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Abstract1

Clustering infections by genetic similarity is a popular technique for identifying potential out-2

breaks of infectious disease, in part because sequences are now routinely collected for clinical3

management of many infections. A diverse number of nonparametric clustering methods have4

been developed for this purpose. These methods are generally intuitive, rapid to compute, and5

readily scale with large data sets. However, we have found that nonparametric clustering methods6

can be biased towards identifying clusters of diagnosis — where individuals are sampled sooner7

post-infection — rather than the clusters of rapid transmission that are meant to be potential foci8

for public health efforts. We develop a fundamentally new approach to genetic clustering based9

on fitting a Markov-modulated Poisson process (MMPP), which represents the evolution of trans-10

mission rates along the tree relating different infections. We evaluated this model-based method11

alongside five nonparametric clustering methods using both simulated and actual HIV sequence12

data sets. For simulated clusters of rapid transmission, the MMPP clustering method obtained13

higher mean sensitivity (85%) and specificity (91%) than the nonparametric methods. When we14

applied these clustering methods to published HIV-1 sequences from a study cohort of men who15

have sex with men in Seattle, USA, we found that the MMPP method categorized about half (46%)16

as many individuals to clusters compared to the other methods, and that the MMPP clusters were17

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2017. ; https://doi.org/10.1101/165357doi: bioRxiv preprint 

https://doi.org/10.1101/165357
http://creativecommons.org/licenses/by/4.0/


more consistent with transmission outbreaks. This new approach to genetic clustering has sig-1

nificant implications for the application of pathogen sequence analysis to public health, where it2

is critical to robustly and accurately identify clusters for the most cost-effective deployment of3

resources.4

Introduction5

Genetic clustering is a class of methods for reducing large sequence data sets down to groups of6

closely-related sequences. In the context of infectious diseases, clusters may identify infections7

related by a common source [1]. Additionally, genetic clusters may represent locally elevated8

rates of transmission, particularly when we expect a measurable number of genetic differences to9

accumulate within a host between transmission events. Because genetic sequencing is increas-10

ingly a fixture of the clinical management of infections, there is growing interest in using genetic11

clustering as a resource for guiding public health responses in near real time [2–4]. The general12

motivation is that if genetic clusters define groups with higher rates of transmission, then they may13

facilitate a more cost-effective deployment of prevention services.14

A diverse number of genetic clustering methods have been developed and applied for a broad15

range of bacteria and viruses including Staphylococcus aureus [5], Mycobacterium tuberculosis16

[6], HIV [7, 8], hepatitis C virus [9, 10] and Ebola virus [11, 12]. These clustering methods17

are nonparametric because the clustering criteria are based on empirical distributions, making no18

specific assumptions about the underlying biological processes. For instance, pairwise methods19

build up clusters from pairs of sequences with a genetic distance below a predefined threshold20

[5, 13]. Subtree methods define clusters relative to the common ancestors of sequences in the21

phylogenetic tree, based on quantities such as the mean branch length among the descendants of22

the ancestral node [14, 15]. Nonparametric methods tend to be intuitive and relatively easy to23

compute. We have previously observed, however, that current nonparametric clustering methods24

seem relatively insensitive to variation in rates of transmission [16]. Instead, these methods tend25

to detect variation in rates of sampling, i.e., the delay between infection and diagnosis.26

Here we introduce a fundamentally new approach to genetic clustering for infectious diseases27
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that is based on modelling the evolution of transmission rates along the tree. We demonstrate that1

our model-based (parametric) clustering method substantially outperforms a variety of nonpara-2

metric methods in recovering clusters of rapid transmission in simulated data, and we show that3

these differences are recapitulated in an analysis of real HIV-1 data.4

Methods5

Model6

As in previous work [17, 18], we assume that the phylogenetic tree reconstructed from the genetic7

variation among sampled infections is similar in shape to the underlying transmission tree [19].8

