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Abstract   18 

Heat capacity changes are emerging as essential for explaining the temperature dependence of 19 

enzyme-catalysed reaction rates. This has important implications for enzyme kinetics, 20 

thermoadaptation and evolution, but the physical basis of these heat capacity changes is 21 

unknown. Here we show by a combination of experiment and simulation, for two quite 22 

distinct enzymes (dimeric ketosteroid isomerase and monomeric alpha-glucosidase), that the 23 

activation heat capacity change for the catalysed reaction can be predicted through atomistic 24 

molecular dynamics simulations. The simulations reveal subtle and surprising underlying 25 

dynamical changes: tightening of loops around the active site is observed as expected, but 26 

crucially, changes in energetic fluctuations are evident across the whole enzyme including 27 

important contributions from oligomeric neighbours and domains distal to the active site. This 28 

has general implications for understanding enzyme catalysis and demonstrating a direct 29 

connection between functionally important microscopic dynamics and macroscopically 30 

measurable quantities.  31 

 32 
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A critical variable for the rate of a reaction is temperature. For uncatalyzed chemical 42 

reactions, the rate of reaction typically increases exponentially with increasing temperature, as 43 

described by the Arrhenius and Eyring equations1,2. In reactions catalysed by enzymes, the 44 

effects of temperature are complex and include (often opposing) contributions from active site 45 

geometry and reactivity, protein stability, conformational changes and temperature-dependent 46 

regulation. Changes in temperature can also potentially affect features of the enzyme 47 

catalysed reaction outside the chemical step such as substrate binding, product release and 48 

conformational changes. Despite these complexities, enzymes generally show a characteristic 49 

temperature profile including an optimum temperature (Topt) for activity above which rates 50 

decline with increasing temperature. The decline in rate above Topt cannot simply be explained 51 

by enzyme unfolding at higher temperatures and deviations from Eyring behaviour are also 52 

often seen at temperatures below Topt 
3-5. We recently developed macro-molecular rate theory 53 

(MMRT)6,7, which explains the temperature dependence of enzymes including an intrinsic Topt 54 

in the absence of denaturation by introducing the concept of heat capacity changes along the 55 

reaction coordinate: the heat capacity (Cp) for the enzyme–substrate complex is generally 56 

larger than Cp for the enzyme-transition state complex, in enzymes for which the chemical 57 

reaction is rate limiting. Hence, the activation heat capacity, ΔC‡
p, for the enzyme-catalysed 58 

reaction is generally negative (Fig. 1a; in case product release instead of chemical reaction is  59 

rate limiting, a small positive heat capacity for reaction is possible8). We have demonstrated 60 

that this accounts for the curvature observed in Eyring plots for a number of enzymes6. 61 

∆𝐶𝑃
‡

 is a statistical thermodynamic property for the catalysed reaction that describes the 62 

difference in heat capacity between the thermodynamic ensemble in the ground state and that 63 

at the transition state. It can be determined experimentally9, and can also be calculated from 64 

the variance in enthalpy at equilibrium for each of these states10: 65 

∆𝐶𝑃
‡ =

∆〈𝜕𝐻2〉‡

𝑘𝐵𝑇2           (1) 66 

In principle, atomistic molecular dynamics simulations at equilibrium can provide a 67 

distribution of enthalpies from which the variance 〈𝜕𝐻2〉 (the mean squared fluctuation in the 68 
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enthalpy) may be calculated. To do so, the ensemble for the enzyme-substrate complex and 69 

separately, that for the enzyme transition state complex, should be simulated.  70 

Here, we experimentally determine the value for ∆𝐶𝑃
‡
 from the temperature dependence of the 71 

rate in the absence of enzyme denaturation for two quite different enzymes: the small, dimeric 72 

ketosteroid isomerase (KSI) and the large, monomeric α-glucosidase MalL (Fig. 1). In 73 

parallel, we employ extensive MD simulations (10 μs per enzyme) to obtain heat capacity 74 

differences between two states along the reaction pathway. KSI is a very well-studied enzyme 75 

that is involved in steroid biosynthesis and degradation: it performs two consecutive proton 76 

transfers to shift the position of a C=C double bond11 (Supplementary Fig. 1). MalL is a large 77 

