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Abstract 

Spontaneous firing sequences colloquially called “preplay” are fundamental features of hippocampal network 

physiology. Preplay sequences have been hypothesized to participate in hippocampal learning and memory, 

but such functional roles and their potential cellular mechanisms remain unexplored. Here, we report a 

computational model based on the functional propagation of preplay sequences in the CA3 neuronal network. 

The model instantiates two synaptic pathways in CA3 neurons, one for proximal dendrite-somatic interactions 

to generate intrinsic preplay sequences and the other for distal dendritic processing of extrinsic sensory 

signals. The core dendritic computation is the maximization of matching between patterned activities in the 

two compartments through nonlinear spike generation. The model performs robust one-shot learning with 

long-term stability and independence that are modulated by the plasticity of dendrite-targeted inhibition. 

This model demonstrates that learning models combined with dendritic computations can enable preplay 

sequences to act as templates for rapid and stable memory formation. 

 

Introduction 

Fast and robust memory encoding is a fundamental ability of the brain and has been extensively explored in 

the hippocampus. During spatial navigation, hippocampal place cells rapidly acquire their spatial receptive 

fields during the first exposure to the spatial environment (Nakazawa et al., 2003). In addition to this learning 

speed, hippocampus can form distinct spatial representations for multiple spatial experiences without 

interference (Alme et al., 2014; Mizuseki et al., 2012), avoiding overwriting of previous memories. Firing 

sequences exhibited by hippocampal place cells during locomotion (Foster and Wilson, 2007; Wang et al., 

2014) are replayed in spontaneous activity (Carr et al., 2011; Lee and Wilson, 2002), and several studies have 

suggested the functional link between these firing sequences and the memory encoding process (Carr et al., 

2011; Wang et al., 2014). Disrupting sharp wave ripples (Girardeau et al., 2009), which coincide with the 

replayed firing sequences, impairs memory consolidation, suggesting the importance of these sequences in 

memory formation. 

 

Recent evidence has shown that a significant fraction of place-cell sequences emerge from firing sequences 

that are ‘pre-played’ in spontaneous activity prior to spatial experience (Dragoi and Tonegawa, 2011, 2013; 

Grosmark and Buzsáki, 2016; Ólafsdóttir et al., 2015). Although preplay sequences remain controversial (Silva 

et al., 2015), these results suggest that hippocampal networks may have an innate structure to utilize 

spontaneous firing patterns for sequence learning. Area CA3 is the likely source of prepay firing sequences in 

the hippocampus (Middleton and McHugh, 2016; Nakashiba et al., 2009; Omura et al., 2015), and CA3-based 
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computational models have been proposed for sequence learning (Blum and Abbott, 1996; Bush et al., 2010; 

Gerstner and Abbott, 1997; Jahnke et al., 2015; Sato and Yamaguchi, 2003; Tsodyks and Sejnowski, 1995). 

However, these previous models studied simplified conditions in which the place fields of individual neurons 

were already configured prior to spatial exploration, and recurrent synapses learn sequential firing in an a 

posteriori manner without the involvement of spontaneous sequences. Therefore, while the functional role of 

replay sequences in hippocampal memory processing is relatively well understood (Carr et al., 2011; Girardeau 

et al., 2009), that of preplay sequences remains unknown. Indeed, the cellular mechanisms that would enable 

preplay-based memory processing has never been investigated. 

 

In this study, we propose a computational model where hippocampal networks utilize preplay sequences 

for robust one-shot learning of spatial memory. Unlike previous models, our model does not assume that the 

place fields are preconfigured, but rather we hypothesize that spontaneous firing sequences exist prior to 

sequence learning, and the role of sequence learning is to associate sequences of sensory input patterns with 

specific preplay sequences. An unexpected finding of our framework is that dendritic computation between 

two segregated synaptic pathways to CA3 pyramidal cells is required to perform this pattern association. The 

perforant path from the entorhinal cortex conveys external sensory information to CA3 distal dendrites, while 

recurrent synapses primarily contact the CA3 proximal dendrites (Witter, 2007). This bipartite network 

architecture allows CA3 pyramidal cells to amplify and potentiate coincidence between two input streams, if 

CA3 pyramidal cells perform dendritic computation like calcium spikes in neocortical pyramidal cells (Larkum, 

2013; Shai et al., 2015) and dendritic plateau potentials in hippocampal CA1 (Bittner et al., 2015; Takahashi 

and Magee, 2009). We construct a mathematically tractable and biologically plausible two-compartment 

neuron model by including Hebbian plasticity in each compartment (Oja, 1982) and implement canonical 

correlation analysis (CCA) (Hotelling, 1936; Izadinia et al., 2012) between the compartments, which emerges 

naturally from the effect of dendritic coincidence detection. The CCA-like learning maximizes matching 

between somatic spontaneous sequences and dendritic sensory inputs to rapidly form spatial memories, and 

increases the frequency of replay of the firing sequence associated with a particular experience. Dendritic 

inhibition stabilizes the place fields and protects distinct memory experiences from interferences. The model 

shows for the first time that a pivotal combination of dendritic computation and spontaneous firing 

sequences enable the rapid formation of stable place fields and place-cell sequences. 

 

Results 

Two-compartment neuron model with nonlinear dendritic computation 

Dendritic coincidence detection and consequent synaptic plasticity play a pivotal role in the spatial memory 

encoding modeled below. Based on this principle, we constructed a mathematically tractable neuron model 

keeping its biological plausibility. We considered a two-compartment neuron model with a somatic 

compartment describing, in reality, the combination of a soma, basal and proximal dendrites, and a distal 

dendritic compartment representing the apical tuft dendrite. Assuming that the conductance between two 

compartments is small (Larkum, 2013), we modeled the activation of each compartment independently as 
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𝑥(𝑡) = f(∑𝑤𝑗
som𝐼𝑗

som(𝑡) + 𝛽𝑦(𝑡)

𝑗

), 

 

(1) 

𝑦(𝑡) = f(∑𝑤𝑗
dnd𝐼𝑗

dnd(𝑡)

𝑗

), 

 

(2) 

where 𝑥(𝑡) determines the firing rate of sodium spikes in the somatic compartment, 𝑦(𝑡) is the local activity 

in the distal dendritic compartment, 𝑤𝑗
som  and 𝑤𝑗

dnd  are synaptic weights on the somatic and dendritic 

compartments, respectively, and 𝛽𝑦(𝑡)  is the threshold modification of somatic spikes by dendritic 

inputs(Shai et al., 2015). Unweighted postsynaptic currents 𝐼𝑗
som(𝑡) and 𝐼𝑗

dnd(𝑡) generated by each synapse 

are calculated by  

𝑑

𝑑𝑡
𝐼𝑗
𝑋(𝑡) = −

1

𝜏L
𝐼𝑗
𝑋(𝑡) + 𝑢𝑗

𝑋(𝑡)   (𝑋 = som, dnd), 

 

(3) 

where 𝜏L = 10 ms is the decay constant of postsynaptic currents. Each neuron has a sigmoidal nonlinear 

response function f(𝐼) = 1/(1 + exp(−(𝐼 − 𝜃f))) with 𝜃f being a constant threshold. 

 

Synchronous activation of the two compartments represented by the product 𝑥(𝑡)𝑦(𝑡) generates calcium 

spikes (or other similar dendritic mechanism for coincidence detection), which in turn enhance neuronal firing. 

Thus, the net output firing rate of the two-compartment neuron is expressed as 

𝑧(𝑡) = (1 + 𝛾𝑦(𝑡))𝜙𝑥(𝑡), 
(4) 

where 𝜙 is the maximum firing rate elicitable by local somatic inputs, and γ is the amplification factor of 

calcium spikes, and 𝑧(𝑡) gives the output firing rate of the two-compartment neuron. We note that the above 

equation takes into account the experimental results that activation of distal dendrites increases the gain of 

the somatic firing rate (Larkum, 2013; Shai et al., 2015). 

 

We express the learning rule for the two-compartment neuron as 

𝛥𝑤𝑗
som(𝑡) = 𝜂[(1 − 𝛼)𝑥(𝑡)(𝑥(𝑡) − 𝜃som) + 𝛼𝑥(𝑡)𝑦(𝑡)](1 − 𝑥(𝑡))𝐼𝑗

som(𝑡), (5) 

𝛥𝑤𝑗
dnd(𝑡) = 𝜂[(1 − 𝛼)𝑦(𝑡)(𝑦(𝑡) − 𝜃dnd) + 𝛼𝑥(𝑡)𝑦(𝑡)](1 − 𝑦(𝑡))𝐼𝑗

dnd(𝑡), (6) 

where α is a constant that determines the relative magnitude of the potentiation caused by calcium spikes. 

In both equations, the first terms in brackets represent Hebbian synaptic plasticity induced by local activities 

𝑥(𝑡) and 𝑦(𝑡) by BCM theory (Bienenstock et al., 1982; Intrator and Cooper, 1992). Although BCM theory was 

originally introduced to describe the relationship between somatic firing rate and weight changes, calcium-

based plasticity also gives a similar rule to BCM theory for dendritic activity (Yang et al., 2016). The second 

terms in brackets express the long-term potentiation (LTP) effect induced by calcium spikes generated by 

coincident inputs and successive high calcium ion influx into the dendrites. In hippocampal CA1 pyramidal 

neurons, the coincident activation of the perforant path projecting to apical tuft dendrites and the Schaffer 

collateral projecting to proximal dendrites induces LTP (Takahashi and Magee, 2009). Similar phenomenon 
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was also observed in cortical neurons (Sjöström and Häusser, 2006). 

 

Overall factors (1 − 𝑥(𝑡)) and (1 − 𝑦(𝑡)), which do not change the direction of weight changes, were 

multiplied to match to the objective function we present later. As in the original BCM theory, moving 

thresholds 𝜃som(𝑡) = 𝑐0E[𝑥(𝑡)]
2, 𝜃dnd(𝑡) = 𝑐0E[𝑦(𝑡)]

2 prevent run-away evolution of synaptic strength. We 

defined 𝑐0 =
1

√6𝑟0
, by which the mean activity in each compartment approximately converges to 𝑟0 in the 

absence of coincidence detection, i.e., when 𝛼 = 0 (see Methods). Homeostasis is also preserved for 𝛼 > 0, 

although the mean activity becomes higher. 