Hence, we assume that a branching point in the tree roughly approximates a transmission event,9

which is also an implicit assumption of nonparametric clustering methods where clusters are in-10

terpreted as ‘hotspots’ of rapid transmission. We model branching rates as a discrete character11

state that evolves along a phylogeny according to a continuous-time Markov chain. Further, we12

assume the branching times of the phylogeny are generated according to a Poisson process whose13

rate is controlled by the evolving character. Under this model, the branch lengths of the phylogeny14

are not independent of the character state, as typically assumed when modeling the evolution of15

nucleotides or amino acids.16

A Cox process, or doubly-stochastic Poisson process, is an inhomogeneous Poisson process17

whose arrival rate λ (t) is itself a stochastic process. The Markov-modulated Poisson process18

(MMPP) is a special case of the Cox process where λ (t) varies according to a continuous-time19

Markov chain with a finite number of states. When the Markov chain is in state 1, the Poisson20

process has rate λ1, and so on. Following [20], we will let the Markov chain have m states, denote21

its infinitesimal generator matrix by:22
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Q =


−σ1 σ12 · · · σ1m

σ21 −σ2 · · · σ2m
...

... . . . ...

σm1 σm2 · · · −σm



where σi = ∑ j 6=i σi j, and denote the vector of rates of the Poisson process by λ = [λ1, . . . , λm]
T .23

The probability density of the process producing its first arrival at time y in state j, given that1

it started in state i at time 0, is the i jth element of the matrix f (y) = exp((Q−Λ)y)Λ where2

Λ = diag(λ ) [21]. Following [22] and [23], it is straightforward to calculate the likelihood of an3

observed tree under this process. Let v be an internal node of the τ other than the root, u be its4

parent, w and z be its children, and tv be the length of the branch joining v to its parent u. As in5

[23], define Li(v) to be the likelihood of the subtree rooted at v conditioned on the parent u being6

in state i. Li(v) is recursively defined by7

Li(v) = ∑
j

fi j(tv)L j(w)L j(z).

At the root of the tree, with children w and z,

Li(τ) = πiLi(w)Li(z)

L(τ) = ∑
i

Li(τ).

At a tip node v with branch length tv, it is intuitive to define the likelihood using the matrix8

exp((Q−Λ)tv), which gives the probability density of each state transition and no events oc-9

curring up to time tv. However, we found that the parameters which optimized the likelihood with10

this definition nearly always included one arbitrarily small rate assigned to all tips. For this reason,11

we simply assign Li(v) = 1 for all tips v. This approach is likely to overestimate cluster sizes due12

to inclusion of non-cluster individuals sampled following transmission from a cluster member, as13

well as individuals who are not currently part of a cluster but were in the past. In the context14

of viral phylogenetics, this is somewhat justified by the evidence that viruses such as HIV [24]15
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and HCV [25] may evolve at different rates within and among hosts, implying that the branching16

process acting on the tips of the phylogeny may be different from the process acting on internal1

nodes.2

To optimize the likelihood of this model, we used the covariance matrix adaptation evolution3

strategy [26], a black-box, derivative-free optimization algorithm. Source code implementing this4

model is available at https://github.com/rmcclosk/netabc.5

Data simulation6

Trees were simulated using MASTER (version 5.0.2 [27]) under a susceptible-infected-removed7

(SIR) model of an epidemic, as described in previous work [16]. In brief, transmissions occur8

between infected (I) and susceptible individuals (S) at a rate βSI. Individuals are removed from9

I due to mortality at a rate µ or by becoming sampled at a rate ψ . The population is structured10

into two subpopulations with constant migration between like compartments (S0↔ S1, I0↔ I1) at11

a rate m. The two subpopulations comprised S0 + I0 = 9000 and S1 + I1 = 1000 individuals, re-12

spectively. Each epidemic was seeded by a single infected individual in the majority subpopulation13

(I0 = 1 at time 0). We simulated 100 replicate trees under three different scenarios where rates of14

transmission (β1) and sampling (ψ1) were varied in the minority subpopulation as follows: (1) a15

faster sampling rate (ψ1 > ψ0); (2) a faster transmission rate (β1 > β0); or (3) both faster sampling16

and transmission rates relative to the majority subpopulation. The underlying assumption is that17

samples from the minority subpopulation should be assigned to clusters. Infected individuals were18

removed due to mortality at a constant rate µ . The end condition for each simulation was for the19

tree to reach 1000 terminal branches (tips), which were subsequently filtered for tips correspond-20

