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ABSTRACT: This manuscript describes a workflow for 
analysis of transient absorption (TA) spectroscopy data us-
ing Integrative Data Analysis Platforms (IDAP) software 
package. Time-dependent spectral series are analyzed 
through evaluation of the isosbestic point and kinetics of 
excited state and ground-state bleach decays. Model fitting 
and selection based on Akaike's Information Criterion is 
discussed. As a practical example, we analyze excitation de-
cays of a common protein label, Alexa Fluor 647.  

Ultrafast transient-absorption (TA) pump-probe spec-
troscopy allows to monitor excitation-relaxation processes in 
chromophores with unmatched resolution1-4. In this method, 
the absorbance of the sample is measured before and after 
excitation ("pump") pulse. The chromophore molecules in 
the excited state, typically, have a different absorption spec-
trum relatively to the ground state. By recording the sample 
absorption with a variable delay after the pump pulse one can 
observe a time-dependent spectral evolution that reflects 
relaxation of excited states back to the ground state. A num-
ber of commercial software packages are available for de-
tailed analysis of the TA data such as Surface Xplorer (Ultra-
fast Systems LLC). We are developing the Integrative Data 
Analysis Platform (IDAP) as an open-source software pack-
age with a free academic license available from 
http://lineshapekin.net/#IDAP. The IDAP consists of a fitting 
engine with a generalized data interface for easy introduction 
of user-defined models, simultaneous analysis of multiple 
types of data, and statistical hypothesis testing. To allow for a 
customizable processing and analysis of the TA data, we de-
veloped the TA module for the IDAP, which is described in 
this manuscript. 
Materials 

Alexa Fluor™ 647 C2 maleimide (A647) was purchased 
from ThermoFisher (Cat.# A20347). The dye was reconsti-

tuted with DMSO to obtain the 10 mM standard stock solu-
tion. The TA sample was prepared by diluting the standard 
stock of A647 with 25 µM L-cysteine (to quench the malei-
mide group) to achieve 7.5 µM solution concentration.  Fig-
ure 1 shows an absorbance spectrum of the sample.  

 
Figure 1 Absorbance spectrum of the A647 solution in a 2 mm 
optical cell. 

TA measurements were performed as described previous-
ly5. Data were recorded for one hour with 50 µW pump pow-
er . The duration of the pump and probe pulses were ca. 200 
fs. The optical cell path length was 2 mm.  
IDAP software  

The Integrative Data Analysis Platform is written in 
MATLAB object-oriented M-code language. The TA data 
analysis is performed using a specialized data class Exponen-
tial_Decay, which includes a range of different multi-
exponential models. The TA data are trimmed to start at 1 
ps, therefore, a need for deconvolution of the Instrument 
Response Function (IRF) is removed. Some of the theory 
behind the analysis of the TA data with IDAP to extract 
quantitative FRET values and donor-acceptor distance dis-
tributions has been described in our earlier publication5. 
Here, we will focus on details of processing of the raw TA 
data with IDAP and multi-exponential model fitting and hy-
pothesis testing. The TA control scripts for IDAP are includ-
ed in Supporting Information. 
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Pre-processing of the raw TA data 
The two-dimensional TA data are exported from the TA 

acquisition software (in this paper: from the Surface Xplorer)  
to the comma-separated-values (CSV) format. The Python 
program TA_convert_csv.py prepares the datasets for import 
by IDAP (issue TA_convert_csv.py 'csv-file-name').  The CSV 
file name is used to create a folder with extension '.data' with  
two output files: TA_data.txt and  TA_parameters.txt. The 
TA_data.txt is a rectangular matrix of intensity values with a 
row for each wavelength, and columns corresponding to dif-
ferent times. First row of the data matrix are the delay times. 
First column—wavelength values. The TA_parameters.txt 
includes the footer of the Surface Xplorer output with the 
instrument parameters (also displayed in the terminal win-
dow for inspection by the user). 
Data display and extraction of time-dependent decays 

Visualization of the TA data and extraction of spectral re-
gions of interest for analysis is performed with the control 
script prepare_TA_data_main.m. The sample variable is as-
signed in the beginning of the script to give a unique name to 
all figures and data objects generated in the session. Separate 
sets of settings are defined for different tasks. Uncomment-
ing a selected set will direct IDAP to process the TA data in a 
desired way and deposit the results in a dedicated folder.  
The script generates a series of images: a small PNG file 
(suitable for email or web), a large PNG file (suitable for 
Powerpoint presentations), and a FIG file in MATLAB for-
mat (editable, exportable to EPS for publication). The ex-
tracted TA data are saved in the session.mat file for next steps 
of analysis (plotting and fitting). 