α-glucosidase: it hydrolyses terminal non-reducing (1→6)-linked α-glucose residues in a two-78 

step reaction, releasing α-glucose12 (Supplementary Fig. 2). Previously, we have shown by 79 

experiment that there is a large change in heat capacity for this enzyme-catalysed reaction and 80 

that single point mutations can dramatically alter the temperature dependence of the rate by 81 

altering the heat capacity of either the enzyme-substrate complex or the enzyme-transition 82 

state complex7.  83 

Activation heat capacities from simulations and experiment are in good agreement. This 84 

shows that prediction of activation heat capacity for enzymes is feasible by simulations, 85 

opening a new route to predicting and engineering optimum temperatures for enzyme 86 

activities. Further, the simulations provide an atomically detailed picture of the dynamical 87 

differences between transition state and Michaelis complexes that gives rise to this behaviour, 88 

revealing complex, and intriguing changes in dynamics across the whole enzyme structure. 89 

We thus use simulation, for the first time, to interpret the ∆𝐶𝑃
‡
 obtained from macroscopic 90 

kinetics measurements in terms of detailed contributions at the atomistic level, providing a 91 

link between enzyme structural and energetic molecular fluctuations to its function and 92 

thermoadaptation.  93 

 94 

  95 
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Results 96 

∆𝑪𝑷
‡  determined by experiment 97 

As shown previously6,7, ∆𝐶𝑃
‡
 can be determined by fitting the ln(rate)-versus-temperature plot 98 

using macromolecular rate theory (MMRT). For MalL, curvature in this plot is very 99 

significant (Fig. 1d), and unrelated to unfolding5. This leads to a negative ∆𝐶𝑃
‡
 value of –11.6 100 

± 0.4 kJ.mol–1.K–1. For KSI, the curvature is less extreme, but still obvious, leading to a small 101 

negative ∆𝐶𝑃
‡
 of –0.86 ± 0.1 kJ.mol–1.K–1 (Fig. 1c). An important consequence of the ∆𝐶𝑃

‡
 102 

values of for each enzyme is the position of the optimum temperature (Topt) for activity as 103 

these parameters are correlated. For example, the large negative ∆𝐶𝑃
‡
 value for MalL dictates 104 

the position of Topt at 320 K whereas the much smaller ∆𝐶𝑃
‡
 value for KSI places the Topt well 105 

above 320 K (in absence of protein unfolding). Similarly, the significant curvature of the 106 

MalL temperature dependence means that at lower temperatures, the rate approaches zero 107 

much faster for MalL when compared to KSI.  108 
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109 
Figure 1:  Basis of a negative ∆𝑪𝑷

‡
 and its determination through experiment.  A, 110 

Conceptual depiction of a difference in Cp between the enzyme-substrate (E-S) and enzyme-111 

transition state (E-TS) complexes along a reaction, resulting in a negative ΔCǂ
p. B, Conceptual 112 

depiction of differences in enthalpy distribution at the E-TS (red) and the E-S states (blue).  113 

Arrows indicate the inflection points (at μ+σ), and the difference defines ΔCp between the two 114 

states according to the formula given (see equation (1)). C-D, Experimentally determined 115 

ΔCǂ
p values (kJ.mol–1.K–1 ± SE) for the temperature-dependent rates of KSI (C) and MalL (D). 116 

Data is fit with MMRT (see Methods). Error bars, where visible, represent the SD of three 117 

replicates. Figures of KSI and MalL are to scale. 118 

 119 

Heat capacity differences from simulation 120 

Heat capacity differences for enzyme catalyzed reactions can be calculated from ∆〈𝜕𝐻2〉‡ (eq. 121 

