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Abstract 1 

Ecologists are increasingly using technology to improve the quality of data collected on wildlife, 2 

particularly for assessing the environmental impacts of human activities. Remotely Piloted 3 

Aircraft Systems (RPAS; commonly known as ‘drones’) are widely touted as a cost-effective 4 

way to collect high quality wildlife population data, however, the validity of these claims is 5 

unclear. Using life-sized seabird colonies containing a known number of replica birds, we show 6 

that RPAS-derived data are, on average, between 43% and 96% more accurate than data from 7 

the traditional ground-based collection method. We also demonstrate that counts from this 8 

remotely sensed imagery can be semi-automated with a high degree of accuracy. The 9 

increased accuracy and precision of RPAS-derived wildlife monitoring data provides greater 10 

statistical power to detect fine-scale population fluctuations allowing for more informed and 11 

proactive ecological management.  12 

Keywords 13 

bird, drones, ecology, population monitoring, RPAS, UAV, UAS, wildlife  14 
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Introduction 15 

Wildlife populations are undergoing dramatic declines in response to a wide range of 16 

human-induced threats (Dirzo et al. 2014; Tilman et al. 2017). High quality ecological data 17 

are vital to monitor such changes. Emerging technologies, such as camera traps (Rowcliffe & 18 

Carbone 2008) and radio telemetry (Hussey et al. 2015; Kays et al. 2015), have increasingly 19 

been used to address this challenge (Moll et al. 2007; Hebblewhite & Haydon 2010; Pimm et 20 

al. 2015), especially when wildlife populations are rapidly fluctuating, highly mobile or 21 

located in remote habitats.  22 

Remotely Piloted Aircraft Systems have been heralded as a game changer in ecology (Jones, 23 

Pearlstine & Percival 2006; Watts et al. 2010; Koh & Wich 2012; Anderson & Gaston 2013; 24 

Marris 2013; Chabot & Bird 2015; Linchant et al. 2015; Christie et al. 2016). They are used 25 

for data collection in an increasingly diverse suite of ecological applications, including 26 

identification of floristic biodiversity of understorey vegetation (Getzin, Wiegand & 27 

Schöning 2012), monitoring for poaching activities (Mulero-Pazmany et al. 2014), and bird 28 

surveys (Sarda-Palomera et al. 2012; Chabot, Craik & Bird 2015). However, there has been 29 

little consideration of the quality of data obtained using RPAS compared to more 30 

conventional methods (see Hodgson et al. (2016a) for an exception).  31 

We assessed the accuracy of RPAS-facilitated wildlife population monitoring in comparison 32 

with the traditional ground-based counting method. The task for both approaches was to 33 

derive an estimate of the size (i.e. number of individuals) of 10 replica seabird colonies. Each 34 

replica colony had a different known number of life-sized individuals. We hypothesised that 35 

RPAS-derived counts would be more accurate and more precise than those generated using 36 

the traditional approach, confirming RPAS-technology as revolutionary for ecological 37 

monitoring.   38 
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Materials and methods 39 

Study site and simulated colony set-up 40 

Fieldwork (#epicduckchallenge) was completed at a metropolitan beach in South Australia 41 

(Port Willunga, 35°15'33 S, 138°27'41 E) in accordance with relevant permits (Department of 42 

Environment, Water and Natural Resources scientific research permit: M26523-1; City of 43 

Onkaparinga location permit: 4138). The experimental design, including the majority of 44 

anticipated statistical analyses, was pre-registered (Hodgson et al. 2016b).  45 

Ten simulated Greater Crested Tern Thalasseus bergii breeding colonies were constructed 46 

using commercial, life-size, plastic duck decoys (~ 25.5 x 11.3 cm, 185 cm2 footprint). 47 