ing to sampled individuals. As a result, the final number of tips was stochastic and slightly less21

than 1000. The simulation outputs were serialized to files in the Newick tree specification format22

and parsed using regular expressions in a Python script to transfer node attributes from comment23

strings to node labels.24

In our preliminary study [16], the parameters of the model were manually adjusted until it25

yielded tree simulations that visually resembled the typical ‘star-like’ shape of HIV-1 molecular26

phylogenies (long terminal branches). In addition to expanding the number of replicate simula-27
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tions, we ran a second set of simulations under different parameters to evaluate the sensitivity of28

our results to these settings. Specifically, we reduced the baseline (majority) transmission rate1

from β0 = 5×10−3 to 7.5×10−4 and reduced the sampling fraction ψ/(ψ +µ) — the probability2

that an infected individual was sampled before death — from 0.98 to 0.5 to reflect the parame-3

ter settings used in [28]. We note that this sampling fraction is very different from the sampled4

proportion of the infected population, since the former does not include unsampled and surviving5

infected individuals. Unlike [28], we increased the baseline sampling rate from ψ0 = 0.15 to 1.06

so that the latter sampled proportion increased from less than 10% to about 40%. When ψ0 = 0.15,7

the prevalence tended to exceed 90% at the simulation end-point where the target number of tips8

(n = 2000) was obtained. The parameter settings used in the two sets of simulations are summa-9

rized in Supporting Information (SI) Table S1. For each scenario, we discarded a small number of10

replicates where the epidemic failed to spread and ran additional simulations until 100 replicates11

were obtained.12

Sequence evolution was simulated on each tree using INDELible (version 1.03) [29] with mod-13

ifications to allow the user to specify the ancestral nucleotide sequence at the root. We initialized14

our simulations with the HXB2 pol reference sequence (Genbank accession K03455.1) at the root15

of each simulated tree. As previously described [16], the simulation parameters were calibrated16

to an actual alignment of HIV-1 pol sequences. Specifically, we used the M3 codon model with a17

transition rate bias κ = 8.0 and rate variation according to a gamma distribution (shape α = 1.5,18

rate β = 3) that we partitioned into 50 rate categories; a Lavalette distribution (LAV) indel model19

with a = 1.5, M = 4 and rate 0.001; and a scaling factor of 15.20

Phylogenetic trees were reconstructed from the multiple sequence alignments using approx-21

imate maximum likelihood (FastTree2, version 2.1.10) [30] or neighbor-joining (RapidNJ, ver-22

sion 2.3.2) [31]. The alignments and reconstructed trees were used as inputs for five published23

non-parametric clustering methods — HIV-TRACE (TN93) [32], PhyloPart [33], Cluster Picker24

[8], subtree clustering [15], patristic distance on bootstrapped alignments [34] — and our MMPP25

method. Because our method requires a rooted bifurcating tree, we randomly resolved polytomies26

using the multi2di function in the R package ape [35] and used midpoint rooting with R package27
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phangorn [36].28

To measure the performance of each method, we calculated the false and true positive rates for1

a range of threshold parameter settings for each method, where a ‘positive’ prediction is the assign-2

ment of a sampled sequence to the minority subpopulation. For TN93 [37], we varied the genetic3

distance cutoff at all observed values. For Cluster Picker [8], we fixed the bootstrap threshold to4

0.9 and varied the distance cutoff from 0.005 to 0.1. Similarly, we varied the maximum distance5

from 0.005 to 0.0125 in PhyloPart [33]. We implemented a subtree clustering method with Biopy-6

thon [38], where we screened internal nodes for a bootstrap threshold of 0.9 and varied the mean7

branch length cutoff from 0.002 to 0.2. Lastly for the patristic method, we varied the cutoff from8

0.004 to 0.5 for a minimum of 80% of bootstrap replicates [34].9

Empirical data10

To compare these clustering methods on an actual data set, we obtained 3102 published partial11