(1)). To measure ∆〈𝜕𝐻2〉‡ from simulation, there are two main challenges: a) the amount of 122 

sampling required for the system to define the enthalpy variance, and b) an accurate and 123 
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consistent representation of the reactant state (Michaelis complex) and the transition state. A 124 

statistical thermodynamic analysis of a 1 ms molecular dynamics (MD) simulation of the 125 

bovine pancreatic trypsin inhibitor indicated that 10s of μs of simulation may be needed to 126 

converge the heat capacity difference between two conformational states13. Sampling on the 127 

order of (at least) μs is thus expected to be required for reliable identification of heat capacity 128 

differences. Such sampling is now routinely feasible with a ‘molecular mechanics’ 129 

description of the atoms and their interactions. We thus compare two states, A and B (Fig. 1a), 130 

and the difference in heat capacity between these states can be determined by: 131 

∆𝐶𝐴,𝐵 =  
〈𝛿𝐻𝐵

2〉−〈𝛿𝐻𝐴
2〉

𝑘𝐵𝑇2          (2) 132 

To sample the conformational dynamics of the reactant (E-S or RS) and ‘transition state’ (E-133 

TS) enzyme complexes consistently, electronically unstable states (e.g. with half-formed 134 

bonds involving enzyme residues) should be avoided for the ‘transition state’ representation. 135 

We thus use molecular species that are representative for the transition state (i.e. transition 136 

state analogues), and predict that these will show a similar heat capacity change from the 137 

reactant state. This prediction has been demonstrated experimentally for human 5'-138 

methylthioadenosine phosphorylase9. For KSI, a charged enediolate intermediate is formed 139 

after the first proton transfer, and this is the key species stabilised by the enzyme for catalysis 140 

of the reaction14,15. We use this intermediate state as a proxy for the two enzyme-transition 141 

state complexes (one for each proton transfer) as the intermediate lies between the two 142 

transition states at similar energy. The substrate (5–androstene-3,7–dione) and intermediate 143 

complexes (Fig. 2a, Supplementary Fig. 1) were built based on KSI in complex with the 144 

inhibitor 5α-estran-3,17-dione (PDB 1OHP). For MalL, we obtained an experimental X-ray 145 

structure co-crystallised with a stable transition state analogue (Supplementary Table 1; 146 

Supplementary Fig. 4) and use this to simulate the thermodynamics of the substrate 147 

isomaltose and a close analogue of the transition state species at the rate determining step16 148 

(Fig. 2b; Supplementary Fig. 2). 149 
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A total of 5 μs of MD simulation was run for KSI and MalL in both the substrate-bound and 150 

proxy TS representations over ten replicate simulations for each state (Supplementary 151 

Results). The force-field potential energy was used as an approximation for the system 152 

enthalpy, and was recalculated for the protein-ligand system without explicit water. 153 

Considering the variance of the enthalpy is the quantity required for 𝐶𝑃
‡
 calculation (eq. (1)) 154 

and a difference in variance between two states is used to determine ∆𝐶𝑃
‡
 (eq. (2)) these 155 

approximations should be reasonable.    156 

For KSI, the conformational space sampled is limited, with only two distinct structural 157 

clusters discernible. The difference between these clusters is in a small region in the 158 

unoccupied monomer (Fig. 2c). The H variance is significantly different between the clusters, 159 

however (Fig. 2e). For ∆𝐶𝑃
‡

 calculation, we thus calculate the variance of the clusters 160 

separately, with the total variance for each state being the average variance weighted by the 161 

cluster occupation (Fig. 2e). 162 

MalL samples a larger conformational space than KSI, occupying and regularly switching 163 

between a number of structural clusters along the simulation trajectories, related primarily to 164 

changes in loops surrounding the active site (Figure 2d; Supplementary Results).  Due to the 165 

presence of multiple conformational clusters, consideration of the system over the full 166 

simulation time overinflates the enthalpy variance. However, calculating variances for each 167 

cluster (as for KSI) does not take into account that frequent switches between the distinct 168 

conformational states will also contribute to the variance. In addition, several clusters are 169 

dominated by one state only (Supplementary Fig. 8). To be independent of clustering and 170 

account for switching between conformational substates, enthalpy variance was calculated 171 

using a moving window along the simulation trajectory for each simulation, and subsequent 172 

averaging. The ‘window’ for the moving average was varied between 5-80 ns and calculated 173 