 
Figure 2 Two-dimensional color map of a transient absorp-

tion decay. Positive peaks are shaded red; negative—blue.  

Overall view  Uncommenting "Overall view" section of the 
prepare_TA_data_main.m (with the rest of sections com-
mented out) directs the prepare_TA_data_main to produce 

the view of a full two-dimensional dataset in two forms: a 
color map and a spectral overlay.  

Figure 2 demonstrates the two-dimensional difference 
spectrum in the form of a color map with the time on X axis 
in a logarithmic format and the Y axis representing the ab-
sorption spectral range. The lambda_min and lambda_max 
variables set the display range for the Y axis. The red con-
tours represent positive difference absorption values of the 
newly formed excited states while the blue contours indicate  
the ground-state bleach (GSB) due to the excitation pulse at 
600 nm. The figure version that is saved in FIG format may 
be further adjusted using MATLAB Figure Editor to change 
color scheme and contour levels (this rule applies to all fig-
ures generated by IDAP).  

 
Figure 3  Spectral slices along the Y axis in two-dimensional 
dataset taken at different time intervals between the pump and 
the probe pulses. 

 
Figure 4  Example of the two-dimensional spectral region (top 
panel) extracted for integration to obtain the spectral slice cor-
responding to 0.7 ps (bottom panel). 
A series of slices are taken along the spectral dimension of 
Figure 2 at different delay times is shown in  Figure 3.  Each 
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slice is obtained by integration of a specific time range such 
as illustrated in Figure 4. The desired time ranges are set by 
the time_slices  variable in the beginning section of the pre-
pare_TA_data_main.m.  

Isosbestic point  If the major excitation-relaxation mecha-
nism is a transition to a single excited state relaxing directly 
into the ground state (a two-state transition) the spectral 
overlay such as in Figure 3 reveals an isosbestic point—a 
wavelength where spectral intensity remains constant during 
entire process. Figure 5, top panel shows a zoomed-in view of 
the isosbestic point observed near 570 nm (uncomment 
"Zoom on isosbestic point" section and rerun the  pre-
pare_TA_data_main.m). Figure 5, bottom panel shows time 
evolution of the isosbestic point region. The slices variable 
defines a (narrow) spectral region to calculate the average 
spectral intensity for each time point. Initial perturbation in 
this spectral range is visible during the excitation laser pulse 
within the first 0.2 ps.  

 

 
Figure 5  (Top) Expanded spectral area near the isosbestic 
point. (Bottom) Time-dependent spectral intensity integrated 
from 566 nm to 570 nm for each delay time. 
 

Excited state region  Excited states of the chromophore 
created by the pump pulse at 600 nm are observed as positive 
peaks in Figure 2 and Figure 3. For a more detailed look, the 
section "Zoom on positive peaks" expands this spectral re-
gion (Figure 6) and generates the time-dependent traces at 
the user-defined wavelengths (Figure 7). The wavelength 
labels correspond to a middle of the spectral ranges in the 
slices array. In Figure 7, each time point is an average intensi-
ty in the 450-460 nm and 520-530 nm ranges, respectively. 
One can see initial perturbation of the traces when excited 
states are created by the pump pulse followed by a decay of 
the excited state absorbance. The signal_sense variable is set 
to +1 to indicate to IDAP that we are watching the positive 
peak decay (as opposed to negative features). In principle, 
this determination might be made automatically based on 
the signal intensity. However, with weak signals, the particu-
larly noisy data points may have opposite signs throwing off 
the automatic estimate. Therefore, the peak "sense" is en-
forced by the user directly. 

 

 
 
Figure 6  Excited state region of A647 TA dataset. (Top) Two-
dimensional colormap of the dataset. (Bottom) Spectral slices 
in the excited state regions.  
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Figure 7  Time-dependent decay of the differential absorbance 
of the excited states at chosen wavelengths.  