HIV-1 pol sequences that were previously collected in a cohort study of men who have sex with12

men in Seattle, USA, and analyzed for clusters of transmission [39]. We reduced the data down13

to a single sequence per patient (n = 1953) by excluding sequence records that were annotated as14

an additional isolate (suffixed with an underscore and integer). Next, we removed codons asso-15

ciated with drug resistance mutations according to the surveillance list published by Shafer and16

colleagues [40], using pairwise alignment of each sequence against the HXB2 pol reference to17

locate the respective codons. This step also trimmed sequence intervals that did not align to the18

reference. Aligned sequences that were shorter than 100 nucleotides (n = 22) were filtered out at19

this stage. We used SCUEAL [41] to predict HIV subtypes from the sequence data (maximum20

three recombination breakpoints) and screened for sequences categorized as subtype B excluding21

intra- and inter-subtype recombinants (n = 1653). A multiple sequence alignment was generated22

from these data using MAFFT (version 7.305b) [42]. We reconstructed a neighbor-joining tree23

from this alignment with RapidNJ [31] and a maximum likelihood tree with FastTree2 [30]. Fi-24

nally, we applied the different clustering methods using these trees and, if necessary, the sequence25

alignment, as inputs.26
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Results27

Sensitivity and specificity1

Epidemic dynamics were simulated from a structured birth-death model using parameter settings2

from [16]. We assumed that one subpopulation was larger than the other with 9000 and 1000 in-3

dividuals, respectively, and that the epidemic started with a single infected individual in the larger4

subpopulation. This model was designed to produce genetic clusters when the epidemic moved5

from the larger subpopulation into the smaller (minority) subpopulation in which rates of trans-6

mission and/or sampling were elevated. Our main results are summarized in Figure 1 with respect7

to their true and false positive rates on 100 replicate simulations per scenario. In the first scenario,8

the minority subpopulation had a faster transmission rate but the same sampling rate as the majority9

subpopulation (‘faster transmission’). The MMPP method obtained high true positive rates (TPRs)10

and low false positive rates (FPRs) with means of 84.6% and 9.2%, respectively. We noticed that11

a small number of replicates resulted in substantially higher FPRs than the others. In these cases,12

we determined that the MMPP method had incorrectly assigned the ‘faster transmission’ state to13

the root of the tree. We subsequently determined that increasing the number of rate classes in the14

model enabled MMPP to correctly identify clusters with the highest rate class (data not shown).15

None of the nonparametric clustering methods obtained comparable TPRs or FPRs under this sim-16

ulation scenario. For instance, the TN93, patristic and subtree clustering methods obtained a mean17

TPR of about 60% for an FPR of 30%. In contrast, Cluster Picker and PhyloPart performed poorly18

under this scenario, yielding cluster assignments with TPR and FPR rates that were comparable to19

random guessing (Figure 1).20

To illustrate the discordant results among these methods, we summarized the cluster assign-21

ments for Cluster Picker, subtree clustering and MMPP in Figure 2. In this specific example,22

sequences sampled from the minority subpopulation are concentrated in two groups. Clusters23

identified by Cluster Picker were uniformly distributed throughout the tree. In contrast, cluster24

assignments by the subtree clustering method were distributed less evenly with a subtree cluster25

coinciding accurately with one of the actual clusters. However, we found that this method was26

highly sensitive to the choice of mean branch length cutoff. For instance, increasing this cutoff27
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Figure 1: Performance of MMPP and five nonparametric clustering methods on simulated

data. Sequence data were simulated under three scenarios where the minority subpopulation

had (1) a faster transmission rate (left); (2) a faster sampling rate (centre), or; (3) both faster

rates of transmission and sampling (right). The x- and y-axes correspond to the false and true

positive rates of classifying individuals into the minority subpopulation, respectively. Each

point represents the outcome when the MMPP model was applied to one of 100 replicate

simulations. Each line represents the receiver-operator characteristic curve for one of the five

nonparametric clustering methods (see figure legend), where different false and true positive

rates were obtained by varying a threshold parameter of the method.
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from 0.0065 to 0.008 caused every terminal branch to be assigned to a cluster.28