∆𝐶𝑃
‡
 values converge when the window size is between 40-80 ns (Figure 2f, Supplementary 174 

Table 3). Thus, the calculated ∆𝐶𝑃
‡ values for MalL converge on a value of –175 
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10.0 ± 1.7 kJ.mol1.K1 (using a window of 70 ns) which is within the error range of the 176 

experimentally determined ∆𝐶𝑃
‡
 value of –11.6 ± 0.4 kJ.mol1.K1. 177 

 178 

Figure 2: Sampling and ΔCǂ
p calculation in simulations. A-B, Histograms of energies from 179 

50-500ns MD simulations for KSI (A) and MalL (B). Thin lines are individual runs, thick 180 

lines are the average of 10 runs. Insets show overlay of histograms for both states, and the 181 

structures indicate the species simulated (RS – reactant state; IS – intermediate state; TSA – 182 

transition state analogue). C, Representative structures for the two distinct conformational 183 

clusters present in the KSI simulations of both states (reactant state in blue and green, 184 
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intermediate state in pale blue and green, starting structure in light grey). Box highlights the 185 

region with structural differences. D, Representative structures for the 6 main conformational 186 

clusters in MalL reactant state simulations and their occupancies (starting structure in light 187 

grey). E, Variance in energies for the two clusters identified in the KSI simulations, with 188 

cluster occupancies (in %) and weighted average variance for both states. F, Convergence 189 

with moving average window size of ∆𝐶𝑃
‡ values calculated for MalL, with value determined 190 

from experiment indicated by dotted line (with grey area indicating standard deviation). 191 

 192 

Local and global contributions to ∆𝑪𝑷
‡

  193 

The observation that  ∆𝐶𝑃
‡
 values calculated from extensive conformational sampling are in 194 

agreement with those determined experimentally allows meaningful analysis of the 195 

differences between the two ensembles. Striking results emerge from analysing contributions 196 

from different parts of the enzymes, by calculating ∆𝐶𝑃
‡
 values for parts of the structures (by 197 

recalculating energies and their variances for specific regions only; Fig. 3). Energy 198 

contributions from interactions with neighbouring regions are not included, and therefore one 199 

should not expect these ‘partial’ ∆𝐶𝑃
‡
 values to add up to the total value. They do, however, 200 

offer new quantitative insights. Conceptually, one may expect differences in partial ∆𝐶𝑃
‡
 201 

values to align with regions that differ in flexibility. This is largely true for some small 202 

regions with clear differences in flexibility (e.g. residues 46-70 for KSI; residues 250-321 and 203 

374-459 for MalL; see Fig. 3), but is not obvious throughout the structure, especially for 204 

larger regions. Crucially, differences in ∆𝐶𝑃
‡
 are distributed across the full protein structure, 205 

whereas significant differences in flexibility are limited to regions that interact with the ligand 206 

bound in the active site. 207 

KSI, as a dimer, offers the opportunity to assess the dynamical role of the monomer that is 208 

distal to substrate turnover. The distal monomer of KSI is the main contributor to reduced 209 

∆𝐶𝑃
‡
 at the TS (Figure 3A). Overall, the catalytic monomer contributes a positive ∆𝐶𝑃

‡
; the N- 210 

and C-terminal regions forming the back of the active site and more remote regions contribute 211 
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a positive ∆𝐶𝑃
‡
, while helix 48-59 that closes over the active site opposite from the catalytic 212 

Asp38 rigidifies and contributes a negative ∆𝐶𝑃
‡
. Implication of the non-catalytic chain as a 213 

significant contributor to negative ∆𝐶𝑃
‡ points to an important role for the oligomer in the 214 

temperature dependence of the catalytic process. Enzyme oligomerization is common, 215 

indicating an evolutionary advantage17, however the functional purpose of these quaternary 216 

interactions is not well understood.  If interactions are optimized to allow global contributions 217 

from changes in the distribution of vibrational modes across the multimer18, oligomerization 218 

may provide a means to tune the temperature dependence of rates through global 219 

contributions to the overall Cp change.      220 

 221 

 222 

Fig. 3. Structural fluctuations and partial variances between reactant state and 223 

transition state analogue complexes. Top: root-mean square fluctuations from 50-500ns MD 224 

simulations for KSI (left) and MalL (right). Thin lines are individual runs, thick lines the 225 

average of 10 runs. Middle: calculated partial ∆𝐶𝑃
‡

 values for protein regions. Values 226 
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including contribution from the ligand are indicated (*). Bottom: illustration of KSI (left) and 227 