 

PCA-like and CCA-like learning in the two-compartment neuron model 

It is worth noting that the present learning rule for two-compartment neurons (𝛽 = 0) is derived from the 

following objective function: 

𝐿 = (1 − 𝛼) (
1

2
E[𝑥(𝑡)2] +

1

2
E[𝑦(𝑡)2] − 𝑐0E[𝑥(𝑡)]

3 − 𝑐0E[𝑦(𝑡)]
3) + 𝛼E[𝑥(𝑡)𝑦(𝑡)], 

 

(7) 

by gradient ascent 

𝛥𝑤𝑗
𝑋 = 𝜂

𝑑𝐿

𝑑𝑤𝑗
𝑋    (𝑋 = som, dnd). 

 

(8) 

This objective function implies the maximization of second-order moments E[𝑥(𝑡)2], E[𝑦(𝑡)2] and correlation 

E[𝑥(𝑡)𝑦(𝑡)] in conjunction with the minimization of means E[𝑥(𝑡)]3 and E[𝑦(𝑡)]3. Therefore, the learning 

rule achieves the combination of PCA-like (Oja, 1982) and CCA-like (Hotelling, 1936; Izadinia et al., 2012) 

learning of input vectors 𝐈𝑋(𝑡) = (⋯ , 𝐼𝑗
𝑋(𝑡),⋯ )   (𝑋 = som, dnd) under a homeostatic constraint, where 𝛼 

determines the relative weight of CCA. In this paper, single-compartment neurons have only somatic 

compartment and hence perform only PCA-like learning supposed by BCM theory. In contrast, two-

compartment neurons perform dual learning, that is, PCA-like learning within each compartment and CCA-

like learning between the two compartments. 

 

The learning behavior of the two-compartment neuron significantly varied depending on the correlation 

pattern of inputs. In Fig. 1a, the somatic and dendritic compartments received synaptic inputs from minority 

groups (A and A’) and majority groups (B and B’) of input neurons. Activities of these neurons were strongly 

correlated within each group but were uncorrelated between pairs of groups A-B’, B-A’ and A’-A’. We 

conducted simulations when A and A’ were either correlated or uncorrelated (Fig. 1b). When groups A and A’ 

were uncorrelated, synapses from groups B and B’ were strongly potentiated, but those from A and A’ were 

not (Fig. 1c, center). Accordingly, the activities of the two compartments were governed by inputs from groups 

B and B’, and hence were mutually uncorrelated (Fig. 1d, center). In this case, the learning performance was 

essentially the same as that of the single-compartment model (Fig. 1c, left: 𝛼 = 0, no inter-compartment 

interaction). By contrast, when the activities of groups A and A’ were correlated, synapses from A and A’ were 

selectively potentiated whereas those from B and B’ were depressed (Fig. 1c, right). Accordingly, the two 
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compartments exhibited correlated activities after learning (Fig. 1d, right). Note that in the two-compartment 

model output firing rate was approximately proportional to somatic activity. 

 

For comparison, we calculated the principal components of input vectors 𝐈som(𝑡)  and 𝐈dnd(𝑡)  when 

groups A and A’ were correlated. As expected, the first principal components extracted by PCA in the soma 

and dendrite were uncorrelated inputs from groups B and B’, respectively, and the scores (signals projected 

onto PC1 eigenvectors) were also uncorrelated between the two compartments (Fig. 1e). Then the pair of 

input vectors was analyzed by CCA, which extracted correlated inputs from groups A and A’ and also yielded 

highly correlated scores (Fig. 1f). Thus, CCA and the two-compartment neuron model operate similarly on 

correlated somatic and dendritic inputs. 

 

These results imply that CCA-like learning of the two-compartment neuron model can extract a minor input 

component to one compartment if a coincident input is given to the other. The extraction of weak inputs 

based on correlation across compartments is a critical difference between our learning rule and conventional 

Hebbian learning, which basically extracts only major input components. However, if there is no coincident 

activity between the compartments, each compartment implements independent Hebbian learning and acts 

like an independent neural unit. 

 

The role of inhibitory feedback in the two-compartment neuron model 

Hippocampus has interneurons serving perisomatic and dendritic inhibitory feedback projections (Müller and 

Remy, 2014; Royer et al., 2012). We modeled these inhibitory feedback mechanisms in the two-compartmental 

neuron model (Fig. 2a) to realize the stability and functional specialization of dendritic synapses. In reality, 

interneurons targeting the soma and dendrites of pyramidal neurons belong to different cell types. For 

simplicity, however, we only consider a single population of inhibitory neurons in our network model. We 

approximated the net output from this population 𝐼inh(𝑡) by the sum of the output from all pyramidal 

neurons. Pyramidal neuron 𝑖 was modeled as a two-compartment model with inhibitory feedback: 

𝑥𝑖(𝑡) = f(∑𝑤𝑖𝑗
som𝐼𝑗

som(𝑡) − 𝑣𝑖
som𝐼inh(𝑡) + 𝛽𝑦𝑖(𝑡)

𝑗

), 

 

(9) 

𝑦𝑖(𝑡) = f(∑𝑤𝑖𝑗
dnd𝐼𝑗

dnd(𝑡)

𝑗

− 𝑣𝑖
dnd𝐼inh(𝑡)), 

 

(10) 

𝐼inh(𝑡) =∑𝐼𝑗
som(𝑡)

𝑗

, (11) 

where 𝑣𝑖
som and 𝑣𝑖

dnd are inhibitory synaptic weights. 

 

It has been observed experimentally that not only excitatory but also inhibitory synapses exhibit activity-

dependent plasticity (Vogels et al., 2013). Although the property of inhibitory synaptic plasticity has not been 

fully understood, here we assumed that inhibitory weights for the distal dendritic compartment are modified 

by a similar learning rule to excitatory synapses: 
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𝛥𝑣𝑖
dnd = 𝜂inh (𝑦(𝑡)(𝑦(𝑡) − 𝜃inh) + 𝛼𝑥(𝑡)𝑦(𝑡)) (1 − 𝑦(𝑡))𝐼inh(𝑡). 

(12) 

In this expression, 𝜃inh is a constant threshold and was fixed at 0.5 throughout this research (we note that 

the choice of this parameter value is not crucial for the performance of this model). We did not implement 

the plasticity for perisomatic inhibitory synapses to avoid the instability of network’s learning behavior. 

 

To clarify the role of the plastic dendritic inhibition in CCA-like learning, we tested the behavior of the 

neuron model in two conditions. First, we simulated a coupled network of two pyramidal neurons and a 

population of inhibitory neurons (Fig. 2b). When the somatic input was correlated with both dendritic inputs 

with equal magnitudes, these neurons selectively learned different dendritic inputs in the presence of 

dendritic inhibition (Fig. 2c), but not in its absence (Fig. 2d). At a first glance, the result is a mere extension of 

feature extraction by lateral inhibition in competitive networks of single-compartment neurons. Actually, the 

present model had lateral inhibition between the soma and between the dendrites, and somatic activity was 

amplified by the activation of dendrites (Eq. 4). Nevertheless, here the intersomatic lateral inhibition alone 

was unable to separate the dendritic inputs in CCA-like learning. Thus, dendritic inhibition is required for the 

functional specialization of dendrites. 

 

In the second case, we examined the robustness of dendritic excitatory synapses against changes in 

correlation structure of synaptic inputs (Fig. 2e). Without dendritic inhibition, an abrupt change in correlations 

between somatic and dendritic inputs triggered a significant reorganization of dendritic excitatory synapses 

(Fig. 2g). By contrast, such a reorganization did not occur in the presence of dendritic inhibition (Fig. 2f). This 

stability was due to the potentiation of dendritic inhibitory synapses during the learning of the initial 

correlation structure between groups A and C (Fig. 2h). The potentiated dendritic inhibition changed the 

excitation-inhibition balance of the dendritic compartment such that its responses to a learned input pattern 

were enhanced whereas those to other input patterns were suppressed. 

 

Thus, in our model the potentiation of dendritic inhibition separates and stabilizes receptive fields on the 

dendrites acquired by CCA-like learning. We will show later that these properties play crucial roles in the 

robust memory encoding in a recurrent network model of the two-compartment neurons. 

 

Robust one-shot learning of place fields by two-compartment neural network 

Using the neuron model and the inhibitory feedback model described above, we constructed a CA3 recurrent 

network model to investigate the role of our two-compartment model in sequence memory (Fig. 3a). In this 

model, the somatic compartments of pyramidal neurons receive excitatory recurrent connections, input from 

the dentate gyrus (DG), theta-band (7 Hz) oscillatory input from the medium septum (Wang et al., 2014) and 

random noise, while the dendritic compartments receive input from the entorhinal cortex (EC). Excitatory 

connections are reciprocally wired such that the recurrent network can propagate firing sequences (Romani 

and Tsodyks, 2015; Wang et al., 2014). In the presence of noise, Poisson firing of DG activates a small portion 

of CA3 neurons, which triggers preexisting firing sequences without EC input (Fig. 3b). During locomotion, 

DG input conveys contextual-dependent information in the sense that DG is only activated at particular spatial 
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positions (see below). Firing sequences are modulated by theta-band oscillations due to the medial septal 

input. During the propagation, we decreased the release probability of neurotransmitters at recurrent 

connections to suppress the decay speed of synaptic weights. In the hippocampus, acetylcholine is known to 

modulate glutamatergic neurotransmitter release (Bush et al., 2010; Hasselmo, 2006). 

 

We considered an animal running back and forth on a one-dimensional (1D) track. During a run, some EC 

neurons are sequentially activated by position-dependent sensory features on the track, while others 

(distractors) are activated randomly (Fig. 3c). Prior to the first run, there is no way for the animal to know the 

sensory features and their order of appearance along an unfamiliar track. Therefore, the initial weights of EC-

to-CA3 projections were chosen randomly, and accordingly dendritic activity showed no place-dependence 

initially. The position-dependent EC activity may correspond to the representation of local landmarks in the 

lateral entorhinal cortex or the firing fields of grid cells in the medial entorhinal cortex (Knierim et al., 2014). 

 

Initially, the animal was immobile at an endpoint of an unfamiliar track, where DG exhibited a brief and 

repeated activity (Fig. 3d, top), which in turn activated the preexisting sequences in spontaneous CA3 activity 

(Fig. 3d, bottom). These sequences were initially not associated to any sensory information (hence any spatial 

information) represented in EC. However, during the first traversal the dendritic compartments learned to 

associate sequential sensory inputs from EC with the firing sequence triggered by DG (Fig. 3d, middle). During 

subsequent runs, the activity of distal dendrites established control of somatic activity, and hence of sequence 

propagation, by modulating the gain and threshold of somatic firing rates (Fig. 3f). Consequently, CA3 

neurons showed clear place-dependent firing in the second and third traversals even though this was the first 

exposure to an unfamiliar track and synapses from EC were initially random and not pre-configured to any 

convenient spatial pattern. We note that the reorganization of EC-to-CA3 projections enabled firing 

sequences to follow abrupt changes in running speed and directions in the second and third traversal. 