Decoys provided a realistic representation of the nesting seabird stimuli observers encounter 48 

in the field. Colonies were situated separately on the beach, above the high water mark, in 49 

sandy areas that represented analagous nesting habitat. These were typically devoid of 50 

vegetation but often contained natural beach debris.  51 

As inter-indiviudal interactions are thought to influence colony layout, a model of nesting 52 

pressure was applied to an underlying hexagonal grid to generate unique, unbiased colony 53 

layouts (Hodgson et al. 2016b). The hexagonal grid was re-created in the field using a wire 54 

mesh, upon which grid cell centres were marked (mean density: 11.39 m-2). Pre-counted 55 

wooden skewers were placed one per cell at a random location within all cells identified as 56 

occupied in the colony layout map. The mesh was removed and each skewer was replaced 57 

with a decoy facing approximately into the wind. The number of skewers retrieved was taken 58 

to be the true number of individuals in the colony. Colony sizes were between 463 and 1017 59 

individuals. One individual was placed in each occupied cell.  60 

Ground counting approach 61 

Ground counts were made by experienced seabird counters using a standard field technique 62 

(Hodgson et al. 2016a). Counters used tripod-mounted spotting scopes or binoculars as 63 

required. Hand-held tally counters were used to assist counting. Observation viewpoints at 64 

similar altitude to the colony and which provided the optimum vantage were selected (Fig. 1). 65 

Viewpoints were positioned 37.5 m from the nearest bird in the colony – this is the flight 66 

initiation distance for Caspian Tern Hydroprogne caspia (Moller et al. 2014) and so is a 67 

biologically-plausible minimum approach distance for a similar species in the field. Counts 68 

(n = 61) were 7 ± 2.65 min (s.d.) in duration. Four to seven counters each made a single blind 69 

count of the number of individuals in each colony. The numbers of counters were selected 70 
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based on a preliminary power analysis (Hodgson et al. 2016b) which investigated the sample 71 

sizes necessary to detect small (~ 10%) differences in mean counts and count variances 72 

between ground and RPAS-derived counts to high (80%, 90%, and 95%) power. Counters 73 

had no knowledge of the true number of individuals in colonies or the colony set-up 74 

technique. Counts were made between 0930 and 1645 on one day, resulting in variation in 75 

illumination and shadows. 76 

RPAS description, flight characteristics and data collected by RPAS 77 

A small, off-the-shelf quadcopter (Iris+, 3D Robotics) was used as a platform to image each 78 

colony. After positioning the RPAS in the centre of the colony at 15 m above ground level, it 79 

was piloted in altitude hold mode to make a vertical ascent without movement in other axes. 80 

The RPAS was loitered for short periods (~ 10 seconds) to enable the capture of several 81 

photographs at 30 m, 60 m, 90 m and 120 m above ground level (sample heights). Sampling 82 

was restricted to a height of 120 m as this is a common maximum limit for standard RPAS 83 

flight. Ground control station connection (Mission Planner, planner.ardupilot.com) was 84 

utilised and total flight time for missions was 5-7 min. All missions were in accordance with 85 

local regulations and flown by the same licenced pilot. Samples were collected within 40 min 86 

of the completion of ground counts.  87 

Imagery was captured using a compact digital camera (Cyber-shot RX100 III, Sony – 88 

resolution: 5,472 x 3,648 px; sensor: CMOS; sensor size: 13.2 x 8.8 mm; lens: ZEISS 89 

Vario-Sonnar T). Exposure time was set at 1/2000 seconds using shutter priority mode. 90 

Photographs were captured successively (~ 1 sec intervalometer) using the Sony 91 

PlayMemories Time-lapse application in jpeg format and at minimum focal length (8.8 mm). 92 

The camera was mounted facing downward using a custom vibration dampening plate. The 93 

footprint of a single image at each height encompassed the colony for all replicates. For 94 

analysis, only the image captured closest to the middle of the loiter time period for each 95 

sample height was used. These images (scenes; n = 40) were cropped (colony area < 50% of 96 

footprint) so that the image footprint was identical for each sample height for a given colony. 97 