MalL (right) colored based on partial ∆𝐶𝑃
‡
 regions from top pane. Transition-state analogues 228 

shown in space-filling spheres.   229 

 230 

The active site of MalL (and TIM barrel enzymes in general19) sits displaced to one side 231 

above the TIM barrel core, interacting with a half of the barrel comprising β5-8 and α4-7 232 

(Figure 3B).  Analogous to the ligand bound chain of KSI, the catalytic half of the TIM barrel 233 

increases in Cp at the TS, while more remote protein components including the second TIM 234 

half barrel contribute to the overall negative ∆𝐶𝑃
‡
.  The lid domain, consisting of a helix-loop-235 

helix extension above the barrel, contributes significantly to the overall reduction in Cp at the 236 

TS, consistent with a role shielding the active site from solvent at the catalytic step.  The 237 

parallels between the KSI dimer and MalL barrel halves are especially noteworthy in that the 238 

TIM barrel is argued to have evolutionary origins as a dimer of (βα)4 units19,20, the dynamical 239 

origins of which may still be discernible in the now fused structure.   240 

Overall, these data indicate that the decrease of CP between the enzyme-substrate and 241 

enzyme-TS complexes is not just a function of rigidification of elements around the active 242 

site, but significant contributions are also made by regions remote from the active site, 243 

including oligomeric partners.  244 

 245 

Discussion 246 

In enzyme catalysis, ∆𝐶𝑃
‡  is emerging as a critical parameter for describing the temperature 247 

dependence of enzymatic rates, and as a consequence, for thermal adaptation in enzyme 248 

evolution6,7. The capacity to predictably manipulate enzyme activity with temperature 249 

continues to be a sought-after goal in biotechnology21, but a lack of understanding of the 250 

principles governing thermal activity hampers the guided development of enzymes. The in 251 

silico replication of experimental ΔCǂ
p values gives, for the first time, insight into the atomic-252 

level details of CP changes along the reaction coordinate which govern the temperature 253 
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dependence of enzyme rates. In turn, this provides a route to engineer temperature optima of 254 

enzymes: modifications in enzyme structure that change ΔCǂ
p can be proposed and tested. Due 255 

to the difficulty of converging the difference in enthalpy variance that underlies ΔCǂ
p, one 256 

cannot expect perfect quantitative agreement between simulation and experiment, but trends 257 

and, importantly, atomistic mechanistic details can be extracted. 258 

In two distinct enzyme systems, contributions to reduced ∆𝐶𝑃
‡ at the TS come from small 259 

domains surrounding the active site as well as domains distant from the catalytic centre. 260 

Rigidification of active site loops is expected as these regions may tighten around the 261 

transition state ensemble during catalysis. Unexpectedly, domains distal to the active site 262 

contribute significantly to the overall negative ∆𝐶𝑃
‡
, offsetting positive contributions to ∆𝐶𝑃

‡
 263 

around the active site (excluding the loops). This observation has implications for the 264 

biological importance of both enzyme mass and oligomerization. Previously, enzyme mass 265 

has been found to be correlated to catalytic efficiency, leading to the suggestion that 266 

vibrational modes (available through the large size of enzymes) act as an energy reservoir, a 267 

portion of which is available for catalysis6. Distal contributions to negative values of ΔCǂ
p 268 

seen here provide evidence that the necessary changes in the distribution of vibrational modes 269 

that give rise to a negative ΔCǂ
p are dispersed throughout the protein mass. Further, extension 270 

of this idea into auxiliary domains (MalL) and dimeric units (KSI) not directly involved with 271 

the reaction chemistry suggest that this ‘energy reservoir’ extends further than the catalytic 272 

domain. This assigns a significant functional role to distal domains regardless of proximity to 273 

the active site, suggesting a functional reason driving the evolution of these domains and 274 

interactions.     275 

  276 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2017. ; https://doi.org/10.1101/165324doi: bioRxiv preprint 

https://doi.org/10.1101/165324
http://creativecommons.org/licenses/by-nc/4.0/


14 

 