 

 
Figure 8  Preparation of the decay data at chosen wavelengths 
for further analysis. (Top) Time range displaying the pre-
excitation baseline. (Bottom) Trimmed, baseline-corrected and 
normalized decays. Black trace, 455 nm; red trace, 525 nm. The 
data is smoothed with the moving average window for plotting. 

For the accurate extraction of time-dependent traces, it 
may be desirable that the baseline offset is subtracted from 
the data. This is controlled by the offset_correction variable  
('yes'/'no'), and the X_start_baseline and X_end_baseline 
parameters (common for all sections) defining the data re-
gion in the beginning of a trace prior to the pump pulse. Fig-
ure 8, top panel, shows examples of the baseline regions cor-
responding to the datasets in Figure 7. It is essential that the 
user inspects the baseline region to ensure that the IDAP 
calculated a reasonable baseline offset. The average value of 
the baseline in Figure 8, top panel, is subtracted from the raw 
absorbance values to the give baseline-corrected trace. In the 
next step, the dataset is trimmed to start at 1 ps (defined by 
X_trim_from variable) and normalized by the maximum 
point. Normalization is only done to facilitate comparison of 
traces with different absolute amplitudes and will not affect 
model fitting in the future steps. The resulting signals are 
displayed in Figure 8, bottom panel, smoothed to facilitate 
comparison. Negative orientation of the axis is arbitrarily 
chosen to match direction of GSB signals (next section) and 
will not affect fitting results. 

Ground state bleach   Figure 9 visualizes the negative peak 
of the ground-state bleach of A647 (uncomment the "Zoom 
on negative peaks" section). The ground-state population of 
the chromophore molecules was reduced by the excitation 
process, therefore, there is less absorbance in the area where 
the steady-state absorption maximum is (compare the bot-
tom panel of Figure 9 with Figure 1).  Extraction of time-
dependent decay traces is done similarly to the excited state 
decays with the only difference that the signal_sense variable 
is set to -1. 
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Figure 9  Ground-state bleach of the A647. (Top) Color map of 
the dataset; (Bottom) Overlaid spectral traces at different delay 
times. 

To examine the time-dependent GSB decay, we selected 
the absorption maximum region (645 to 665 nm) and also a 
spectral range on a shoulder of the absorption peak around 
720 nm. Top panel of Figure 10 shows the raw decays reflect-
ing expected difference in the their amplitudes. The bottom 
panel shows trimmed and normalized data graphed with a 
moving average window to facilitate comparisons. The kinet-
ics of the two GSB traces appear different, yet considering 
very low signal-to-noise ratio (S/N) of the 720 nm trace, one 
should refrain from making conclusions from this dataset. 
For a proper comparison, an additional experiment is re-
quired with longer acquisition and/or higher concentrations 
of the dye to bring S/N in the 720 nm decay down to a level 
comparable to the S/N of the 655 nm trace in Figure 10. 

 

 
Figure 10  Ground-state bleach of the A647. (Top) The raw 
decay data at two wavelengths. (Bottom) Trimmed, baseline-
corrected and normalized decays. Black trace, 655 nm; red 
trace, 720 nm. Normalization is formally performed using a 
maximum point of the raw data before smoothing—explaining 
offset of the two traces from 1. Smoothing is only done to gen-
erate the trace for display and will not alter the data for fitting. 

Comparison plotting  Multiple time-resolved traces origi-
nating from the same or different TA experiments may be 
plotted together with the plot_multiple.m script. The da-
tasets_files is a cell array with full (or relative) paths to the  
session.mat files of the corresponding datasets.  Figure 11 
demonstrates overlay of all traces examined in the A647 da-
taset with GSB decays multiplied by -1 (the signal_sense val-
ue) for easier comparison.  
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Figure 11  Summary of the time-dependent differential ab-

sorption traces with linear (top panel) and logarithmic (bottom 
panel) time axis. Solid line connects raw data points (no 
smoothing applied). 

 
Data fitting with alternative models  

The session.mat files containing multiple decays obtained 
in the previous sections are directly usable in the next fitting 
phase of analysis. For purposes of easier data management, it 
is still preferable to re-run prepare_TA_data_main.m to ex-
tract chosen traces one at a time such that each session.mat 
contains only one trace (use sections "Zoom on one fea-
ture"). In the example below, we extracted a single GSB trace 
by integrating between 645 and 665 nm (corresponding to 
the "655-nm" trace in Figure 10).  