 

For comparison, we constructed a single-compartment network model and trained it on the same spatial 

navigation task. In this model, both recurrent synapses and EC inputs were connected to the somatic 

compartments (thus, the dendritic compartments were passively driven by the somatic compartments and 

did not play any active role). This model failed to form place fields in the present simulations (Fig. 3e). For the 

relatively large value of the learning coefficient used in the simulations, the formation of place fields was easily 

disturbed by noise (from the distractor EC neurons) before they became robust. On the other hand, if the 

learning coefficient was small, firing sequences could not follow changes in the movement directions of the 

animal at both ends of the maze. 

 

We assessed the quality of the place fields formed in various simulation conditions by means of 

“information per spike” (Skaggs et al., 1993), a measure based on the mutual information between neural 

activity of each cell and animal’s position (see Methods). As shown in Fig. 3g, in both models the average 

mutual information was high in a familiar track, which we simulate the CA3 activity with optimized initial 

synaptic weights of EC-to-CA3 projections. In an unfamiliar track, however, only the two-compartment model 

acquired highly place-dependent neural activity as in the familiar track, whereas the single-compartment 
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model exhibited low mutual information for all three values of the learning coefficient. Learning of the 

unfamiliar track was required for the place dependence as the performance of the two-compartment model 

was impaired by eliminating the plasticity effect (𝜂 = 0). Importantly, when we decreased the initial weights 

of recurrent synapses from the original setting (by a multiplicative factor of 0.75, 0.5 or 0), the two-

compartment model also failed to acquire place-dependent activity on the unfamiliar track. On the other 

hand, increasing the weights (1.25 times) did not degrade the performance in learning. These results imply 

that the activity patterns preexisting in the recurrent network are crucial for the place field formation in the 

two-compartment model. Conversely, dendritic computation is necessary for the efficient use of preexisting 

sequences for memory formation. 

 

Long-term stability of memory in remote replay events 

At a first glance, one-shot learning looks easily achievable by sufficiently fast synaptic modifications. However, 

this was not the case as there was a trade-off between learning speed and the long-term stability of memory. 

In the case of spatial memory, the place fields formed in a previous awake state have to be preserved during 

spontaneous replays in sleep states (Lee and Wilson, 2002) and awake replays of remote experiences (Carr et 

al., 2011). In this section, we examine the stability of spatial memory against such replay events. To this end, 

we trained the network model on one-shot encoding of an unfamiliar track (Fig. 4a). We then introduced 

random noise in EC neurons and the CA3 network to generate irregular activity in EC and spontaneous firing 

sequences in CA3 (Fig. 4b). After exposing the network to random inputs and spontaneous replay events for 

600 sec, we tested it for the exploration of the learned track. 

 

In spite of the repetitive coupling of random inputs and replay events, the two-compartment neurons still 

preserved their place fields after exposure to random noise (Fig. 4c). This was achieved by the suppression of 

dendritic activity during replay events by lateral inhibition between the dendritic compartments (Fig. 4b, 

bottom), as we showed in Fig. 2. The inhibitory effect prevented an undesirable association of random EC 

inputs and spontaneous replays in CA3. Actually, the place fields were completely eliminated when all 

inhibitory weights were set equal to zero during replay events (Fig. 4d). Thus, the results of this and previous 

sections demonstrate that our two-compartment network model reconciles conflicting demands on the 

brain’s memory systems, i.e., one-shot learning and the long-term stability of memory, without an ad hoc 

tuning of model parameters. 

 

Plasticity in dendritic inhibition prevents overwriting of multiple episodes 

So far, we have studied the one-to-one association of a linear track and a firing sequence. However, in many 

real-world tasks, the hippocampus has to separately store multiple memories. In spatial navigation 

experiments, CA3 has been shown to develop sparse and orthogonal spatial representations (Alme et al., 

2014; Mizuseki et al., 2012). To see whether our two-compartment neuronal network is capable of learning 

such representation in complex spatial environments, we tested the formation of spatial memory in the case 

where the animal visits three arms on a Y-maze in turn and repeatedly (Fig. 5a). We configured initial recurrent 

connections such that CA3 network had three preexisting firing sequences (Fig. 5b), which is a minimal 

requirement for learning the branching spatial structure. DG was assumed to fire at the junction of the Y-
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maze, and DG input at the center could trigger all these firing sequences simultaneously. The preexisting 

sequences were spontaneously generated by noise and DG inputs in the resting state (Fig. 5c), and the firing 

sequences were accompanied by theta oscillation during running back and forth on each arm (Fig. 5d-f), as 

in the previous simulations of 1D maze. We note that intersomatic lateral inhibition prevented the co-

activation of all three preexisting sequences by input from DG, and the choice from three sequences was 

initially determined by random noise. 

 

The two-compartment network model robustly assigned the individual firing sequences to representing 

different arms (Fig. 5d and 5e). Inhibitory plasticity played a crucial role in the learning procedure. After the 

first traversal on an arm, a firing sequence or an ensemble of neurons is assigned to the arm. Then, dendritic 

inhibition decreases the response gain of these neurons in other arms (Fig. 5d, bottom) and selects such firing 

sequences that have not been associated with any spatial experience for learning the second arm. Because 

the trigger from DG to the soma is shared, separate learning of dendritic input patterns to different neurons 

requires dendritic inhibition, as we showed in Fig. 2. Thus, as shown in Fig. 5f, the formation of independent 

memory representations (firing sequences) for different spatial experiences is not guaranteed without 

dendritic inhibition. We performed five simulations with and without dendritic inhibition using different 

random seeds and always obtained qualitatively the same results (in Fig. 5g, the learning performance was 

assessed by information per spike). By this mechanism, every time the animal encounters a novel spatial 

experience, this network model exhaustively encodes it into a yet unassigned firing sequence, avoiding to 

overwrite old episodes with a novel episode. 

 

Replay of firing sequences is biased by recent experiences 

Does our network model change spontaneous activity patterns in an experience-dependent fashion 

consistent with experiment? The structure of correlations in spontaneous hippocampal activity is different 

before and after experiences (Wilson and McNaughton, 1994). In particular, replay sequences become 

statistically significant only after experiences (Silva et al., 2015). Because the memory encoding of our model 

strongly relies on preexisting firing sequences, we examined whether our model is consistent with these 

findings in the case that that the CA3 recurrent network has somewhat complex structure. To be more specific, 

we considered a two-compartment network model with bifurcating firing sequences (Fig. 6a). A neuron at the 

junction was initially connected to both bifurcating pathways with equal strength, propagating firing 

sequences into one of the branches with approximately equal probabilities (Fig. 6b). After the animal explored 

the 1D track, the model associated one of the branching sequences with this experience (Fig. 6c, input pattern 

1). Spontaneous activity selectively replayed this firing sequence after this experience (Fig. 6d), implying that 

the recurrent connections responsible for this sequence were selectively potentiated during the episode. We 

simulated the network model for five different sets of firing sequences, and observed strongly selective replay 

of the associated sequences (Fig. 6f). The maximum weight change in recurrent connections was 10 to 20 % 

of the maximum initial weight (data not shown), which was not large enough to create novel firing sequences 

but was large enough to modulate the probability of sequence propagation into different branches. 

 

Next, we investigated how the model trained on input pattern 1 represents novel changes in the 
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environment. To this end, we randomly shuffled the temporal order of sensory objects appearing along the 

1D track (equivalently, the temporal order of firing in EC neurons). Our model encoded the novel sensory 

sequence (input pattern 2) into another branch that had not been previously used (Fig. 6e). 

 

Assuming that the innate recurrent network of CA3 is capable of generating a rich repertoire of firing 

sequences (Fig. 6g: see the discussion on this point), we propose the following memory encoding mechanism 

for hippocampal circuits. When an animal experiences sequential sensory events (for instance, from the nest 

to a pond through a forest), these events are rapidly associated with a branching firing sequence that happens 

to be most strongly correlated with the events (Fig. 6h). After this rapid encoding, plasticity at recurrent 

connections reorganizes the network structure to spontaneously replay this sequence more often than others, 

which further increases the robustness of the sequence, keeping receptive fields by dendritic inhibition. 

Whenever the animal experiences the same sensory sequence, the particular firing sequence associated with 

this sensory experience is reactivated. Now, consider the case where the animal chooses another path at some 

spatial position (for instance, from the nest to a cave through the forest). Our model suggests that sensory 

events on the novel path are assigned to a different branch of firing sequences (Fig. 6i). This model has several 

merits. First, memory encoding is fast and robust, as demonstrated in this study. Second, no additional neural 

resources are required for encoding the experienced part of novel experiences (i.e., from the forest to the 

cave). Third, during the update of spatial map, the spatial relationships between old and novel sensory objects 

are naturally preserved in the existing branching structure of neural networks. Thus, the concept of “preplay” 

reconciles with “experience-dependent replay” in the proposed mechanism. 

 

Discussion 

In this study, we propose a novel framework of hippocampal memory processing based on a two-

compartment neuron model that incorporates the effects of dendritic spikes into Hebbian learning. Our 

model of dendritic computation gives a plasticity rule that combines canonical correlation analysis of 

correlated somatic and dendritic inputs with the conventional Hebbian plasticity rule for PCA of uncorrelated 

inputs. A recurrent network model of the two-compartment neurons demonstrates robust one-shot learning 

of sequential sensory events by utilizing spontaneous firing sequences (i.e., preplay events). The model 

predicts that inhibitory plasticity at the dendrites of pyramidal cells plays pivotal roles for the stability and 

functional specialization of dendritic activity during learning. Our results indicate that dendritic computation 

is a crucial element of fast and robust memory encoding into preexisting hippocampal circuits. 