High quality imagery was obtained for six of the ten colonies. Imagery for the remaining four 98 

colonies was affected by vibration-blur caused by a failure of the sensor attachment, likely 99 

due to wind speeds near the limit of the capability of the RPAS platform. Scenes are archived 100 

online (Pham & Hodgson 2017). 101 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2017. ; https://doi.org/10.1101/165019doi: bioRxiv preprint 

https://doi.org/10.1101/165019
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running title: Drones improve wildlife counts  Hodgson et al 

6 

The ground sample distance (GSD), being the distance between adjacent pixel centres on the 102 

ground, for sample heights were 0.82 cm, 1.64 cm, 2.47 cm and 3.29 cm (Fig. 1). When 103 

photographed at nadir, this approximated to 275, 69, 30 and 17 pixels per individual 104 

respectively. The variance in GSDs was intended to represent the resolutions commonly 105 

achieved in wildlife monitoring applications, which result from sensor and sampling height 106 

variations.  107 

Manual RPAS image counting approach 108 

Manual counts of perceived individuals in digital imagery were completed following a 109 

technique previously implemented for RPAS-derived monitoring of living seabirds (Hodgson 110 

et al. 2016a). Systematic counts were made using the multi-count tool within an open source, 111 

java-based scientific image processing program (ImageJ, http://imagej.net/). A grid plugin 112 

was used to overlay a square matrix (cell sizes: 70,000, 15,000, 8,000 and 4,000 pixels for 113 

each sample height) and counters were instructed to view the colony sequentially (gridcell-114 

by-gridcell: left to right, top to bottom). Counters were encouraged to zoom in to each cell as 115 

they progressed and, upon completion, review their count at different levels of zoom until 116 

they were satisfied they had counted all individuals. For each sample height, seven to nine 117 

individuals counted each colony. Counters had no knowledge of the experimental setup and 118 

only one had experience ground counting colonial birds.  119 

Semi-automated aerial image counting approach 120 

In each scene, digital bounding boxes were used to manually delimit a percentage of 121 

individual birds (Supplementary Fig. 1a). Areas of background were also delimited. These 122 

data were used to train a linear support-vector machine (a discriminative classifier; Cortes & 123 

Vapnik 1995), which predicted the likelihood of each pixel being a bird or background when 124 

applied to the corresponding scene (Supplementary Fig. 1b). Instead of relying on colour 125 

intensities, we computed rotation-invariant Fourier histogram of oriented gradient (Liu et al. 126 

2013) features for each pixel used in the training processes. This resulted in the classifiers 127 

being trained to determine which features distinguished birds from the background. The 128 

predicted likelihood (score) maps indicated the approximate locations of birds in the scenes, 129 

and detections were generated by applying a threshold to the likelihood maps. This process 130 

unavoidably resulted in redundant bird proposals (Supplementary Fig. 1c) and so the final 131 

detection results were obtained by suppressing redundant proposals via minimising an energy 132 

function (Pham et al. 2016; Supplementary Fig. 1d). This function encoded the spatial 133 
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distribution of objects and is informed by our knowledge of how the birds nest (e.g. two birds 134 

cannot occupy the same location). The source code and dataset are archived online (Pham & 135 

Hodgson 2017). 136 

To determine the minimum amount of training data required for accurate detections relative 137 

to manual image counts, we varied the percentage of individual birds used as training data 138 

between 1% and 30% for each scene. 139 

Statistical methods 140 

All analyses were carried out in R version 3.2.2 (R Core Team 2016). Pre-registered analyses 141 

were designed to investigate how within-colony absolute count error, within-colony 142 

variability of counts, and within-colony bias of counts differed between count techniques 143 

(Hodgson et al. 2016b).  144 

For each test, a generalised linear mixed model was fit between the response (e.g. absolute 145 

count error) and the technology used to make the count (e.g. ground-count, manually counted 146 