Methods 277 

Cloning, protein expression, purification, and characterization. Cloning, expression, 278 

purification and activity assays of MalL were as described previously7. Co-crystallization of 279 

MalL with 0.5 mM 1-deoxynojirimycin was performed using hanging drop vapor diffusion at 280 

18 °C. Crystals were flash cooled with cryoprotectant comprising of the crystallization 281 

mixture with 20 % glycerol for collection at the Australian Synchrotron (MX1). Molecular 282 

replacement was performed with the WT MalL apo structure (PDB 4M56)7 as the search 283 

model.  284 

The KSI sequence (Pseudomonas testosteroni) with a C-terminal hexa-His tag was optimized 285 

for expression in E. coli. Expression was carried out over ~24 hours in Luria-Bertani broth at 286 

28 °C. Purified KSI was obtained by a two-step immobilized metal affinity (IMAC)-gel 287 

filtration chromatography process. KSI activity was measured in vitro using a continuous 288 

enzyme assay following the isomerization of 19-nor-androst-5(10)-ene-3,17-dione at 248 nm 289 

in phosphate buffer (pH 7.0) for minimal pH change with temperature.   290 

 291 

Experimental Cǂ
p determination. Temperature vs. rate profiles were determined by 292 

measuring rates in a continuous assay at temperature intervals of 2-4 °C at saturating substrate 293 

concentrations. Temperature was controlled via a ThermoSpectronic single cell peltier, and 294 

independently checked before and after assays by thermocouple. Initial rates were measured 295 

over a period of 10 seconds to limit the effect of denaturation, if present, at elevated 296 

temperatures. Temperature profiles were fit with eq. 3 with reference temperature (T0) set to 297 

Topt – 4: 298 

ln(𝑘) = ln (
𝑘B𝑇

ℎ
) −

[∆𝐻𝑇0

‡ +∆𝐶𝑝
‡(𝑇−𝑇0)]

𝑅𝑇
+

[∆𝑆𝑇0

‡ +∆𝐶𝑝
‡ln(𝑇/𝑇0)]

𝑅
      (3) 299 

 300 

where k = rate; kB = Boltzmann constant; h = Planks constant; ΔHǂ
T0 = Enthalpy at T0; R = 301 

ideal gas constant; ΔSǂ
T0 = entropy at T0. The transmission coefficient, κ, is assumed to be 1 302 

for simplicity and is not included.  303 
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 304 

MD simulation and analysis. All simulations and analyses were performed using the Amber 305 

package and the ff99SB-ILDN protein force field. For KSI, PDB entry 1OHP was used with 306 

Asn38 mutated back to the wild-type Asp and either the substrate or intermediate of the KSI 307 

reaction (Fig. 2A) modelled in chain A (based on the co-crystallised inhibitor 5α-estran-3,17-308 

dione); chain B was left empty. General Amber FF (GAFF) parameters with charges from 309 

HF/6-31G(d) RESP fitting (RED server: http://upjv.q4md-forcefieldtools.org/REDS/) were 310 

used for the ligand. Asp38 was treated as protonated only for the intermediate state in chain A. 311 

Asp99 was protonated in both chains, with all other ionizable residues in their standard states. 312 

All three Histidines were singly protonated on Nε2 and some Asn/His residue side-chains 313 

were rotated by 180° to obtain an optimal hydrogen bond network. For MalL, chain A from 314 

the 1-deoxynojirimycin bound structure obtained here (PDB entry 5WCZ) was used with 315 

missing atoms built in with COOT based on electron density where available. The substrate 316 

isomaltose was placed in the active site by overlay with PDB entry 3AXH (E277A MalL from 317 