 

Mechanisms and functional implications of CCA-like learning 

In the two-compartment neuron, CCA-like learning extracts a minor input component at one compartment 

when correlated input is given to the other compartment. We built this model based on experimental studies 

in neocortex (Larkum, 2013; Shai et al., 2015; Sjöström and Häusser, 2006) and hippocampal CA1 (Bittner et 

al., 2015; Takahashi and Magee, 2009). In cortical pyramidal neurons, weak synaptic inputs to the apical tuft 

are strongly attenuated in the apical shaft and usually cannot generate somatic sodium spikes. However, 

calcium spikes initiated in a “hot spot” in the apical trunk reliably propagate to the soma to generate a burst 

of sodium spikes (Larkum, 2013). Although the generation of calcium spikes usually requires a strong 
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activation in the apical tuft, the threshold of calcium spikes decreases during the 30-ms time window around 

somatic sodium spikes, allowing weak inputs onto apical tuft to initiate calcium spikes (Larkum, 2013). In 

hippocampal CA1, coincident inputs from CA3 and EC initiates dendritic plateau potentials which also drive 

burst firing (Bittner et al., 2015). These dendritic computation can detect and amplify coincident activation of 

soma and distal dendrites. Furthermore, dendritic coincidence detection induces LTP in both cortex (Sjöström 

and Häusser, 2006) and hippocampus (Takahashi and Magee, 2009). Such dendritic mechanism for 

coincidence detection is also essential for the rapid formation of place fields in our CA3 network model. The 

proposed role of dendritic computation in the rapid formation of place fields was recently supported in CA1, 

where artificially induced dendritic spikes generated arbitrary place fields in pyramidal neurons (Bittner et al., 

2015). 

 

Similar learning schemes are also expected to work in the neocortex. Calcium spikes presumably contribute 

to the integration of functionally distinct inputs to the basal dendrites and apical tufts (Larkum, 2013). In 

engineering, CCA is a well-established multivariate analysis method used in variety of applications such as the 

integration of multi-modal sensory inputs in video streams (Izadinia et al., 2012). Our two-compartment 

model suggests that CCA is also important in the brain and proposes a cellular mechanism of CCA based on 

the physiology of pyramidal-cell dendrites.  

 

Crucial roles of CA3 dendritic inhibition in sequence memory encoding 

We suggest that activity-dependent inhibitory plasticity at the distal dendrites of pyramidal cells prevents the 

overwriting of memories, which is a long-standing issue in memory processing (Benna and Fusi, 2016). In our 

model, the plasticity of dendritic inhibition is crucial for the stability of memory traces (Fig. 4). Moreover, 

dendritic inhibition is important to robustly associate multiple sequential experiences with multiple firing 

sequences of different neuron ensembles without interferences or overwriting (Fig. 5). Somatostatin-positive 

(SOM+) interneurons target the apical dendrites of pyramidal cells in the hippocampus (Müller and Remy, 

2014; Royer et al., 2012). This interneuron subtype is likely to provide the dendritic inhibition. 

 

The dendritic computation modeled here may revise the conventional view of hippocampal microcircuit 

function. Area CA3, with rich recurrent connections, is generally referred to as a pattern completion system 

(Guzman et al., 2016; Nakazawa et al., 2002) in contrast to the DG, which is thought to be a pattern separation 

system (McHugh et al., 2007). However, our model suggests that the CA3 network can also perform pattern 

separation because, with the plasticity of dendritic inhibition, different memory items can be allocated to 

different CA3 neurons in spite of the same trigger input from DG. In our model, DG contributes to context-

dependent separation and offers a trigger to CA3, where sensory inputs from the EC are further separated 

within the same context by dendritic computation. Thus, pattern separation is performed at multiple stages 

of hippocampal memory processing. Joint contributions of DG and CA3 to pattern separation was also 

suggested in a recent experiment (Senzai and Buzsáki, 2017). 

 

The network mechanism for preplay sequences 

Although the relation between firing patterns of place cells during run and preexisting firing sequences has 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2017. ; https://doi.org/10.1101/165613doi: bioRxiv preprint 

https://doi.org/10.1101/165613
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

been shown (Dragoi and Tonegawa, 2011, 2013; Grosmark and Buzsáki, 2016; Ólafsdóttir et al., 2015), some 

other studies suggest firing patterns are organized through spatial experiences (Silva et al., 2015; Wilson and 

McNaughton, 1994). In modeling studies, the CA3 recurrent network with log-normal synaptic weight 

distributions can generate tremendously many spontaneous firing sequences with various branching patterns 

(Ikegaya et al., 2013; Omura et al., 2015; Teramae et al., 2012), and experimental evidence suggests such a 

distribution in CA3 (Ikegaya et al., 2013). Therefore, the innate structure of the CA3 recurrent network is 

expected to generate spontaneous firing sequences prior to learning, and our model suggest that encoding 

of sequential experiences into these preplay sequences naturally occur under the assumption of dendritic 

coincidence detection. Furthermore, we demonstrated that even the one-time experience can change the 

bias in branching firing sequences without major rewiring of the network structure. If spontaneous activity of 

naïve CA3 has the complex branching structure, this bias towards the branch used for memory may explain 

the change of correlation structure between hippocampal neurons. Although temporal coding in CA1 

depends on inputs from CA3 (Middleton and McHugh, 2016), it is also possible that plasticity of CA1 synapses 

modulates the firing patterns. 

 

It will be intriguing to study whether realistic log-normal networks can provide a repertoire of firing 

sequences that is sufficient for memorizing complex sensory experiences. Such recurrent network will also 

allow us to test whether our model generates place fields in 2D environments. Previous models (Brunel and 

Trullier, 1998; Káli and Dayan, 2000) have shown that Hebbian plasticity reorganize somatic recurrent 

connections to generate omnidirectional 2D place fields from multiple 1D place fields passing through a 

particular position from different angles. The same mechanism is expected to work in our model if recurrent 

network has a rich repertoire of firing sequences to learn pathways in different angles, although the formation 

of stable place fields will be much slower than learning 1D tracks. This reorganization may result in recruitment 

of new cells to firing sequences through learning (Grosmark and Buzsáki, 2016). Simulations of such network 

models, however, require a spiking version of the two-compartment model and an efficient platform for large-

scale network simulations. 

 

Testable assumptions and predictions 

The most important assumption of our model is the dendritic mechanism for correlation maximization (CCA), 

which was modeled based on findings in neocortex and CA1. Although there are some related experimental 

studies in CA3 (Kim et al., 2012; Makara and Magee, 2013), whether dendritic computation in CA3 pyramidal 

cells is analogous to that in CA1 and neocortical pyramidal cells should be clarified by future experiments. 

 

Our model also assumes the potentiation of both excitatory and inhibitory synapses by coincident somatic 

and dendritic activation. While inhibitory plasticity depends on calcium signals (Kurotani et al., 2008; Sieber 

et al., 2013), whether it depends on dendritic spikes has yet to be examined in the hippocampus. Our results 

predict that the loss of dendritic inhibition disrupts the stability and orthogonality of CA3 place fields. 

Whether the removal of dendritic inhibition in CA3 triggers forgetting or remapping of spatial memory before 

consolidation is an interesting open question. Selective deletion (Cichon and Gan, 2015) or optogenetic 

inactivation(Royer et al., 2012) of SOM+ interneurons may remove dendritic inhibition. Alternatively, activation 
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of vasoactive intestinal polypeptide-positive (VIP) interneurons which disinhibit distal dendrites (Yang et al., 

2016) may lead to similar results. 

 

Our model suggests that plasticity of EC-to-CA3 synapses is more important than that of recurrent synapses 

in CA3 for one-shot learning of place fields. Though the ablation of NMDA receptors in CA3 are known to 

result in the disruption of pattern completion and one-shot learning (Nakazawa et al., 2002, 2003), which 

connections are more responsible, recurrent synapses or EC-to-CA3 synapses, for one-shot learning has to 

be yet clarified. 

 

Relationship to other models of CA3 and dendritic computation 

Previous models learn sequences under the assumption that place fields are configured prior to learning 

(Blum and Abbott, 1996; Bush et al., 2010; Gerstner and Abbott, 1997; Jahnke et al., 2015; Sato and Yamaguchi, 

2003). In unfamiliar environments, this assumption is valid after grid cells, which estimate the self-position by 

path integration (Knierim et al., 2014), are formed in the medial EC. However, grid cells mature slower than 

place cells (Langston et al., 2010; Wills et al., 2010) and grid firing patterns requires an excitatory drive from 

place cells (Bonnevie et al., 2013). Our model demonstrated that place cells are rapidly formed without inputs 

from grid cells. 

 

Samsonovich and McNaughton (Samsonovich and McNaughton, 1997) proposed a “map-based path 

integration” model, which associates sensory inputs with a preexisting hippocampal “chart” (a two-

dimensional attractor map). Although this model and ours share a similar concept, we also provide the 

biologically plausible mechanism of dendritic computation and inhibition that can enable fast and robust 

association. Moreover, the chart model has no plastic recurrent connections and hence does not account for 

replay events. Káli and Dayan (Káli and Dayan, 2000) proposed to train recurrent weights through correlations 

among DG-to-CA3 inputs, and EC-to-CA3 weights through correlations between DG inputs and EC inputs. 

Thus, their learning rule also results in correlating EC-to-CA3 inputs with recurrent inputs. However, our 

learning rule, but not theirs, explains the extremely sparse activity of DG granule cells in spatial exploration 

(Diamantaki et al., 2016). In our model, DG neurons only occasionally fire to trigger specific firing sequences. 

This is consistent with the recent finding that a granule cell in DG has at most a single place field (Senzai and 

Buzsáki, 2017). In addition, our model uses strong recurrent synapses for rapid learning, while their model 

requires weak recurrent inputs during the early phase of learning. 

 

Several models explain the generation of dendritic calcium spikes (Larkum, 2013; Shai et al., 2015), but the 

functional implications of calcium spikes were rarely explored. Urbanczik and Senn (Urbanczik and Senn, 2014) 

proposed a two-compartment model in which dendritic synapses learn to predict somatic activity through 

unidirectional soma-dendrite interactions. In contrast, our neuron model enables simultaneous learning of 

somatic and dendritic synapses through bidirectional soma-dendrite interactions. This raises a conceptual 

difference between the two models: our model performs unsupervised learning of the two input streams, 

while their model obeys supervised learning of dendritic input using somatic input as a teacher signal. On 

the other hand, dendritic computation and recurrent networks were combined to improve the capacity of 
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pattern completion (Kaifosh and Losonczy, 2016). However, to our knowledge, the role of dendritic 

computation in sequence learning was unexplored. 

 

In sum, our multi-compartment learning rule extends the computational ability of neurons to a conjunctive 

analysis of synaptic inputs targeting different dendritic sites. Because the proximal (somatic) and distal 

dendrites in pyramidal neurons are targeted by outputs of distinct brain regions, our learning rule has 

implications for the mechanisms of integrating parallel distributed processes across the brain. 