RPAS at 30 m height, semi-automatically counted RPAS at 30 m height), with colony 147 

included in the model as a random effect (Supplementary Information 1). To investigate 148 

effects of counting technique on absolute count error, we defined the response as the absolute 149 

difference between the true number of birds in a colony and the counted number of birds. To 150 

investigate effects of counting technique on count-variability, we defined the response as the 151 

absolute difference between each count and the mean of counts of the same colony taken 152 

using the same method. Count variability was not estimated for semi-automated counts as 153 

there was only a single semi-automated count per colony. To investigate the effect of 154 

counting technique on relative count bias, we defined the response as the difference between 155 

the true number of birds in the colony and the counted number of birds. For the absolute 156 

count error model, we used a Quasipoisson distribution, and for the variability and bias 157 

models, we used a Gaussian distribution. For each model, post-hoc Tukey tests were used to 158 

test for differences in the response between all pairs of treatment levels. 159 

Semi-automated count data were added to the experimental design subsequent to our 160 

pre-registration of the analysis which necessitated minor analysis modification. The addition 161 

of semi-automated count data, with a single replicate per colony, required fitting colony ID as 162 

a random effect instead of as a fixed effect in each model. 163 
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Statements comparing the accuracy of RPAS-derived counts to ground-based counts are 164 

based on the mean within-colony Root Mean Squared Error (RMSE) of that counting 165 

approach, standardised as a proportion of the true count within each colony (Supplementary 166 

Information 2). For instance, a statement that RPAS-derived counts are '95% more accurate 167 

than ground-counts' means that, within-colony, the RMSE for RPAS-derived counts is 5% 168 

the RMSE for ground-based counts, representing a 95% reduction in RMSE. 169 

To investigate the probability of counting each individual correctly, we developed models 170 

with a variety of possible counting outcomes for each object (Supplementary Information 3). 171 

We assumed that there are N = n0 + n1 + n2 objects that are counted by an observer, of which 172 

n1 are counted correctly, n0 are missed and n2 are double counted. We assumed that n = (n0, 173 

n1, n2) is multinomially distributed with probability p = (p0, p1, p2). In this structure, n0, n1, 174 

n2 are latent and the observer can only report the total count M = n1 + 2n2. Allowing each 175 

object to be at most double counted constrains n considerably, and the probability mass 176 

function can then be formulated. We adopted a Dirichlet prior for p (p~Dirichlet(a)) making 177 

the conditional distribution of p: p|n(k) ~ Dirichlet(a+n(k)).  178 

We then ran a Gibbs sampling routine for p by alternately sampling n(k) and p from these 179 

two distributions. Since there was considerably more variation between ground counts 180 

compared to manual RPAS counts, we ran the analyses for each ground counter separately, 181 

and pooled data across counters for manual RPAS counts. The RPAS analyses were run 182 

separately for each sample height, and two sets of analyses were undertaken, one with data 183 

from all colonies, and the other with data from the subset of colonies with high quality 184 

imagery. This statistical approach does not account for objects being mistakenly identified as 185 

birds (i.e. false positives). Furthermore, as this model assumes each individual is counted 186 

independently, which may not always be true (particularly for ground counters who tend to 187 

count in clusters), care needs to be taken in the interpretation of the estimated probability 188 

values (and their variance).  189 

To compare the semi-automated counts to that of the people counting the images, we first 190 

took the semi-automated count after 10% of training data had been used for each scene. Ten 191 

percent of training data was consistently identified as a threshold over which little 192 

improvement in counts occurred for all scenes. We compared this count to each of the manual 193 

counts of the same image using ANOVA for all scenes, and also for those scenes of high 194 
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quality. We also used Poisson generalized linear models to make more quantitative 195 

comparisons of the two approaches. 196 

Code availability 197 

R scripts used for analyses are available in the Supplementary Information. 198 

Data availability 199 

The pre-registered experimental design is available via the Open Science Framework (*URL 200 

to be made public on publication*). The count data, scenes and code for the image-analysis 201 

algorithm are archived online (*URL to be made public on publication*).   202 
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Results 203 

Manual RPAS-derived image counting versus ground counts 204 

On average across all colonies, RPAS-derived counts were between 43% and 96% more 205 

accurate than ground counts, depending on the sample height (between 92% and 98% for the 206 

colonies with high quality imagery; Supplementary Table 1). The mean absolute error was 207 

significantly smaller for RPAS-derived counts at all heights compared to ground counts (all 208 