S. cerevisiae; C RMSD 0.84 Å) and simulated using GLYCAM (06j-1) parameters. The 318 

transition state analogue used in simulation was placed in the active site based on the 319 

modelled position of isomaltose and the position of 1-deoxynojirimycin in our co-crystal 320 

structure, and simulated using GLYCAM for the glucose unit, and GAFF (with HF/6-31G(d) 321 

RESP fitted charges) for the unit containing the protonated nitrogen. Asp63 and Glu371 were 322 

treated as protonated in both states, with the catalytic residues Asp199 unprotonated and 323 

Glu255 protonated (in line with the mechanism). Other ionizable residues were in their 324 

standard protonation states, with His161 singly protonated on Nδ1 and all other His on Nε2. 325 

The preparation/equilibration protocol was as follows: solvation in a truncated octahedral of 326 

TIP4P(Ew) water molecules (keeping all crystallographic waters) with Na+ ions added to 327 

neutralize overall charge (ion positions randomized for each independent run), brief 328 

minimization followed by heating in 20ps to 300 K (KSI) or 320 K (MalL) with positional 329 

restraints on Cα atoms (5 kcal mol−1 Å−2), gradual release of restraints in 40 ps, equilibration 330 
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in the NPT ensemble for 1 ns. 500 ns production simulations were performed in the NVT 331 

ensemble with the Berendsen thermostat and loose temperature coupling (10 ps time constant). 332 

For both enzymes, restraints were used to maintain the Michaelis complex (with equivalent 333 

restraints on the IS or TSA states; Supplementary Methods). 334 

Analysis was performed using 10 ps snapshots from 50-500 ns of the simulations, with force-335 

field energies re-calculated after stripping of solvent and ions. Clustering on the Cα RMSD 336 

(excluding the highly flexible C-terminal residues 117-125 in KSI and the N-terminal 337 

residues 1-6 in MalL) was performed using the hierarchical agglomerative algorithm using a 338 

minimum cluster distance of 1.6 for KSI and 2.1 for MalL. Cα RMSF was calculated using 339 

RMSD fitting to a running average coordinates from a time window of 10 ns. 340 

 341 

Data availability. Coordinates and structure factors for MalL co-crystallised with 1-342 

deoxynojirimycin are deposited in the PDB under accession number 5WCZ. Simulation input 343 

files are available from the Dryad Digital Repository (DOI code [to be inserted]). 344 

 345 

References 346 

1 Arrhenius, S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker 347 

durch Säuren. Z Phys Chem 4, 226-248 (1889). 348 

2 Eyring, H. The activated complex in chemical reactions. J Chem Phys 3, 107-115 349 

(1935). 350 

3 Thomas, T. M. & Scopes, R. K. The effects of temperature on the kinetics and 351 

stability of mesophilic and thermophilic 3-phosphoglycerate kinases. Biochemical 352 

Journal 330, 1087-1095 (1998). 353 

4 Daniel, R. M. & Danson, M. J. A new understanding of how temperature affects the 354 

catalytic activity of enzymes. Trends in Biochemical Sciences 35, 584-591 (2010). 355 

5 Buchanan, C. L., Connaris, H., Danson, M. J., Reeve, C. D. & Hough, D. W. An 356 

extremely thermostable aldolase from Sulfolobus solfataricus with specificity for 357 

non-phosphorylated substrates. Biochemical Journal 3, 563-570 (1999). 358 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2017. ; https://doi.org/10.1101/165324doi: bioRxiv preprint 

https://doi.org/10.1101/165324
http://creativecommons.org/licenses/by-nc/4.0/


17 

 