The fitting process is controlled by fit_exp_decay_main.m 
script. The script may be run in three modes: (1) display of 
data and initial approximation of the model to the data with-
out fitting, (2) least-squared fitting of the chosen model to 
the data, (3) mutliple runs with synthetic datasets to deter-
mine parameter uncertainties and correlations through the 
Monte-Carlo analysis. To request a specific mode, the 

fit_mode parameter is assigned the 'show-data-only', 'fit-only', 
and 'Monte-Carlo' values, respectively.  

There is a choice of fitting algorithms including simplex 
and other algorithms supplied with the MATLAB Global 
Optimization toolbox. In our experience, the simplest algo-
rithm 'simplex' was also the most effective. Parameters of 
fitting algorithms may be adjusted by editing their values in 
IDAP code (TotalFit.m, section "Options for fitting rou-
tines").  

Fitting model is set using the current_model variable to one 
of the multi-exponential models. These models are sums of 
exponentials with the individual amplitudes ai normalized to 
unity and an adjustable overall amplitude A: 

           Eq. 1 
where ti are time constants (lifetimes) of N individual ex-

ponential terms. Descriptions of the models and their pa-
rameters are given in the code of Exponential_Decay.m and 
listed in '+exponential_decay_laws/' folder. 

It is very important to provide reasonable initial parame-
ters to the fitting routine such that the model approximates 
data close enough at the start of the parameter optimization. 
We start fitting with a single-exponential model (cur-
rent_model='norm-exp-1' and parameter_modes=[ 1 1 ]) and 
estimate the first lifetime from the decay trace shape plotted 
with the logarithmic time axis such as Figure 10. The maxi-
mum slope of the curve for GSB at 655 nm is observed 
around 900 ps. Setting t1=900 and fit_mode='show-data-only' 
produces a reasonable starting condition for a fit because it 
captures the major change in the data (Figure 12). The im-
ages of initial approximation plots are deposited in the folder 
with an extension 'Initial' including the sample name, the 
optimization algorithm, and the model name.  

 
Figure 12  Examination of starting parameters for fitting A647 
GSB at 655 nm with a single-exponential function.  Raw data 
(black dots) and model (red line) plotted in linear amplitude 
and time coordinates (top left), logarithmic time (top right), 
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linear time and logarithmic amplitude (middle and bottom 
rows) with different time windows.  

The parameter optimization is initiated by uncommenting 
fit_mode='fit-only' and re-running the control script. The fit 
results are found in the folder with extension 'Fit_Only'. Fig-
ure 13 shows the optimization result. The parameters of the 
best fit are given in the bottom of the figure and in the ad-
justable_parameters_only.txt  and all_datasets.txt files (the 
'Best_Fit/' folder). Note that the sum of squares (SS) value 
shown in the figure is the total SS for the dataset, while the 
text files contain SS normalized 'per point'. It is clear that we 
need more than one lifetime to characterize this GSB decay. 
Inspection of the Figure 13 suggests that the lifetime of 
about 10-50 ps accounting for 20% of the total amplitude 
may also be needed to improve match to the data.  

 
Figure 13  Fitting of A647 GSB with a single-exponential func-
tion. 

When switching to the two-exponential  model 'norm-exp-
2'  one also switches the value of parameter_modes to the 
array [ 1 1  1 1 ]. The modes are '1' for any parameter to be 
treated as variable or '0' for keeping it fixed to the set value. If 
one desires to change parameter modes, the order of parame-
ters in the model may be looked up in the file 
Best_Fit/all_datasets.txt created after starting the script in 
'show-data-only' mode. In this manuscript, we will always 
keep all parameters as adjustable. 

Setting a2=0.2 and t2=10 results in a better fit shown in 
Figure 14. The SS is significantly reduced, yet the model 
curve deviates from the data at longer times. A "stem plot" 
with the lifetimes and their amplitudes allows for easy exam-
ination the best fit results (Figure 15). It is important that 
the starting parameters for every next stage are adjusted to 
the best-fit parameters of the previous optimization run. 

 
Figure 14  Fitting of A647 GSB with a two-exponential func-
tion. 