P < 0.001; Fig. 2a).  209 

No significant increase in count accuracy was achieved by obtaining imagery from heights 210 

lower than or equal to 90 m. Using data only from colonies with high quality imagery, there 211 

was no significant change in count accuracy across the range of heights. The lower accuracy 212 

of ground counts was due to significant underestimations of the true number of individuals in 213 

colonies (Fig. 2b). RPAS-derived counts from imagery obtained at 30 m and 60 m did not 214 

significantly under- or overestimate the true number of individuals in a colony, and there was 215 

no evident bias in RPAS-derived counts at any height for colonies with high quality imagery 216 

(Fig. 2b). 217 

Using data from all colonies, RPAS-derived counts from 30 m and 60 m had a much higher 218 

probability (90% and 50%, respectively) of correctly counting an individual than counts from 219 

ground observers (< 10%) (Fig. 3). However, 90 m and 120 m probabilities were largely 220 

indistinguishable from the ground count probabilities, with a slightly higher likelihood of 221 

missing individuals compared to counting them twice (Supplementary Fig. 3, 4). Colony 222 

counts made from high quality imagery had a much higher probability of individuals being 223 

counted correctly, with > 85% probability of correctly counting an individual at all heights 224 

(Fig. 3). By contrast, ground counts had a low probability of counting an individual correctly, 225 

with the probability of double counting and missing an individual varying considerably 226 

between observers (Fig. 3 and Supplementary Fig. 3, 4).  227 

RPAS-derived counts were more precise (i.e. had lower inter-observer variability) than 228 

ground counts, regardless of the height at which imagery was obtained (t4,560 -10.21 to -13.37, 229 

all P < 0.001; Supplementary Fig. 5). RPAS-derived counts were more precise for imagery 230 

obtained at 30 m compared to those obtained from 120 m (P = 0.01), however, there were no 231 

significant differences in precision among RPAS-derived counts at different heights for 232 

colonies with high quality imagery (all P > 0.98).  233 
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Semi-automated RPAS approach 234 

By increasing the percentage (1 – 30%) of individuals used as training data for the image-235 

analysis algorithm, 10% training data was consistently identified as a threshold above which 236 

little improvement in count accuracy was achieved in this semi-automated approach 237 

(Supplementary Fig. 2). There was no significant difference between counts that were made 238 

with 10% training data and those made by manual counting of RPAS-imagery across all 239 

scenes. The semi-automated results were 94% similar to manual counts across all scenes 240 

(98% for the colonies with high quality imagery; see also Supplementary Table 1).   241 
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Discussion 242 

RPAS-derived data were more accurate and more precise than the traditional data collection 243 

method validating claims that RPAS will be a revolutionary tool for ecologists. Never has the 244 

importance of accurate wildlife population monitoring data been greater than at present given 245 

the alarming population declines observed in animal species across the globe (Dirzo et al. 246 

2014). By facilitating accurate census, RPAS will provide ecologists with confidence in 247 

population estimates from which management decisions are made. Furthermore, the superior 248 

precision of RPAS-derived counts increases statistical power to detect population trends, 249 

owing to the lower type II error rate in statistical analysis that comes with comparing 250 

measures with smaller variance (Gerrodette 1987). The improved precision of wildlife 251 

population census using RPAS has been demonstrated for free-living seabird colonies 252 

(Hodgson et al. 2016a) suggesting our results are generalizable to natural settings. 253 

Differences in accuracy and precision between RPAS-facilitated and traditional survey 254 

methods can be attributed to the sources, and magnitude, of variance introduced into the two 255 

approaches which are strongly affected by the different vantages of the two methods 256 

(Hodgson et al. 2016a).  257 

We have conducted two independent analyses of how count error differs across count 258 

approaches: a Frequentist analysis which estimates mean absolute count error, and a Bayesian 259 

analysis which estimates the probability of double-counting or missing individual animals. 260 

