 
Gaussian filter with width 𝜎 = 3.0.  

We generated Roman letters stimuli as Helvetica characters normalized to 17 steps in 
height. We used similar height scaling for Braille characters. The filled portions of 
characters were initiated as |𝑥KZ	| = 1 . We subjected each character to a random 
rotational angle drawn from distribution 𝑁(0, 20)  in degrees, followed by random 
horizontal and vertical translation drawn from distribution  𝑁(0, 5) in steps. 

We generated 60,000 training stimuli of each class. For Roman letters and Braille 
characters, there was approximately equal proportion of each character. Gaussian-points 
were evenly split between one and two points (i.e. 30,000 of each). We used standard 
one-hot encoding for labelling in supervised training. 

Receptive Field Complexity 
We bootstrapped 1000 receptive fields from each network. First, we designed a peak 
counting algorithm that calculated the number of significant local maxima contained in 
each receptive field. For each receptive field 𝑅, we define 𝑟KZ as a peak if 1) it is a local 
maximum 2) |𝑟KZ| > (𝑚𝑎𝑥h𝑟h)/2, that is, the value of 𝑟KZ is greater than half of the global 
maximum, and 3) 𝑟KZ is at least 5 steps away from the next closest local maximum. These 
criteria prevent low amplitude noise from being counted as peaks. Second, we analyzed 
receptive fields in the frequency domain by performing discrete two-dimensional Fourier 
transformation using the Fast Fourier Transform algorithm. We performed Fourier 
transformation after normalizing sampled RFs by their peak values such that 𝑚𝑎𝑥h𝑟h =
1.0. Last, to compare information shared by each pair of networks, we used mutual 
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information between pairs of bootstrapped RFs normalized by their respective entropies, 
such that 1.0 means perfect correlation and 0 means no mutual information. We binned 
weights into 10,000 bins before calculating mutual information so that the control group 
(learned versus learned) RFs has a normalized mutual information of close to 1.0.  

Model Performance  
We assessed network accuracy in two-point discrimination and alphabet classification. 
We implemented two-point discrimination using a two-alternative forced choice 
paradigm. We generated 2000 one and two Gaussian-points in equal proportions. Two 
Gaussian-points were spaced symmetrically about the center of the input space at 
distances 0 to 22 steps apart with increments of 2 steps. We subjected two Gaussian-
points to a random integer rotational angle drawn from distribution 𝑈(0, 90) in degrees. 
We defined the difference limen, or just-noticeable difference, for two-point discrimination 
as the distance at which the network correctly classified 75% of test stimuli. We 
estimated difference limen using cubic spline interpolation on the full accuracy plot.  

We assessed the network on alphabet classification by testing it on 7800 new characters 
with 300 instances of each letter, subjected to rotational and translational variability as 
described above.  

To assess robustness against noise, we trained the networks, in both unsupervised and 
supervised phases, with noisy data before testing them on noiseless data. We 
implemented multiplicative noise on input 𝑋 as 𝜀KZ = 𝑐 ⋅ 𝑢 ⋅ 𝑥KZ for each coordinate 𝑖, 𝑗 in 𝑋, 
where 𝑢  was randomly drawn from distribution 𝑁(0, 0.01) . We implemented additive 
noise as 𝜃KZ = 𝑐 ⋅ 𝑣 ⋅ 𝑚𝑎𝑥h𝑥h, where 𝑣 was randomly drawn from distribution 𝑁(0, 0.01). 
We designated 𝑐 = 1.0 as low-level noise and 𝑐 = 3.0 as high-level noise. Noise was re-
instantiated at the beginning of each training epoch. 
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Figure 1 – Theoretical and analytical setup.  
(a) Examples of receptive fields from human first-order tactile neurons terminating in the fingertip acquired via 
microneurography. Color indicates the relative firing rate of the neuron when stimulated with a small punctate 
stimulus. For full details, see Pruszynski and Johansson (2014). (b) Graphic representation of a cross-section 
through the human glabrous skin. Note how a single afferent neurons branches and innervates multiple 
mechanoreceptive end organs. (c) Our four-layer feedforward neural network. The first layer models a small 
patch of skin, W(1) represents receptive fields, and the second layer models first order neurons. Layers 3 and 4 
are a functional abstraction of the central nervous system. The relative sizes of each layer are shown but not to 
scale.  Arrows represent fully connected feedforward weights between subsequent layers. End organs and first 
order neurons in panel (b) are colour matched with the layers that represent them in the model. (d) Examples of 
training data used to represent tactile stimuli. Each stimulus is shown on a 28 x 28 step grid. Stimuli were 
passed through a Gaussian filter and randomly rotated and translated. Points data were also randomly scaled.  
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Figure 2 – Analysis of receptive fields.  
(a) Examples of receptive fields learned by the 81- and 36-hidden unit models after training on different training 
sets (rows). Each receptive field is shown on a 28 x 28 step grid. Heat maps show areas with high weight 
values, which represent highly sensitive zones. Samples were chosen to show a variety of receptive field 
morphologies. The number on the bottom left corner of each receptive field is the number of peaks returned by 
our peak counting algorithm, which measures receptive field complexity. (b) The average complexity of each 
network under different architectures and training sets. Each data point is the mean peak count of receptive 
fields from that model on one iteration, with grey violin plots showing the overall frequency distribution across 
the 20 iterations we performed for each architecture and training set.  
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Figure 3 – Alternative architectures.  
Same format as Figure 2 but showing exemplar receptive fields learned by three alternative networks featuring 
architectures with relaxed constraints.  
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Figure 4 – Model performance.  
Performance of 81- and 36-hidden unit models either trained on mixed stimuli or engineered with fixed Gaussian 
receptive fields on the (a) two-point discrimination and (b) alphabet classification tasks. (a) Data points show 
the difference limen, defined as the separation distance at which the model classifies 75% of 2000 test points 
correctly. (b) Data points show the overall classification accuracy of 7800 tested Roman letters. Grey violin plots 
show the frequency distribution of difference limens and accuracy across model iterations. Performance is 
reported at varying levels of multiplicative or additive noise (see Methods). Groups may have different numbers 
of data points as some networks failed to converge and were not considered for testing.  
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Figure 5 – Comparison to compressed sensing framework.  
(a) Alphabet classification performance as a function of additive noise (same methodological details as in Fig. 
4b) for the 81-unit learned and fixed models, relative to a network with the same architecture but random 
connectivity in the first hidden layer (n = 20 for each group). Box plot represents the first and third quartiles; 
whiskers extend to the 95th percentile. (b) Example receptive fields from one representative unit in the learned, 
fixed, and the random models, respectively.  
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