In the second simulation scenario, the rate of sampling was elevated in the minority subpopu-1

lation but the transmission rates were held constant (‘faster sampling’). In other words, members2

of the minority subpopulation were more likely to be diagnosed sooner after infection. Under this3

scenario the MMPP predictions were no better than a random guess with a mean TPR and FPR4

of 55.6% and 51.5%, respectively. This outcome was not surprising given that terminal branch5

lengths were excluded from maximum likelihood parameter estimation of the MMPP model. The6

nonparametric methods were far superior, with the best results obtained by the subtree clustering7

method. At a bootstrap cutoff of 90% and mean branch length cutoff of 0.006, for example, the8

average TPR and FPR was 78.8% and 11.9%, respectively.9

Finally, the third simulation scenario combined both faster rates of sampling and transmission10

in the minority subpopulation (‘both faster’). The MMPP predictions attained a mean TPR and11

FPR of 88.7% and 18.5%, respectively. This level of performance was comparable to the sub-12

tree clustering and pairwise distance methods (patristic distance and TN93; Figure 1) at specific13

cutoff values. On the other hand, the Cluster Picker and PhyloPart methods both suffered worse14

performance under this scenario.15

We obtained qualitatively similar results (SI Figure S1) when the trees were simulated under a16

different parameterization of the model based on [28]. Relative to the first parameter settings, the17

transmission rates in both subpopulations were reduced by a factor of 0.15, and the mortality rate18

of infected individuals was increased to equal the sampling rate in the majority subpopulation. In19

general, we observed higher FPR associated with the MMPP method for this set of simulations.20

The mean TPR and FPR of MMPP under the faster transmission scenario were 90.4% and 31.1%,21

respectively. To our surprise, MMPP was able to correctly identify clusters under the faster sam-22

pling scenario (82.3% TPR and 28.8% FPR), unlike the previous set of simulations. This level23

of performance was comparable to the subtree clustering method. We attribute this difference to24

the effect of lineage removal due to the elevated mortality of infected individuals. The elevated25

sampling rate in the minority subpopulation resulted in more complete sampling of the correspond-26

ing subtree, leading to shorter lengths of internal branches. In contrast, infected individuals were27
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Cluster Picker
Markov-modulated 
Poisson process Subtree clustering

Figure 2: Comparison of predicted clusters and actual clusters of faster transmission. We

mapped the clustering predictions from three different methods (Cluster Picker, subtree clus-

tering and MMPP) onto one of the neighbor-joining trees reconstructed from sequence data

simulated under the faster-transmission scenario. Branches are coloured light red if the

method assigns that branch to a cluster, and dark blue otherwise. To colour internal branches

from the nonparametric cluster assignments of tips, we used ancestral character estimation

by maximum likelihood as implemented in the ace function in the R package ape [35]. The

correct assignments are indicated by labeling tips with filled circles if they belong in a cluster.

Cluster Picker (version 1.2.4) was run with default initial and main support thresholds (0.9)

and a genetic distance threshold of 0.025. Subtree clusters were extracted from the tree with

a bootstrap threshold of 90% and mean branch length threshold of 0.0065.
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seldom removed by mortality before sampling under the previous parameterization of the model.28

Computing time1

Based on our simulation analyses, the MMPP method seems to confer greater sensitivity and speci-2

ficity to detect variation in transmission rates than the five nonparametric methods that we eval-3

uated. These methods are often applied to large sequence databases with thousands or tens of4

thousands of records [34, 43, 44]. Furthermore, there is a growing demand for genetic clusters to5

be identified rapidly so that this information can be used to inform public health decisions in near6

real-time [4, 32]. Hence, we evaluated the average computing time require to extract clusters from7

simulated data sets containing approximately 1000 sequences each; the actual mean number of8

tips per tree was 983.3 (range 969−994). Our results, based on the times required to process five9

replicate data sets, are summarized in Table 1. The most time-consuming method was the patristic10

distance method because our default approach was to generate distances for 100 nonparametric11

bootstrap samples of the data [34]. Accordingly, eliminating the bootstrap sampling reduced the12

computing time by roughly 100-fold at the cost of sensitivity and specificity. The fastest method13

was TN93, which does not require reconstruction of a phylogenetic tree from sequence variation.14

Our MMPP method required substantially more time to compute. However, the half-minute used15

to process a 1000-tip tree is still an acceptable amount for near real-time monitoring.16