The two analyses are in agreement on the broad patterns: RPAS-derived counts are estimated 261 

to have lower error than ground counts in both analyses, and the error-rate is fairly insensitive 262 

to sample height for RPAS-derived counts. The Bayesian analysis makes restrictive 263 

assumptions about the process by which counting errors occur, and these assumptions may 264 

not fully reflect real-world counting processes. Nevertheless, the Bayesian analyses provide a 265 

first estimate of the extent to which overall count accuracy is dependent on the 266 

double-counting of some individuals cancelling out the effect of missing others. As an 267 

extreme example, our analysis suggests that < 10% of animals are correctly classified as a 268 

single animal in typical ground counts. 269 

Manual counting of RPAS-derived imagery returned high quality data, but also involved 270 

substantial labour investments. Recent advances in digital sensors and image-analysis 271 

techniques have been increasingly employed to streamline the detection process (Chabot & 272 

Francis 2016). By applying a semi-automated image-based object detection algorithm to each 273 
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scene, we vastly improved efficiency compared to the manual RPAS-derived census. 274 

Importantly, the reduction in person-hours provided by this semi-automated approach did not 275 

diminish data quality. This will be of particular interest in today’s research environment 276 

where funding for conservation is limited (Waldron et al. 2013) and researchers are under 277 

ever more pressing time commitments (Fischer, Ritchie & Hanspach 2012). 278 

The capture quality and resolution of RPAS-derived imagery heavily influenced the results of 279 

both human and semi-automated detection. Consequently, ecologists should determine the 280 

minimum required GSD for their context, and optimise their sensor accordingly (e.g. 281 

resolution, focal length) relative to sample height. When determining an appropriate sample 282 

height, best practice protocols should be considered to minimise potential disturbance to 283 

wildlife (Hodgson & Koh 2016), while complying with relevant local aviation legislation and 284 

achieving an acceptable sample area within the possible survey time period.  285 

The ability to collect data with higher accuracy, higher precision, and less bias than the 286 

existing approach confirms that RPAS are a scientifically rigorous data collection tool for 287 

wildlife population monitoring. This approach also produces a permanent record, providing 288 

the unique opportunity to error-check, and even recount with new detection methods, unlike 289 

ground count data. As RPAS platforms, sensors and computer vision techniques continue to 290 

develop, it is likely that the accuracy and cost effectiveness of RPAS-based approaches will 291 

also continue to improve.   292 
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 387 

Figure 1: Aerial vantage of a replica seabird colony compared with the ground 388 

counter’s viewpoint. One colony represented by a mosaic of images (a-d) photographed 389 

from a RPAS-mounted camera at varying heights (30 m, 60 m, 90 m and 120 m) and 390 

resulting ground sample distances (GSD; 0.82 cm, 1.64 cm, 2.47 cm and 3.29 cm). Insets are 391 

of the same individual (square; c) at each height, displaying the decrease in resolution relative 392 

to an increase in GSD. e, View of the colony from a ground counter’s standing position.  393 
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 394 

Figure 2: Accuracy and bias of RPAS and traditional wildlife monitoring approaches. 395 

The absolute error (a) and difference from the true count (b) of each method. Data from all 396 

colonies (n = 10; shaded) and also for the subset of colonies with high quality imagery 397 

(n = 6; unshaded) are presented for both RPAS-derived (blue) and ground (green) counts. 398 

RPAS-derived manual-human (Man) and semi-automated (Auto) counts are displayed and 399 

data are grouped by height which reflects ground sample distance (GSD; 30 m height = 0.82 400 

cm GSD, 60 m = 1.64 cm, 90 m = 2.47 cm, 120 m = 3.29 cm).   401 
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 402 

Figure 3: Probability of counting an individual in a colony once (correctly). Data from all 403 

colonies (n = 10; shaded) and also for the subset of colonies with high quality imagery 404 