 

Methods 

Weight changes and moving thresholds 

In all numerical simulations, we modified excitatory synapses in the somatic and dendritic components 

according to the following second-order stochastic dynamics incorporating delays, weight decays and 

spontaneous fluctuations:  

𝑑

𝑑𝑡
𝑤𝑖𝑗
𝑋(𝑡) = 𝛥𝑤𝑖𝑗

𝑋(𝑡) + 𝜎𝑤𝜖(𝑡) − 𝜂decay𝑤𝑖𝑗
𝑋(𝑡)   (𝑋 = som, dnd), 

(13) 

𝜏w
𝑑

𝑑𝑡
𝛥𝑤𝑖𝑗

som(𝑡) = −𝛥𝑤𝑖𝑗
som(𝑡) + 𝜂((1 − 𝛼)𝑥𝑖(𝑡)(𝑥𝑖(𝑡) − 𝜃𝑖

som) + 𝛼𝑥𝑖(𝑡)𝑦𝑖(𝑡)) (1 − 𝑥𝑖(𝑡)) 𝐼𝑗
som(𝑡), 

(14) 

𝜏w
𝑑

𝑑𝑡
𝛥𝑤𝑖𝑗

dnd(𝑡)  = −𝛥𝑤𝑖𝑗
dnd(𝑡) + 𝜂 ((1 − 𝛼)𝑦𝑖(𝑡)(𝑦𝑖(𝑡) − 𝜃𝑖

dnd) + 𝛼𝑥𝑖(𝑡)𝑦𝑖(𝑡)) (1 − 𝑦𝑖(𝑡))𝐼𝑗
dnd(𝑡), 

(15) 

where 𝜏w is the time constant for delays of synaptic changes, 𝜂decay is the speed of weight decay, 𝜖(𝑡) is 

normal Gaussian noise and 𝜎s  is the standard deviation of spontaneous fluctuation. The weights were 

constrained in non-negative values during simulations. 

 

Long-term plasticity of dendritic inhibitory weights 𝑣𝑖
dnd was implemented as  

𝑑

𝑑𝑡
𝑣𝑖
dnd(𝑡) = 𝛥𝑣𝑖

dnd(𝑡) − 𝜂decay𝑣𝑖
dnd(𝑡), 

(16) 

𝜏w
𝑑

𝑑𝑡
𝛥𝑣𝑖

dnd(𝑡) = −𝛥𝑣𝑖
dnd(𝑡) + 𝜂inh ((1 − 𝛼)𝑦(𝑡)(𝑦(𝑡) − 𝜃inh) + 𝛼𝑥(𝑡)𝑦(𝑡)) (1 − 𝑦(𝑡))𝐼inh(𝑡). 

(17) 

Somatic inhibitory weights 𝑣𝑖
som were fixed. 

 

For single-compartment neuron, plasticity follows BCM rule: 

𝑑

𝑑𝑡
𝑤𝑗
𝑋(𝑡) = 𝛥𝑤𝑗

𝑋(𝑡) + 𝜎𝑤𝜖(𝑡) − 𝜂decay𝑤𝑖
𝑋(𝑡), 

(18) 

𝜏w
𝑑

𝑑𝑡
𝛥𝑤𝑗

𝑋(𝑡) = −𝛥𝑤𝑗
𝑋(𝑡) + 𝜂𝑥(𝑡)(𝑥(𝑡) − 𝜃som)(1 − 𝑥(𝑡))𝐼𝑗

𝑋(𝑡). 
(19) 

Moving thresholds for BCM theory were defined as 𝜃𝑖
som = 𝑐0(𝐸𝑖

som)2, 𝜃𝑖
dnd = 𝑐0(𝐸𝑖

dnd)
2
. We updated the 

mean activities 𝐸𝑖
som, 𝐸𝑖

dnd by solving 

𝜏mean
𝑑

𝑑𝑡
𝐸𝑖
som = −𝐸𝑖

som + 𝑥(𝑡), 
(20) 
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𝜏mean
𝑑

𝑑𝑡
𝐸𝑖
dnd = −𝐸𝑖

dnd + 𝑦(𝑡), 
(21) 

where 𝜏mean determines the typical time scale of the averaging. 

 

Two-compartment recurrent neural network model 

Here we define the two-compartment neural network used in Figures 3 to 6. In Figure 1 and Figure 2, we used 

the model described in the main text without short-term plasticity, NMDA synapses and GABA-B synapses. 

The activity of neuron 𝑖 in two-compartment recurrent neural networks was described as  

𝑥𝑖(𝑡) = f(∑𝑤𝑖𝑗
som

𝑗

𝐼𝑗
som(𝑡) +∑𝑤𝑖𝑗

somN

𝑗

𝐼𝑗
somN(𝑡) − 𝑣𝑖

som𝐼inh(𝑡) − 𝑣𝑖
somB𝐼inhB(𝑡) + 𝐼𝑖

ext(𝑡) + 𝛽𝑦𝑖(𝑡)), 

 

(22) 

𝑦𝑖(𝑡) = f(∑𝑤𝑖𝑗
dnd

𝑗

𝐼𝑗
dnd(𝑡) +∑𝑤𝑖𝑗

dndN

𝑗

𝐼𝑗
dndN(𝑡) − 𝑣𝑖

dnd𝐼inh(𝑡) − 𝑣𝑖
dndB𝐼inhB(𝑡)), 

 

(23) 

𝑧𝑖(𝑡) = (1 + 𝛾𝑦𝑖(𝑡))𝜙𝑥𝑖(𝑡), 
(24) 

where parameters were set as 𝜙 = 0.08 kHz, 𝜃𝑓 = 5, 𝛽 = 2.5, 𝛾 = 1. 𝐼𝑖
ext(𝑡) is external input, which varied 

depending on the simulation settings. Synaptic inputs 𝐼𝑗
𝑋(𝑡)  were calculated from recurrent inputs 

𝑢𝑗
som(𝑡) = 𝑧𝑗(𝑡) and firing rates of EC neurons 𝑢𝑗

dnd(𝑡) as 

𝑑

𝑑𝑡
𝐼𝑗
𝑋(𝑡) = −

1

𝜏L
𝐼𝑗
𝑋(𝑡) + 𝑢𝑗

𝑋(𝑡)𝐷𝑗
𝑋(𝑡)𝐹𝑗

𝑋(𝑡)   (𝑋 = som, dnd), 
(25) 

where 𝐷𝑗
𝑋(𝑡) and 𝐹𝑗

𝑋(𝑡) are variables for short-term synaptic plasticity:  

𝑑

𝑑𝑡
𝐷𝑗
𝑋(𝑡) =

1 − 𝐷𝑗
𝑋(𝑡) 

𝜏STD
− 𝑢𝑗

𝑋(𝑡)𝐷𝑗
𝑋(𝑡)𝐹𝑗

𝑋(𝑡), 
(26) 

𝑑

𝑑𝑡
𝐹𝑗
𝑋(𝑡) =

𝑈STF − 𝐹𝑗
𝑋(𝑡)

𝜏STF
+ 𝑈STF (1 − 𝐹𝑗

𝑋(𝑡)) 𝑢𝑗
𝑋(𝑡). 

(27) 

The values of parameters were set as 𝜏STD = 500 ms, 𝜏STF = 150 ms and 𝜏L = 10 ms. The value of initial 

release probability 𝑈STF was 0.5 for all excitatory synapses in the immobile state of animal, and was changed 

to 0.03 for recurrent synapses during animal’s movement. At the moment that the animal started a movement 

from immobile state, 𝐹𝑗
som(𝑡) was immediately changed to 0.03. We note that the long-term plasticity rules 

also depend on short-term plasticity through 𝐼𝑗
𝑋(𝑡). 

 

NMDA currents 𝐼𝑗
somN(𝑡) and 𝐼𝑗

dndN(𝑡) were calculated in a similar way to 𝐼𝑗
𝑋(𝑡) by using a longer time 

constant 𝜏L
long

= 150 ms. Their weights 𝑤𝑖𝑗
somN = 0.05𝑤𝑖𝑗

somand 𝑤𝑖𝑗
dndN = 0.05𝑤𝑖𝑗

dnd were determined from 

initial synaptic weights and fixed during all simulations. 

 

Inhibitory feedback 𝐼inh(𝑡)  (GABA-A) and 𝐼inhB(𝑡) (GABA-B), were represented by the summation of 

outputs from the recurrent network as  
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𝐼inh(𝑡) =∑𝐼𝑗
som(𝑡)

𝑗

, (28) 

𝐼inhB(𝑡) =∑𝐼𝑗
somN(𝑡)

𝑗

. (29) 

Initial values for 𝑣𝑖
som and 𝑣𝑖

dnd were 4 and 0, respectively, in all simulations. Weights for GABA-B 𝑣𝑖
somB =

0.05𝑣𝑖
som  and 𝑣𝑖

dndB = 0.05𝑣𝑖
dnd  were determined from initial synaptic weights and fixed during all 

simulations. 

 

The firing rate of EC neurons 𝑢𝑗
dnd(𝑡) were calculated as  

𝑢𝑗
dnd(𝑡) = 𝜙input𝑓 (𝐼𝑗

EC(𝑡)), 
(30) 

𝑑

𝑑𝑡
𝐼𝑗
EC(𝑡) = −

1

𝜏L
𝐼𝑗
EC(𝑡) + 𝐼𝑗

input(𝑡), 
(31) 

where 𝜙input = 0.08 kHz. 𝐼𝑗
input(𝑡) depends on simulation settings. 

 

The values of parameters for plasticity were 𝛼 = 0.9, 𝑟0 = 0.05, 𝜏w = 1000 ms, 𝜎w = 0.001, 𝜂decay =

10−7, 𝜃inh = 0.5 , 𝜂inh = 0.01𝜂  and 𝜏mean = 60000 ms . Self-connections 𝑤𝑖𝑖
𝑠𝑜𝑚  were fixed at zero. 

Simulation without dendritic inhibition was performed with 𝜂inh = 0. 

 

Single-compartment recurrent neural network model 

In single-compartment recurrent neural networks, all somatic and dendritic inputs were connected to a single 

compartment (soma). Accordingly, the activity of neuron 𝑖 was described as  

𝑥𝑖(𝑡) = f(∑𝑤𝑖𝑗
som

𝑗

𝐼𝑗
som(𝑡) +∑𝑤𝑖𝑗

somN

𝑗

𝐼𝑗
somN(𝑡) +∑𝑤𝑖𝑗

dnd

𝑗

𝐼𝑗
dnd(𝑡) +∑𝑤𝑖𝑗

dndN

𝑗

𝐼𝑗
dndN(𝑡) − 𝑣𝑖

som𝐼inh(𝑡) − 𝑣𝑖
somB𝐼inhB(𝑡) + 𝐼ext(𝑡)), 

 

(32) 

𝑧𝑖(𝑡) = 𝜙𝑥𝑖(𝑡). 
(33) 

Variables in this model were calculated in the same way to those in the two-compartment model. We updated 

both somatic and dendritic excitatory weights 𝑤𝑖𝑗
som and 𝑤𝑖𝑗

dnd by BCM theory with somatic activity. The 

values of parameters for the single-compartment model was basically the same as those of the two-

compartment model, except 𝜙 = 0.09 kHz. Learning speed was set as 𝜂 = 0.5 in Fig. 3D, though different 

values 𝜂 = 0.1, 1.0 were also used in a quantitative assessment. 