To assess how MMPP computing time scales with the size of the tree, we generated random17

subsamples of 100, 200, 500 and 8000 sequences from the simulated data sets, reconstructed18

neighbor-joining trees for each sample, and re-ran MMPP on the resulting trees. Our results in-19

dicated that the computing time scaled non-linearly with the size of the tree: the average times20

were 0.82, 1.06, 2.44 and 20.68 seconds, respectively. Note that the average time to process trees21

averaging 983 tips each was 30.45 seconds (Table 1). These results are summarized in SI Figure22

S2.23

Application to real data24

We obtained a published data set of n = 3102 HIV-1 pol sequences that were collected from a25

cohort study of men who have sex with men in Seattle, U.S. [39]. These data were reduced to26
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Method Tree Multi- Time per replicate (seconds) Average

required core 1 2 3 4 5 (seconds)

MMPP yes no 27.32 31.63 32.54 33.35 27.42 30.45

TN93 no yes 1.46 1.24 1.21 1.21 1.17 1.26

Cluster Picker yes yes 1.45 3.97 2.87 6.20 4.42 3.78

PhyloPart yes yes 2.78 3.11 4.64 7.20 6.01 4.75

Subtree clustering yes no 2.73 2.69 2.74 2.78 2.83 2.76

Patristic yes no 82.46 67.57 95.77 71.71 71.25 77.75

Table 1: Computing time required by six clustering methods to process five different trees

each relating approximately 1000 simulated sequences. All methods were evaluated on an

Intel Xeon E5-1650v4 (six core) processor. If the UNIX time output implied multi-core pro-

cessing and the use of multiple cores was documented for the program, then this was indicated

under the heading ‘Multi-core’. None of the reported times include the time required to recon-

struct phylogenetic trees from the simulated sequence data, since the specific reconstruction

method used (e.g., maximum likelihood, neighbor joining) may vary among users. Because

we observed substantial variance among repeated runs of MMPP on the same data, we re-

ported the average of 3 runs. Times reported for TN93 include filtering the genetic distance

calculations for the shortest pairwise distance per sequence.

one sequence per individual and then filtered for non-recombinant subtype B sequences (n = 1653,27

see Methods). We reconstructed a maximum likelihood phylogeny from these sequences as the1

primary input for the different clustering methods. First, we discovered that the MMPP method2

tended to assign faster branching rates throughout the base of the tree, including the root node. A3

lineages-through-time plot of the tree (SI Figure S3) was consistent with a period of population-4

level exponential growth in the first half of the tree, which may confound the MMPP model from5

detecting other sources of branching rate variation over time. Based on our experience with simu-6

lated cases where the faster of two rate classes was sometimes incorrectly assigned to the root of the7
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tree, we increased the number of rate classes to 3 and grouped lineages assigned to the fastest rate8

class as putative clusters. The resulting clusters are summarized in Figure 3, alongside the clus-1

ters predicted by two nonparametric methods (TN93 and subtree clustering). Our MMPP program2

required 43.6 and 28.7 seconds to analyze the ML tree assuming two and three rate classes, respec-3

tively. Without adequate information to exactly reproduce the clusters reported by the source study4

[39], we tuned each nonparametric clustering method until the number of individuals assigned to5

clusters was similar to the number reported in that study (n = 168 individuals in 72 clusters).6

TN
93

M
M

PP
su

bt
re

e 
cl

us
te

rin
g

Figure 3: Comparison of three different clustering methods applied to a phylogeny recon-

structed from real HIV data. The phylogeny was reconstructed by maximum likelihood from

a published data set of HIV-1 subtype B pol sequences sampled from a study cohort of men

who have sex with men in Seattle, U.S. [39]. We adjusted the TN93 and subtree cluster-

ing methods until the number of individuals assigned to clusters was similar to the number

reported in the original study. Branches assigned to clusters are highlighted in dark red.