 
Figure 15  Optimized parameter values for the two-exponential 
function. Amplitude of the each exponential term is plotted 
versus its corresponding time constant. 

A deviation of the model from the data is observed at 
longer times (Figure 14, middle left) while the difference in 
amplitude is quite small (Y axis is logarithmic in this pane). 
Addition of the third lifetime on the order of 4 ns and with 
relatively small amplitude (t3=4000, a3=0.05) leads to a shift 
of the lifetime distribution and a better fit (SS is reduced by 
30%) shown in Figure 16. Notable, that our guess that a 
longer lifetime is what the model needs most proved incor-
rect. Instead, a lifetime of 300 ps was added improving the 
model match to the data in sub-nanosecond time range 
(Figure 17).   
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Figure 16 Three-exponential fit. 

 

 
Figure 17 The optimized parameter values for the three-
exponential function. 

The middle-left pane of Figure 16 still indicates that some 
reduction of sum of squares may be gained by adding a very 
long lifetime with a very small amplitude. Setting  t4=10000, 
a3=0.01 produces further better fit shown in Figure 18. 
Thus, all features of the GSB decay appear to be accounted 
for by including four exponential terms in the model. It is 
notable that representation of the best-fit amplitudes vs life-
times as in the bottom panel of Figure 18 may be directly 
correlated to appearance of the GSB decay in the logarithmic 
time scale (Figure 18, top panel, top right pane). The relative 
height of the "stems" visually correlates to fraction of GSB 
intensity change within the corresponding time range with t3 
contributing most and t4 contributing least. 

Further increasing number of exponential terms leads to 
further reduction of sum of squares (Figure 19) but involves 
a new term with a lifetime close to a picosecond. Processes 
this fast have to be analyzed in a more complex fashion using 

deconvolution of the Instrument Response Function (IRF) 
because this time scale is similar to the width of the pump 
pulse of 200 fs and time constants of the detector (imple-
mented in SurfaceXplorer). The most important observation 
is that amplitude of this picosecond term is negative, indicat-
ing that it is a rising exponential component not decaying 
one. We may or may not consider such observation meaning-
ful depending of what we know of the relaxation process in 
the chromophore. Addition of the sixth exponential terms 
does not bring further improvement and also includes a neg-
ative sub-picosecond lifetime (not shown). 

 

 

 
Figure 18 Four-exponential fit. 
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Figure 19 Five-exponential fit. 

 
Hypothesis testing 

In general, it is often possible to reduce model deviations 
from the data but adding additional variable parameters. 
However, addition of fitting parameters reduces number of 
degrees of freedom in the datasets. Therefore, relative im-
provement in the sum of squares of the fit is always achieved 
at a cost of reduced number of degrees of freedom6, 7. This 
relative cost-benefit effect is evaluated by IDAP using the 
corrected Akaike's Information Criterion, AICc, which is 
calculated as6, 8-10:  

          Eq. 2 
where N is the number of the data points, K—number of 
fitting parameter plus one, SS—sum of squares of residuals 
from the fit. The Evidence Ratio measures the relative likeli-
hood of any pair of the models to accurately describe the 
data: 

      Eq. 3 
The hypothesis_testing.m script compares fitting results 
(stored in corresponding session.mat files) pairwise and pro-
duces the output in the form "Model X is more likely to be 
correct by the factor of Y". Table 1 summarizes the testing 
results indicating that the four-exponential model is the one 
that optimally accounts for the shape of the decay curve. The 
five-exponential model is marginally better but includes a 
potentially meaningless term: negative amplitude with the 
sub-picosecond kinetics.  
 
Table 1.  Hypothesis testing to determine relative likelihood 
of the models to accurately describe the GSB decay of A647. 
Model 1 Model 2 Model 2 is 

more correct 
by the factor 
of, (1/ER) 

Model 1 is 
more correct 
by the factor 
of, (ER) 

single-exp double-exp 2e+93   
double-exp triple-exp 4e+31  
triple-exp four-exp 1e+03  
four-exp five-exp 4  
five-exp six-exp  200 
 
The six-exponential model contains excessive number of 
parameters that makes fitting algorithm unstable that it can-
not even reach the lowest sum-of-squares produced by the 
five-exponential model. This reminds us that fitting results 
are not the true answers but outcome of a "walk" of the opti-
mization algorithm towards the global minimum. MATLAB 
includes fitting algorithms for improving convergence to the 
global minimum available in IDAP by setting the 
fit_only_algorithm parameter to 'DirectSearch' or 'Global-
Search'. However, we did not observe better convergence 
with these complex (and very slow) algorithms, therefore, 
'simplex' remains a fitting method of choice for the TA data. 
Note, that simplex method ignores minimum and maximum 
values set for the parameters (as implemented in the 
MATLAB code). 
 