 

Details of the single-cell simulations (Figure 1) 

Four independent source signals 𝑠𝑖(𝑡)(𝑖 = 1,2,3,4) were generated from Ornstein-Uhlenbeck process 

𝑑

𝑑𝑡
𝑠𝑖(𝑡) = −

1

𝜏s
𝑠𝑖(𝑡) + 𝜎s𝜖(𝑡), 

 

(34) 
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where 𝜏s = 10 ms, 𝜎s = 0.1 and 𝜖(𝑡) is normal Gaussian noise. Input currents to somatic input neurons 

𝐼𝑗
input,som(𝑡) were determined as  

𝐼𝑗
input,som(𝑡) = −

1

𝜏L
𝐼𝑗
input,som(𝑡) + 𝑠1(𝑡) + 𝜎n𝜖(𝑡)    (𝑗 ∈ groupA), 

(35) 

𝐼𝑗
input,som(𝑡) = −

1

𝜏L
𝐼𝑗
input,som(𝑡) + 𝑠3(𝑡) + 𝜎n𝜖(𝑡)    (𝑗 ∈ groupB), 

(36) 

where 𝜎n = 0.1. Input currents to dendritic input neurons 𝐼𝑗
input,dnd(𝑡) were was determined as  

𝐼𝑗
input,dnd(𝑡) = −

1

𝜏L
𝐼𝑗
input,dnd(𝑡) + 𝑠A′(𝑡) + 𝜎n𝜖(𝑡)    (𝑗 ∈ groupA

′), 
(37) 

𝐼𝑗
input,dnd(𝑡) = −

1

𝜏L
𝐼𝑗
input,dnd(𝑡) + 𝑠4(𝑡) + 𝜎n𝜖(𝑡)    (𝑗 ∈ groupB

′). 
(38) 

In the case of uncorrelated A and A’, 𝑠A′(𝑡) = 𝑠1(𝑡) while in the case of correlated A and A’, 𝑠A′(𝑡) = 𝑠2(𝑡). 

Output firing rates of input neurons 𝑢𝑗
som(𝑡), 𝑢𝑗

dnd(𝑡) were calculated by the same sigmoidal function f(𝐼) 

as that of the two-compartment neuron model: 

𝑢𝑗
som(𝑡) = 𝜙inputf (𝐼𝑗

input,som(𝑡)), 
(39) 

𝑢𝑗
dnd(𝑡) = 𝜙inputf (𝐼𝑗

input,dnd(𝑡)). 
(40) 

 

The values of parameters for the two-compartment neuron model were given as 𝜏L = 10 ms,𝜙 =

0.08 kHz,𝜙input = 0.08 kHz, 𝜃f = 5, 𝜂 = 0.2, 𝛾 = 1, 𝛽 = 0, 𝛼 = 0.5, 𝑟0 = 0.05, 𝜏w = 1000 ms, 𝜎w =

0.005, 𝜂decay = 10
−7,  and 𝜏mean = 60000 ms . Simulations of the single-compartment neuron were 

performed for 𝛼 = 𝛾 = 0 without changing the values of the other parameters. Initial weights were uniformly 

sampled from [0, 5]. 

 

Details of simulations of inhibitory feedback model (Figure 2) 

We calculated source signals 𝑠𝑖(𝑡) in the same way with previous section. In the two-cell simulation for 

separation, we prepared two source signals. We calculated 𝐼𝑗
input,som(𝑡) (1 ≤ 𝑗 ≤ 10) and 𝐼𝑗

input,dnd(𝑡) (1 ≤

𝑗 ≤ 20) by 

𝐼𝑗
input,som(𝑡) = −

1

𝜏L
𝐼𝑗
input,som(𝑡) + 𝑠1(𝑡) + 𝑠2(𝑡) + 𝜎n𝜖(𝑡). 

(41) 

𝐼𝑗
input,dnd(𝑡) = −

1

𝜏L
𝐼𝑗
input,dnd(𝑡) + 𝑠1(𝑡) + 𝜎n𝜖(𝑡)    (𝑗 ∈ groupA), 

(42) 

𝐼𝑗
input,dnd(𝑡) = −

1

𝜏L
𝐼𝑗
input,dnd(𝑡) + 𝑠2(𝑡) + 𝜎n𝜖(𝑡)    (𝑗 ∈ groupB). 

(43) 
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In the single-cell simulation for stabilization, we prepared 21 source signals. Throughout the simulation, we 

calculated 𝐼𝑗
input,som(𝑡) (1 ≤ 𝑗 ≤ 10) and 𝐼𝑗

input,dnd(𝑡) (1 ≤ 𝑗 ≤ 20) by 

𝐼𝑗
input,som(𝑡) = −

1

𝜏L
𝐼𝑗
input,som(𝑡) + 𝑠1(𝑡) + 𝜎n𝜖(𝑡), 

(44) 

𝐼𝑗
input,dnd(𝑡) = −

1

𝜏L
𝐼𝑗
input,dnd(𝑡) + 𝑠j+1(𝑡) + 𝜎n𝜖(𝑡), 

(45) 

from 0 s to 300 s,  

𝐼𝑗
input,dnd(𝑡) = −

1

𝜏L
𝐼𝑗
input,dnd(𝑡) + 𝑠1(𝑡) + 𝜎n𝜖(𝑡)    (𝑗 ∈ groupA), 

(46) 

𝐼𝑗
input,dnd(𝑡) = −

1

𝜏L
𝐼𝑖
input,dnd(𝑡) + 𝑠j+1(𝑡) + 𝜎n𝜖(𝑡)    (𝑗 ∈ groupB), 

(47) 

from 300 s to 600 s, and  

𝐼𝑗
input,dnd(𝑡) = −

1

𝜏L
𝐼𝑗
input,dnd(𝑡) + 𝑠j+1(𝑡) + 𝜎n𝜖(𝑡)    (𝑗 ∈ groupA), 

(48) 

𝐼𝑗
input,dnd(𝑡) = −

1

𝜏L
𝐼𝑗
input,dnd(𝑡) + 𝑠1(𝑡) + 𝜎n𝜖(𝑡)    (𝑗 ∈ groupB), 

(49) 

from 600 s to 1200 s. We determined output firing rates of input neurons 𝑢𝑗
som(𝑡), 𝑢𝑗

dnd(𝑡) by Eq. (39) (40). 

 

The values of parameters for the two-compartment neuron model were given as 𝜏L = 10 ms,𝜙 =

0.08 kHz,𝜙input = 0.08 kHz, 𝜃f = 5, 𝜂 = 0.2, 𝛾 = 1, 𝛽 = 2.5, 𝛼 = 0.9, 𝑟0 = 0.05, 𝜏w = 1000 ms, 𝜎w =

0.001, 𝜂decay = 10
−7, 𝜃inh = 0.5, 𝜂inh = 0.2 and 𝜏mean = 60000 ms. Initial excitatory weights were uniformly 

sampled from [0, 5] and initial dendritic inhibitory weights 𝑣𝑖
dnd(𝑡) were zero. Somatic inhibitory weights 

𝑣𝑖
som(𝑡) were fixed to 20. Simulation without dendritic inhibition was performed with 𝜂inh = 0. 

 

Simulation settings for the one-dimensional track (Figure 3) 

We used 300 CA3 neurons and 500 EC neurons. Initial recurrent synaptic weights from neuron 𝑗 to neuron 

𝑖 (𝑖 ≠ 𝑗) in CA3 were given as  

𝑤𝑖𝑗
som = 𝑤maxexp(−0.5 (

𝑖 − 𝑗

𝑤width
)
2

) + 𝜎init𝜖(𝑡), 

 

(50) 

where 𝑤max = 18, 𝑤width = 5 and 𝜎init = 0.05. Here we included random fluctuation of weights sampled 

from normal Gaussian distribution 𝜖(𝑡), and negative weights were set to zero. Self-connections 𝑤𝑖𝑖
𝑠𝑜𝑚 were 

always zero. In qualitative assessment, we multiplied 0, 0.5, 0.75, or 1.25 to 𝑤max in each simulation. 

 

Initial synaptic weights from EC 𝑤𝑖𝑗
dnd were firstly determined as 

𝑤𝑖𝑗
dnd = 𝑤maxexp(−0.5 (

𝑖 − 𝑗

𝑤width
)
2

)+ 𝜎init𝜖(𝑡). 

 

(51) 
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We used this setting to simulate the “familiar track”. In the simulation of “unfamiliar track”, we randomly 

shuffled values of these weights in each postsynaptic neuron 𝑖. Namely, shuffling was performed for index 𝑗. 

 

A function satisfying 0 ≤ 𝑝𝑜𝑠(𝑡) ≤ 1 designated the animal’s position on the one-dimensional track. The 

animal stopped at 𝑝𝑜𝑠(𝑡) = 0 from 0 s to 5 s. From 10s to 25 s, the position in first run is expressed as  

𝑝𝑜𝑠(𝑡) =

{
 
 

 
 

𝑡 − 15

5
 (10𝑠 ≤ 𝑡 < 15𝑠)

1 (15𝑠 ≤ 𝑡 < 17.5𝑠)

1 −
𝑡 − 17.5

5
 (17.5𝑠 ≤ 𝑡 < 22.5𝑠)

0 (22.5𝑠 ≤ 𝑡 < 25𝑠)

. 

 

 

(52) 

From 25s to 40 s, the position in second run is expressed as  

𝑝𝑜𝑠(𝑡) =

{
 
 

 
 

𝑡 − 25

10
 (25𝑠 ≤ 𝑡 < 35𝑠)

1 −
𝑡 − 35

2.5
 (35𝑠 ≤ 𝑡 < 37.5𝑠)

0 (37.5𝑠 ≤ 𝑡 < 40𝑠)

. 