(n = 6; unshaded) are presented for RPAS-derived (blue) manual counts. These data are 405 

grouped by height (m) which reflects ground sample distance (GSD; 30 m height = 0.82 cm 406 

GSD, 60 m = 1.64 cm, 90 m = 2.47 cm, 120 m = 3.29 cm). Probabilities from ground count 407 

data (green) for all colonies are estimated for each counter individually (A-G). Error bars 408 

represent standard deviation.  409 
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 410 

Supplementary Figure 1: Semi-automated detection and counting of wildlife using 411 

computer vision techniques. (a) User annotation of perceived target objects (red) and 412 

background (blue). (b) score map generated by the trained classifier which has automatically 413 

determined which image features distinguish objects from background, independent of scale 414 

and orientation. Warmer colours indicate increasing likelihood of the pixel being a target 415 

object. (c) target object proposals (red) computed by thresholding the score map. Object size 416 

is estimated from the annotations. (d) final output (which includes a total count and detection 417 

co-ordinates) where detected individuals are delineated (red) after redundant detections have 418 

been automatically suppressed.   419 
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 420 

Supplementary Figure 2: Improvement in accuracy of semi-automated detection counts 421 

with increasing training data. Colonies (n = 10) are represented by individual colours at 422 

each height which reflects ground sample distance (GSD): 120 m height = 3.29 cm GSD (a); 423 

90 m = 2.47 cm (b); 60 m = 1.64 cm (c); 30 m = 0.82 cm (d). Lowess smoothed trendlines 424 

are displayed. Analyses were computed using count estimates generated from 10 % training 425 

data (dashed line).   426 
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 427 

Supplementary Figure 3: Probability of counting an individual in a colony twice (double 428 

counting). Data from all colonies (n = 10; shaded) and also for the subset of colonies with 429 

high quality imagery (n = 6; unshaded) are presented for RPAS-derived (blue) manual 430 

counts. These data are grouped by height (m) which reflects ground sample distance (GSD; 431 

30 m height = 0.82 cm GSD, 60 m = 1.64 cm, 90 m = 2.47 cm, 120 m = 3.29 cm). 432 

Probabilities from ground count data (green) for all colonies are estimated for each counter 433 

individually (A-G). Error bars represent standard deviation.  434 
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 435 

Supplementary Figure 4: Probability of not counting (missing) an individual in a 436 

colony. Data from all colonies (n = 10; shaded) and also for the subset of colonies with high 437 

quality imagery (n = 6; unshaded) are presented for RPAS-derived (blue) manual counts. 438 

These data are grouped by height (m) which reflects ground sample distance (GSD; 30 m 439 

height = 0.82 cm GSD, 60 m = 1.64 cm, 90 m = 2.47 cm, 120 m = 3.29 cm). Probabilities 440 

from ground count data (green) for all colonies are estimated for each counter individually 441 

(A-G). Error bars represent standard deviation.  442 
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 443 

Supplementary Figure 5: Precision of RPAS and traditional wildlife monitoring 444 

approaches. Data from all colonies (n = 10; shaded, lower box in each course) and also for 445 

the subset of colonies with high quality imagery (n = 6; unshaded, upper box in each course) 446 

are presented for both RPAS-derived manual-human (blue) and ground (green) counts. Data 447 

are grouped by height which reflects ground sample distance (GSD; 30 m height = 0.82 cm 448 

GSD, 60 m = 1.64 cm, 90 m = 2.47 cm, 120 m = 3.29 cm).  449 
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Supplementary Table 1: Mean percentage increase in accuracy of RPAS wildlife 450 

monitoring approaches compared with the traditional ground count approach. 451 

Percentages are calculated for RPAS-derived human manual (Man) and semi-automated 452 

(Auto) counts using data from all colonies (n = 10) as well as the subset of colonies with high 453 

quality imagery (n = 6). Data are grouped by height which reflects ground sample distance 454 

(GSD; 30 m height = 0.82 cm GSD, 60 m = 1.64 cm, 90 m = 2.47 cm, 120 m = 3.29 cm). 455 

 456 

 457 
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