The most apparent difference between the nonparametric methods and the MMPP results,7
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which are summarized in Figure 3, was the number of individuals assigned to clusters. Our MMPP8

model assigned only 78 individuals (150 branches in the tree) to 8 clusters, substantially fewer1

than the number reported in [39]. We note that the number of individuals in nonparametric clusters2

is determined by the subjective selection of clustering criteria. To match the number reported by3

[39], the TN93 method required a distance cutoff of 0.006, and our implementation of the subtree4

method used a mean branch length cutoff of 0.0065 and a bootstrap cutoff of 0.9. Based on the5

assignment of branches to clusters, MMPP was more concordant with the subtree method (Cohen’s6

κ = 0.573) than TN93 (κ = 0.341), where κ = 1 indicates complete agreement. Within clusters7

identified by the subtree method but not by MMPP, terminal branch lengths (n = 92) were signif-8

icantly shorter (Wilcoxon test, P < 10−12) and internal branch lengths (n = 64) were no different9

(P = 0.24) from their respective distributions in the entire tree. Similarly, terminal branches in10

TN93 clusters not identified by MMPP (n = 124) were significantly shorter (P < 10−12) but the11

internal branches (n = 31) were only marginally shorter (P = 0.051). In contrast, internal branches12

were significantly shorter in MMPP clusters (P = 5.98× 10−7). These results suggest that many13

of the nonparametric clusters may be caused by variation in sampling rates; however, we cannot14

ascertain the extent of this effect without additional information such as estimated dates of infec-15

tion.16

Discussion17

Here we have formulated and tested a model-based (parametric) method for clustering genetic18

sequences that have been sampled from an infectious disease epidemic. A potential advantage of a19

model-based approach is that we can focus on the parameter of interest — namely, the variation in20

transmission rates over time that may be an indicator of outbreaks. Our approach is conceptually21

similar to the lineages-over-time model proposed by Holmes and colleagues [17]; however, we22

assume that branching rates evolve along branches of the tree, such that discordant rates may occur23

on contemporaneous branches on different parts of the tree. The MMPP model is also closely24

related to models of biological speciation where rates of speciation are determined by a single25

evolving character state, e.g., [45, 46]. Specifically, our model can be interpreted as a special case26
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of the multitype speciation-extinction model [47] where extinction events are censored from the27

model. Our simulation results indicate that the interpretation of MMPP clusters with respect to1

sampling rates is dependent on the probability that a genetic sequence of the pathogen is sampled2

from an infected individual before their death. If most infected individuals are eventually sampled,3

then we predict that MMPP clusters will largely be determined by variation in transmission rates.4

If a substantial fraction of infected individuals are never sampled before their death, however,5

then the MMPP clusters may be caused by variation in either rates of transmission or sampling.6

Nevertheless, we submit that this confounding is preferable to being unable to detect clusters of7

transmission at all (Figure S1).8

When interpreting clusters produced under the MMPP model, we assume that the variation in9

the rates of branching events in the phylogeny is a sufficient approximation of variation in trans-10

mission rates over time. The same assumption is implicit when nonparametric genetic clusters are11

interpreted as putative transmission outbreaks. There are several reasons why transmission events12

are likely to map to locations of the virus phylogeny other than the branching points, such as in-13

complete lineage sorting within hosts [48] and incomplete sampling of the infected population14

[49]. Another issue that is unique to model-based clustering is the problem of model misspeci-15

fication. The present MMPP model assumes that rates of transition between branching rates are16

constant over time. For instance, fitting the MMPP model with two rate classes to the actual HIV-117

data set resulted in a majority of branches assigned to the faster rate class, including the root of18

the tree. This was likely caused by an early period of exponential growth in the epidemic (Figure19

S3), which induces lineage-independent variation in branching rates over time. Furthermore, the20

spread of an epidemic through a socially and spatially-structured host population is problematic for21

the MMPP model, which assumes that the evolution of branching rates is a memoryless process.22

These issues identify directions for further work in this new class of genetic clustering methods for23

infectious disease outbreaks.24

Genetic clustering can be an important resource for retrospective epidemiological investiga-25

tions [50] and may eventually play a central role in the near-real time monitoring and prediction26

of infectious disease outbreaks [3, 4]. However, the growing popularity of applying genetic clus-27
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tering to detect outbreaks of transmission needs to be tempered with greater skepticism about the28

underlying methods [51]. Our results suggest that many clustering methods are potentially mis-1

directing public health efforts away from groups suffering from higher rates of transmission, and2

towards groups where new infections were diagnosed sooner than the population average. As we3

have shown with our analysis of the MMPP method, bringing new approaches to the clustering4

problem may provide a more complete picture, in combination with current methods, about the5

recent history of an epidemic.6
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