 

 

(53) 

From 40s to 50 s, the position in third run is expressed as 

𝑝𝑜𝑠(𝑡) =

{
 
 

 
 0.8 ×

𝑡 − 40

4
 (40𝑠 ≤ 𝑡 < 44𝑠)

0.8 − 0.4 ×
𝑡 − 44

3
 (44𝑠 ≤ 𝑡 < 47𝑠)

0.4 + 0.6 ×
𝑡 − 47

3
 (47𝑠 ≤ 𝑡 < 50𝑠)

. 

 

 

(54) 

 

External inputs to somatic compartments 𝐼𝑖
ext(𝑡) were  

𝐼𝑖
ext(𝑡) = {

𝐼theta(𝑡) + 𝐼DG(𝑡) + 𝜎n𝜖(𝑡),  if 1 ≤ 𝑖 ≤ 10

𝐼theta(𝑡) + 𝜎n𝜖(𝑡),  otherwise
. 

(55) 

𝐼DG(𝑡) is input from dentate gyrus (DG), which takes 0.5 when DG is active and 0 otherwise. When the animal 

was running in the portion 𝑝𝑜𝑠(𝑡) < 0.05, DG was continuously activated. When the animal was stopping in 

𝑝𝑜𝑠(𝑡) < 0.05, the activation of DG follows a Poisson process at 1 Hz, and the duration of each activation was 

10ms.  

 

𝐼theta(𝑡) stands for theta oscillatory input from medial septum  

𝐼theta(𝑡) = 𝐴thetasin (2𝜋
𝑡

𝑡theta
), 

(56) 

during run and 𝐼theta(𝑡) = 0 during immobility. 
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Inputs to EC neurons 𝐼𝑖
input(𝑡) (1 ≤ 𝑖 ≤ 500) were given as  

𝐼𝑖
input(𝑡) = 𝑠𝑖

spont(𝑡) + 𝜎n𝜖(𝑡), (57) 

during immobility. During run, Inputs to position-dependent EC neurons 𝐼𝑖
input(𝑡) (1 ≤ 𝑖 ≤ 300) were given 

as  

𝐼𝑖
input(𝑡) = 𝐴Fexp (−0.5 (

𝑝𝑜𝑠(𝑡) − 𝑐𝑒𝑛𝑡𝑒𝑟(𝑖)

𝜎F
)
2

) + 0.5𝐼theta(𝑡) − 0.5 + 𝜎n𝜖(𝑡), 
(58) 

where 𝜖(𝑡) is normal Gaussian noise and 𝑐𝑒𝑛𝑡𝑒𝑟(𝑖) =
𝑖

300
. Inputs to distractor EC neurons (301 ≤ 𝑖 ≤ 500) 

during run were given as  

𝐼𝑖
input(𝑡) = 𝑠dist(𝑡) + 0.5𝐼theta(𝑡) − 0.5 + 𝜎n𝜖(𝑡), (59) 

Sources for spontaneous activity 𝑠𝑗
spont

(𝑡)  and distractors 𝑠dist(𝑡)  were generated from independent 

Ornstein-Uhlenbeck processes  

𝑑

𝑑𝑡
𝑠𝑗
spont(𝑡) = −

1

𝜏spont
𝑠𝑗
spont(𝑡) + σspont𝜖(𝑡), 

(60) 

𝑑

𝑑𝑡
𝑠dist(𝑡) = −

1

𝜏dist
𝑠dist(𝑡) + 𝜎s

dist𝜖(𝑡). 
(61) 

 

Parameters were 𝐴theta = 1, 𝑡theta =
1000

7
 ms, 𝜎n = 0.1 𝐴F = 0.5, 𝜎F = 0.1, σspont = 0.05, 𝜏spont =

10 ms, 𝜎dist = 0.02, and τdist = 500 ms. 

 

Simulation settings for spontaneous replay (Figure 4) 

Initial setting was the same as in Fig. 3. In Fig. 4, run was finished after the first run on the one-dimensional 

track, and spontaneous activity was simulated for the next 600 s. After that, simulation of the “third run” in 

Fig. 3 was conducted. During spontaneous activity, simulation setting was basically the same as that of 

immobility periods in Fig. 3. However, we added population bursts in EC, which were simulated by transiently 

changing σspont from 0.05 to 0.1. The occurrence of population bursts followed a Poisson process at 1 Hz, 

and each burst lasted for 200 ms. For the results shown in Fig. 4D, all weights of the dendritic inhibition and 

𝜂inh was set to zero when 60 s elapsed after the beginning of spontaneous activity, and simulation of the 

“third run” in Fig. 3 was conducted afer that. 

 

Simulation settings for the Y-shape track (Figure 5) 

We used 450 CA3 neurons. We divided these neurons into three groups, 1 ≤ 𝑖 ≤ 150,151 ≤ 𝑖 ≤ 300, 301 ≤

𝑖 ≤ 450, and recurrent synaptic weights within each group were determined in the same way as in the one-

dimensional track, using 𝑤max = 18, 𝑤width = 5 and 𝜎init = 0. Recurrent synaptic weights across groups 

were initially zero. Initial synaptic weights from EC 𝑤𝑖𝑗
dnd were uniformly sampled from the interval [0, 2]. 

 

The current position of the animal on the Y-shape track was specified by the arm number (𝑎𝑟𝑚(𝑡) = 1,2,3) 

and the position on the current arm, 0 ≤ 𝑝𝑜𝑠(𝑡) ≤ 0.5. During the first 10 s, the animal stopped at the center 

of the Y-shape arm. After that, the animal repeated the following movement on different arms every 10 s:  
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𝑝𝑜𝑠(𝑡) =

{
 
 

 
 

0 (0𝑠 ≤ 𝑡 < 2.5𝑠)

0.5 ×
𝑡 − 2.5

2.5
 (2.5𝑠 ≤ 𝑡 < 5𝑠)

0.5 (5𝑠 ≤ 𝑡 < 7.5𝑠)

0.5 − 0.5 ×
𝑡 − 7.5

2.5
 (7.5𝑠 ≤ 𝑡 < 10𝑠)

. 

 

 

(62) 

External inputs to the somatic compartments 𝐼𝑖
ext(𝑡) were basically the same as the ones used for the one-

dimensional track except that DG inputs with strength 1 were induced to 10 neurons per group, 1 ≤ 𝑖 ≤

10, 151 ≤ 𝑖 ≤ 160, 301 ≤ 𝑖 ≤ 310 in the region 0 ≤ 𝑝𝑜𝑠(𝑡) ≤ 0.05 on all arms. 

 

We used 450 position-dependent EC neurons, and inputs to these EC neurons 𝐼𝑖
input(𝑡) (1 ≤ 𝑖 ≤ 450) 

during immobility were the same as those in the one-dimensional track, whereas the inputs during the run 

depended on animal’s position as  

𝐼𝑖
input(𝑡) = 𝐼𝑖

pos(𝑡) + 0.5𝐼theta(𝑡) − 0.5 + 𝜎n𝜖(𝑡), (63) 

𝐼𝑖
pos(𝑡) = {

𝐴F exp(−0.5(
𝑝𝑜𝑠(𝑡) − 𝑐𝑒𝑛𝑡𝑒𝑟(𝑖)

𝜎F
)

2

) , if 𝑎𝑟𝑚(𝑡) = 𝑐𝑒𝑛𝑡𝑒𝑟_𝑎𝑟𝑚(𝑖)

0, otherwise

, 

 

(64) 

where the receptive field center 𝑐𝑒𝑛𝑡𝑒𝑟(𝑖) of neuron 𝑖 was uniformly sampled from [0, 0.5] and 150 neurons 

were assigned to each arm: 𝑐𝑒𝑛𝑡𝑒𝑟_𝑎𝑟𝑚(𝑖) = 1, 2 and 3 for 1 ≤ 𝑖 ≤ 150, 151 ≤ 𝑖 ≤ 300, and 301 ≤ 𝑖 ≤ 450, 

respectively. 

 

Simulation settings for branching firing sequences (Figure 6) 

We used 400 CA3 neurons and 300 EC neurons. We divided neurons into three groups, 1 ≤ 𝑖 ≤

100 (root), 101 ≤ 𝑖 ≤ 250 (branch A), 251 ≤ 𝑖 ≤ 400 (branch B), and recurrent synaptic weights within each 

group were determined in the same way with the one-dimensional track, using 𝑤max = 20, 𝑤width = 5 and 

𝜎init = 0. Weights were set to zero between branch A and branch B, and 

𝑤𝑖𝑗
som = 𝑤𝑗𝑖

som = 𝑤max
′ exp(−0.5 (

𝑖 − 𝑗

𝑤width
)
2

) (𝑖 ∈ root, 𝑗 ∈ branch A), 

 

(65) 

𝑤𝑖𝑗
som = 𝑤𝑗𝑖

som = 𝑤max
′ exp(−0.5(

(100 − 𝑖) + (𝑗 − 250)

𝑤width
)

2

) (𝑖 ∈ root, 𝑗 ∈ branch B) , 

 

(66) 

for other weights. The value of 𝑤max
′  was 18. Initial synaptic weights from EC 𝑤𝑖𝑗

dnd were uniformly sampled 

from the interval [0, 2]. 

 

The animal was immobile from 0 s to 60 s, and from 75 s to 135 s. In these periods, the number of firing 

sequences in each branch was counted to compare the propagation of firing sequences before and after an 

experience. During 60 s – 75 s (first experience) and 135 s – 150 s (second experience), 𝑝𝑜𝑠(𝑡) was changed 

in a same way with “first run” on the one-dimensional track (Fig. 3). 𝑐𝑒𝑛𝑡𝑒𝑟(𝑖) for each neuron 𝑖  was 
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uniformly sampled from [0, 1] for the first experience, and resampled in a similar way for the second 

experience. Other simulation settings were basically the same as in simulations of the one-dimensional track. 

 

Information per spike 

We evaluated the accuracy of place fields by using information per spike given as follows: 

∑
𝜆(𝑝𝑜𝑠𝑖)

𝜆
log

𝜆(𝑝𝑜𝑠𝑖)

𝜆
𝑝(𝑝𝑜𝑠𝑖)

𝑖

, 
(67) 

where 𝑝𝑜𝑠𝑖 is the binned position of the animal (𝑖 = 1,… ,𝑁bin), 𝑝(𝑝𝑜𝑠𝑖) is the probability that the animal is 

found at given position 𝑖, 𝜆 is the mean firing rate of the cell, 𝜆(𝑝𝑜𝑠𝑖) is the mean firing rate when the 

animal is in 𝑝𝑜𝑠𝑖. After removing immobile periods, we computed information per spike for all CA3 neurons 

having the mean firing rate higher than 1 Hz and averaged this quantity over these neurons. The number of 

bins 𝑁bin was 50 in Figure 3 and 75 (25 for one arm) in Figure 5. 