6 Arcus, V. L. et al. On the Temperature Dependence of Enzyme-Catalyzed Rates. 359 

Biochemistry 55, 1681-1688 (2016). 360 

7 Hobbs, J. K. et al. Change in Heat Capacity for Enzyme Catalysis Determines 361 

Temperature Dependence of Enzyme Catalyzed Rates. ACS Chemical Biology 8, 362 

2388–2393 (2013). 363 

8 Nguyen, V. et al. Evolutionary drivers of thermoadaptation in enzyme catalysis. 364 

Science 355, 289-293 (2017). 365 

9 Firestone, R. S., Cameron, S. A., Karp, J. M., Arcus, V. L. & Schramm, V. L. Heat 366 

capacity changes for transition-state analogue binding and catalysis with human 5 '-367 

methylthioadenosine phosphorylase. ACS Chemical Biology 12, 464-473 (2017). 368 

10 Prabhu, N. V. & Sharp, K. A. Heat Capacity in Proteins. Annual Review of Physical 369 

Chemistry 56, 521-548 (2005). 370 

11 Ha, N. C., Choi, G., Choi, K. Y. & Oh, B. H. Structure and enzymology of Delta5-3-371 

ketosteroid isomerase. Curr Opin Struct Biol 11, 674-678 (2001). 372 

12 Zechel, D. L. & Withers, S. G. Glycosidase Mechanisms:  Anatomy of a Finely 373 

Tuned Catalyst. Accounts of Chemical Research 33, 11-18 (2000). 374 

13 Fenley, A. T., Muddana, H. S. & Gilson, M. K. Entropy-enthalpy transduction caused 375 

by conformational shifts can obscure the forces driving protein-ligand binding. Proc 376 

Natl Acad Sci U S A 109 (2012). 377 

14 van der Kamp, M. W., Chaudret, R. & Mulholland, A. J. QM/MM modelling of 378 

ketosteroid isomerase reactivity indicates that active site closure is integral to 379 

catalysis. FEBS Journal 280, 3120-3131 (2013). 380 

15 Fried, S. D., Bagchi, S. & Boxer, S. G. Extreme electric fields power catalysis in the 381 

active site of ketosteroid isomerase. Science 346, 1510-1514 (2014). 382 

16 Cogoli, A. & Semenza, G. A probable oxocarbonium ion in the reaction mechanism 383 

of small intestinal sucrase and isomaltase. J Biol Chem 250, 7802-7809 (1975). 384 

17 Ricard, J. & Noat, G. Catalytic efficiency, kinetic co-operativity of oligomeric 385 

enzymes and evolution. Journal of Theoretical Biology 123, 431-451 (1986). 386 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2017. ; https://doi.org/10.1101/165324doi: bioRxiv preprint 

https://doi.org/10.1101/165324
http://creativecommons.org/licenses/by-nc/4.0/


18 

 

18 Kim, T. H. et al. The role of dimer asymmetry and protomer dynamics in enzyme 387 

catalysis. Science 355 (2017). 388 

19 Wierenga, R. K. The TIM-barrel fold: a versatile framework for efficient enzymes. 389 

FEBS Letters 492, 193-198 (2001). 390 

20 Höcker, B., Jürgens, C., Wilmanns, M. & Sterner, R. Stability, catalytic versatility 391 

and evolution of the (βα)8-barrel fold. Current Opinion in Biotechnology 12, 376-381 392 

(2001). 393 

21 Burton, S. G., Cowan, D. A. & Woodley, J. M. The search for the ideal biocatalyst. 394 

Nat Biotechnol 20, 37-45 (2002). 395 

 396 

Acknowledgments 397 

MWvdK is a BBSRC David Phillips Fellow (BB/M026280/1) and he and AJM thank the 398 

BrisSynBio Synthetic Biology Research Centre for funding (BB/L01386X/1). EJP was 399 

supported by a University of Waikato Doctoral Scholarship and VLA was supported by the 400 

Marsden Fund of New Zealand (08-UOW-057). MC and AJM thank the EPSRC Centre for 401 

Doctoral Training in Theory and Modelling in Chemical Sciences (EP/L015722/1).  402 

 403 

Author contributions 404 

MWvdK devised simulation and analysis; MWvdK and EJP performed simulations and 405 

analysis, assisted by MC; EJP and KLK performed experiments; MWvdK, EJP, AJM and 406 

VLA analysed and interpreted results, and wrote the manuscript. MWvdK and EJP 407 

contributed equally to this work. 408 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2017. ; https://doi.org/10.1101/165324doi: bioRxiv preprint 

https://doi.org/10.1101/165324
http://creativecommons.org/licenses/by-nc/4.0/