Confidence intervals of fitting parameters 
The four-exponential model was found to be most likely to 
be correct. To determine confidential intervals and mutual 
correlation between parameters, we run 
fit_exp_decay_main.m  with fit_mode = 'Monte-Carlo' (which 
becomes the extension of the data-folder name). The algo-
rithm, first, obtains the best-fit of the dataset. Then, the 
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RMSD from the data is calculated and used to create mutli-
ple simulated datasets perturbed with random noise. The 
model is sequentially fit to them accumulating distributions 
of best-fit values for the parameters. These distributions are 
percentiled at 2.5% and 97.5% of the population to extract 
95% confidence interval. The confidence intervals are plot-
ted on the graph for each subsequent simulation/fitting run 
for the user to follow the progress.  As the population of best 
fit values becomes large enough the distribution's 95% inter-
val becomes less and less sensitive to subsequent addition of 
the new values. The IDAP algorithm monitors relative 
change of the confidence intervals as a criterion for stopping 
the simulations. The parameters controlling the simulations 
are listed in the code TotalFit.m in the section "Parameters 
controlling Monte-Carlo error estimates". Figure 20 shows 
confidence intervals of amplitudes and lifetimes as rectangles 
defined by lower and upper boundaries of both parameters. 
Note, that confidence intervals  are only shown for the N-1 
amplitudes because a1 is a dependent parameter. It is reason-
able to reassign confidence interval of the total amplitude A 
in Eq. 1 to the a1. (available from adjusta-
ble_parameters_only.txt). 
 

 
Figure 20 Four-exponential model 95% confidence intervals. 
 

Figure 20 illustrates that the longest lifetime is extremely 
poorly defined. Even if it improves the fit over the three-
exponential model, its value is, essentially, defined by just a 
minimum boundary of 1800 ps. It may be reasonable to re-
turn to the three-exponential model, which produces only 
marginally less perfect fit (5% greater sum of squares) yet 
yields more defined fitting parameters (Figure 21). Table 2 
lists fitting parameters with their uncertainties for these two 
models. The t2 is similar in both models, while t1 and t3 are 
close. The difference of longer lifetimes between two models 
may be explained by the optimization routine attempting to 
"roll in" the deviations of the 4-5 ns time range into the long-

est lifetime of the triple-exponential model. In the four-
exponential fit, that deviation is accounted for by the uncer-
tain fourth lifetime and the t2 and t3 are only accounting for 
the shorter time-scale decay. 

 
Figure 21 Three-exponential model 95% confidence inter-
vals. 

 
Table 2. Best fit parameters for the three- and four-
exponential models . 
Parameter best fit value  95% confidence interval 
 

Triple-exponential model 
 

A 0.97 0.96—0.98 
a2 0.099 0.087—0.11 
a3 0.65 0.57—0.71 
   

t1 300 ps 200—400 ps 
t2 9 ps 7—11 ps 
t3 1400 ps 1300—1600 ps 
   

 
Four-exponential model 

 
A 0.98 0.97—0.99 
a2 0.09 0.08—0.10 
a3 0.74 0.45—0.77 
a4 0.05 0.02—0.4 
   

t1 160 ps 70—230 ps 
t2 8  ps 5—10 ps 
t3 1100 ps 700—1200 ps 
t4 9000  ps >1800 ps 
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Another observation from Table 2 is that the confidence 
intervals for the amplitudes in the four-state model are signif-
icantly increased. This is a signature that the model contains 
parameters not well supported by the data. As a result, the 
Monte-Carlo procedure yields broad confidence intervals. 
The lifetime of 9 ns might be a true feature of A647 or an 
artifact of the data collection but the broad confidence inter-
vals prevent interpretation of this feature. As a conclusion, 
we prefer to go back to the three-state model as the most 
reasonable descriptor of the A647 GSB decay.  
 