 

Homeostasis in BCM theory 

BCM theory used in this study is slightly different from the conventional one. Therefore, we analyze the 

homeostasis of our BCM theory: 

𝛥𝑤 = 𝑥(𝑥 − 𝜃)(1 − 𝑥)𝑢, (68) 

𝜃 = 𝑐0E[𝑥]
2, (69) 

where 𝑥 is postsynaptic activity and 𝑢 is presynaptic input.  

 

As shown in Results, this learning rule is given as a gradient ascent of the objective function: 

𝐽BCM =
1

2
E[𝑥2] − 𝑐0E[𝑥]

3. 
(70) 

Because 0 ≤ 𝑥 ≤ 1 in this paper (𝑥 is given by a sigmoidal function), we use an approximation E[𝑥2] ≈ E[𝑥] 

in the above equation. With this approximation, the objective function becomes 

𝐽BCM =
1

2
𝐸 − 𝑐0𝐸

3, 
(71) 

defining 𝐸 = E[𝑥]. The fixed point of this objective function is derived as  

𝑑𝐽BCM
𝑑𝐸

=
1

2
− 3𝑐0𝐸

2 = 3𝑐0 (𝐸 +
1

√6𝑐0
)(𝐸 −

1

√6𝑐0
) = 0, 

(72) 

Therefore, we should set 𝑐0 =
1

6𝑟0
2 to make the mean firing rate converge to 𝑟0. 

 

If we include the CCA term, the objective function is 

𝐽 = (1 − 𝛼) (
1

2
E[𝑥2] − 𝑐0E[𝑥]

3) + 𝛼E[𝑥𝑦]. 
(73) 

If 𝑥  and 𝑦  are independent, E[𝑥𝑦] = 𝐸[𝑥]𝐸[𝑦]  holds. Assuming a similar learning rule for 𝑦 , we can 

approximate this term with 𝐸[𝑥]2, and in this case the objective function becomes 

𝐽 =
1 − α

2
𝐸 + 𝛼𝐸2 − (1 − 𝛼)𝑐0𝐸

3. 
(74) 
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By solving 

𝑑𝐽

𝑑𝐸
=
1 − α

2
+ 2𝛼𝐸 − 3(1 − 𝛼)𝑐0𝐸

2 = 0, 
(75) 

we obtain  

𝐸 =
2𝛼

1 − 𝛼
𝑟0
2 +√(

2𝛼

1 − 𝛼
𝑟0
2)
2

+ 𝑟0
2. 

 

(76) 

The value of E is always larger than 𝑟0, but the difference is moderate if 𝑟0 ≪ 1. For instance, when 𝑟0 = 0.05 

and 𝛼 = 0.9 (these values were used in this study unless otherwise stated), this value is about 0.11. 

 

If 𝑥 and 𝑦 are perfectly correlated and 𝑥 ≈ 𝑦, we can use an approximation, E[𝑥𝑦] ≈ 𝐸[𝑥2]. Then, the 

analysis is similar to the previous case without the CCA term if we change the coefficient of E[𝑥2] in 𝐽BCM 

from 
1

2
 to 

1

2
+

𝛼

1−𝛼
. Then, the approximate fixed point changes to 𝐸 = 𝑟0√1+

2𝛼

1−𝛼
. As √1 +

2𝛼

1−𝛼
≈ 4.4 for 

𝛼 = 0.9, the equation 𝐸[𝑥] ≈ 4.4𝑟0 has a solution only when 4.4𝑟0 < 1. 

 

Because the above derivation holds only approximately, the convergence to a stable solution is not really 

ensured. However, the homeostasis was preserved in the present simulations, and the mean firing rate always 

converged to a value slightly higher than the theoretical estimation. Note that plasticity of inhibitory synapses 

is not taken into account in this analysis, and inhibitory plasticity sometimes caused instability for some 

parameter values. 

 

Code availability 

All codes for simulations and visualization were written in Python 3 and available at 

https://github.com/TatsuyaHaga/preplaymodel_codes. 
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Figure 1: PCA- and CCA-like learning in a two-compartment neuron model. 

(a) Simulation settings. Each compartment receives inputs from 50 neurons. Each group A or A’ consists of 10 

input neurons, and each group B or B’ of 40 neurons. (b) An example of input neuron activities when the 

groups A and A' were correlated or uncorrelated. (c) Time evolution of synaptic weights are shown for the 

single-compartment model (left) and the two-compartmental model receiving uncorrelated (center) or 

correlated (right) inputs from A and A'. The single compartment neuron only received inputs from A and B. 

The means (lines) and standard deviations (shaded areas) are shown. (d) The activities of the neuron models 

were shown for the same simulation settings as in c. (e) PCA were applied to signals simulated in the same 
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setting as in c when A and A’ were correlated. The eigenvectors (left) and the scores of the first PCs (right) are 

shown. (f) CCA were applied to signals simulated in the same setting as in c when A and A’ were correlated.  
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Figure 2: Roles of plastic inhibitory feedback to the distal dendritic compartment. 

(a) Inhibitory feedback model is schematically illustrated. Inhibitory interneurons project to both somatic and 

dendritic compartments. (b) In this simulation setting, two pyramidal neurons projected to an inhibitory 

neuron and received inhibitory feedback at the somatic and dendritic compartments. In addition, pyramidal 

neurons received common somatic inputs from excitatory cell group C and mixed dendritic inputs from two 

mutually-uncorrelated excitatory cell groups A and B. The activity of cell group C was correlated with the 

activities of cell groups A and B with equal magnitudes. (c, d) Time evolution of synaptic weights on the 

dendritic compartments of the two cells with (c) or without (d) dendritic inhibition. The means (lines) and 

standard deviations (shaded areas) of synaptic weights are shown. (e) A single pyramidal neuron with 

inhibition fed back onto its dendrite received somatic inputs from a cell group C and dendritic inputs from 

two cell groups A and B. Activities of input neurons in groups A and B were initially uncorrelated within each 

group and with other groups. At time 300 sec, correlations were introduced within group A and between 

groups A and C. At time 600 sec, neurons in group A returned to an uncorrelated state, but neurons in group 

B became correlated within the group and with group C. (f, g) Time evolution of excitatory synaptic weights 

on the dendritic compartment with (f) or without (g) dendritic inhibition. (h) Time evolution of inhibitory 

synaptic weights on the dendritic compartments is displayed. 
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Figure 3: One-shot learning of place fields on a one-dimensional track. 

(a) Our CA3 network model consists of 500 EC neurons projecting to the distal compartments of 300 two-

compartment CA3 neurons, which have inhibitory feedback to both distal dendritic and somatic 

compartments. DG input activates neuron 1 to neuron 10 of CA3 in a probabilistic manner. (b) DG-evoked 

preexisting activity patterns in CA3 were simulated without EC input. The animal was immobile from 0 to 5 

sec and ran from 5 to 10 sec. (c) The behavioral paradigm and activities of EC neurons in the present 

simulations. Position-dependent sensory features are encoded by 300 EC neurons, whereas other 200 EC 

neurons (neuron ID 300 to 500) show position-independent distractor activity. (d,e) Activities of the two-

compartment network model (d) and single-compartment network model (e) for animal’s movements shown 

in the top panels. The single-compartment network model was simulated with η = 0.5. The inset in (d) shows 
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the expanded plot of the output firing rate from 0 s to 10 s. (f) Time evolution during learning is shown for 

the dynamical variables of the two-compartment neuron. The examples were from CA3 neuron #100. (g) 

Average information per spike was calculated in various conditions. Three simulation trials were performed in 

each condition with different initial conditions. The strength of recurrent connections was measured relative 

to the connection strength used in c and d. In simulating familiar tracks, we used the initial weights of EC-to-

CA3 synapses optimized to generate place-dependent firing. In the simulations of unfamiliar tracks, these 

initial weights were randomly shuffled. 
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Figure 4: Long-term stability of memory against spontaneous activation. 

(a) Dendritic and somatic activities of the two-compartment CA3 neurons are shown before and during the 

first traversal on a one-dimensional track. (b) Dendritic activity and firing sequences during spontaneous 

activity are shown together with inhibitory inputs to the dendritic compartments. (c) Activity of the two-

compartment network model during traversals on the one-dimensional track is shown after exposure to 

spontaneous activity. (d) Similarly, such network activity is shown in the case that the dendritic inhibition was 

removed during the exposure to spontaneous activity. 
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Figure 5: Orthogonal memory formation in a Y-maze. 

(a) Behavioral paradigm is schematically illustrated. The animal starting from the junction successively visits 

three arms on a Y-maze. (b) In the initial setting of the recurrent network, a DG input triggers three firing 

sequences when the animal is at the junction of the Y-maze. Each branch of sequence consists of 150 neurons. 

(c) Spontaneous activity is shown for the three branches of the two-compartment network model before the 

exploration. (d) The dendritic and somatic activities of the two-compartment network model during the first 

run on the Y-maze. Time evolution of inhibitory inputs to the dendritic compartments is also shown. (e) 

Activity of the two-compartment network model during the second run is shown. (f) Activity of two-

compartment model without dendritic inhibition during the first run on the Y-maze. (g) Information per spike 

was calculated over five simulation trials with and without dendritic inhibition. 
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Figure 6: Memory encoding on branching firing sequences. 

(a) The somatic recurrent network of the two-compartment neuron model that has a bifurcating point. 

Neurons 1 to 100 constitute the trunk, 101 to 250 the left-side branch, and 251 to 400 the right-side branch. 

(b) Spontaneous branching firing sequences before spatial exploration are shown. (c) The two-compartment 

network model associated a sequence of sensory events (input pattern 1) is shown with the left-side branch 

of synaptic pathways. (d) After this encoding, spontaneous replay was biased to the firing sequence associated 

with input pattern 1. (e) The network model encoded a novel sensory sequence (input pattern 2) into the 

right-side branch of synaptic pathways. (f) The relative frequency of replay of the spontaneous firing sequence 

encoding input pattern 1 was calculated before and after the first experience for five simulation trials using 

different random seeds. The numbers of sequences propagating into either branch were counted for 60 sec 

in spontaneous activity. (g) The proposed memory encoding model utilizes a rich repertoire of branching 

firing sequences in the CA3 network. (h) Sequential sensory events are associated to a branching of firing 

sequences. (i) Novel sensory events are encoded into a different branch of sequences. 
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