Correlations between adjustable parameters 

In the presence of noise in the data, the model parameters 
become less defined, which is reflected in increased confi-
dence intervals. Correlation plots between parameters in 
Monte-Carlo runs show if the variation of one parameter 
may be compensated by adjustment of another. Figure 22 
displays plots for parameters pairs of the triple-exponential 
model, where each blue point originates from one fitting run 
of a simulated noisy dataset. The black point indicates the 
best fit values of the original data. We observe that the ampli-
tude and lifetime of the third exponential term demonstrates 
a significant degree of anticorrelation with the R value of 
0.97, which means that reduction in the lifetime is compen-
sated by increasing the amplitude. Therefore, both parame-
ters cannot be determined more precisely with the existing 
data. High correlation also tells us that if one of the parame-
ters was known from other data and fixed in the fit, the value 
of the second parameter could be very well defined. This will 
not be true for the first and second exponential terms, which 
parameters are virtually uncorrelated. 
Summary 

In this manuscript, I described the workflow for analysis of 
TA data using IDAP software including visualization of the 
spectral regions, extraction of the integrated decay traces, 
fitting and model selection based on Akaike's Information 
Criterion.  
Supporting Information 

Python TA data converter; MATLAB control scripts; plot-
ting and hypothesis testing scripts. 
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Figure 22  Correlation plots between A and t1 (top), a2 and t2 
(middle) and a3 and t3 (bottom) parameters of the triple-
exponential model. 

 

REFERENCES 

[1] Berera, R., van Grondelle, R., and Kennis, J. T. M. (2009) 
Ultrafast transient absorption spectroscopy: principles and 
application to photosynthetic systems, Photosynth Res 101, 
105-118. 

[2] Huang, J. E., Huang, Z. Q., Jin, S. Y., and Lian, T. Q. (2008) 
Exciton Dissociation in CdSe Quantum Dots by Hole 
Transfer to Phenothiazine, Journal of Physical Chemistry C 
112, 19734-19738. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/165498doi: bioRxiv preprint 

https://doi.org/10.1101/165498
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

12 

[3] Huang, J., Stockwell, D., Boulesbaa, A., Guo, J. C., and Lian, 
T. Q. (2008) Comparison of electron injection dynamics 
from rhodamine B to In2O3, SnO2, and ZnO 
nanocrystalline thin films, Journal of Physical Chemistry C 
112, 5203-5212. 

[4] Chikan, V., Waterland, M. R., Huang, J. M., and Kelley, D. F. 
(2000) Relaxation and electron transfer dynamics in bare 
and DTDCI sensitized MoS2 nanoclusters, Journal of 
Chemical Physics 113, 5448-5456. 

[5] Kovrigina, E. A., Pattengale, B., Xia, C., Galiakhmetov, A. R., 
Huang, J., Kim, J.-J. P., and Kovrigin, E. L. (2016) 
Conformational states of cytochrome P450 oxidoreductase 
evaluated by FRET using ultrafast transient absorption 
spectroscopy, Biochemistry 55, 5973–5976. 

[6] Burnham, K. P., and Anderson, D. R. (2002) Model Selection 
and Multimodel Inference, 2nd ed., Springer. 

[7] Motulsky, H., and Christopoulos, A. (2004) Fitting Models 
to Biological Data Using Linear and Nonlinear Regression: A 
Practical Guide to Curve Fitting, 1st ed., Oxford University 
Press, USA. 

[8] Bozdogan, H. (1987) Model selection and Akaike's 
Information Criterion (AIC): The general theory and its 
analytical extensions, Psychometrika 52, 345-370. 

[9] Akaike, H. (1981) Likelihood of a model and information 
criteria, Journal of Econometrics 16, 3-14. 

[10] Akaike, H. (1973) Information theory and an extension of 
the maximum likelihood principle, In Second International 
Symposium on Information Theory (Petrov, B. N., and 
Csaki, B. F., Eds.), pp 267-281, Academiai Kiado, 
Budapest. 

 

 

 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/165498doi: bioRxiv preprint 

https://doi.org/10.1101/165498
http://creativecommons.org/licenses/by-nc-nd/4.0/

