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Abstract

Motivation: Allele-specific copy number alterations are commonly used to trace the evolu-
tion of tumours. A key step of the analysis is to segment genomic data into regions of constant
copy number. For precise phylogenetic inference, breakpoints shared between samples need to
be aligned to each other.

Results: Here we present asmultipcf, an algorithm for allele-specific segmentation of
multiple samples that infers private and shared segment boundaries of phylogenetically related
samples. The output of this algorithm can directly be used for allele-specific copy number
calling using ASCAT.

Availability: asmultipcf is available as part of the ASCAT R package (version > 2.5)
from github.com/Crick-CancerGenomics/ascat

1 Introduction

Allele-specific copy number alterations (CNAs) are commonly used to trace the evolution of a
tumour. One of the most frequently used algorithms to infer these copy number changes is AS-
CAT (Van Loo et al., 2010). It segments each sample separately and due to the noise in the data
the inferred locations of shared breakpoints are likely to differ between samples. These differences
can impair the analysis of phylogenetic relationships between the samples as it depends on the
assumption that shared breakpoints appear at exactly the same location. To address this problem,
Schwarz et al. (2015) performed extensive experimental break point validation, an expensive ap-
proach which has often been omitted by similar papers. Mangiola et al. (2016), for example, used
a size-based heuristic filter for CNAs instead.

To rigorously address the problem of multi-sample breakpoint detection, we have developed
asmultipc? (allele-specific multi-sample piecewise constant fitting), an algorithm performing allele-
specific segmentation of multiple samples for the inference of private and shared segment boundaries
of phylogenetically related samples. asmultipcf enforces joint segment boundaries across samples
unless the data contains significant evidence that the breakpoints differ.

2 Approach

asmultipct is based on the copy number segmentation algorithms developed by Nilsen et al. (2012),
which use penalized least square principles to fit piecewise constant segments to the data and which
are used by ASCAT (Van Loo et al., 2010) to infer allele specific copy numbers. asmpultipcf
combines two algorithms by Nilsen et al. (2012), aspcf (an allele-specific single-sample segmentation
method) and multipef (a non-allele-specific multi-sample segmentation method), to enable the joint
segmentation of multiple related samples in an allele specific manner. Additionally, asmpultipcf
handles missing values, making extensive data filtering unnecessary.

Input data: For each sample the following input data are required across germline heterozygous
sites: (i) log ratios (logR), representing log-transformed copy numbers derived from sequencing
depth or SNP array data, and (ii) B allele frequencies (BAF), describing the allelic imbalance of
SNPs. Both measurements can be derived from whole genome sequencing data. The algorithm
presented here can handle missing values and thus loci with incomplete data across samples do not
need to be excluded.
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Preprocessing: asmultipcf uses the same pre-processing steps as the allele-specific single sam-
ple algorithm proposed by Nilsen et al. (2012). Most importantly BAFs are mirrored in order
to obtain a single track in regions of allelic imbalance and extreme outliers, which are likely to
be noise, are removed from logR and BAF data (see Nilsen et al. (2012) for details of the pre-
processing). Given the input data of n samples across p SNP loci, the pre-processing yields a
single matrix Y = (y;;) € R*"*? that contains both logR and BAF values.

An exact algorithm for weighted segmentation: We extend the penalized least squares
approach of Nilsen et al. (2012) to evaluate the fit of a segmentation solution to the data, and use
a weighted least squares function to model missing values in the data matrix. A weight matrix
W = (w;;) € R?*P is derived by assigning w;; a weight of 0 if y;; is missing and 1 otherwise.
Then all missing values in Y are assigned an arbitrary (non-NA) value. Our aim is to find a

segmentation S = {I;,..., Iy} that minimizes the cost function
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where the best fit on a given segment I is the weighted average of the observations on that segment
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and where « is a penalty parameter that controls the number of segments. Expanding the square
in (2) and omitting the term that is independent of the segmentation we find
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To find an optimal solution to the cost function we adapt the dynamic programming algorithm
presented by Nilsen et al. (2012) to our weighted problem.

Algorithm 1: asmultipcf

Input: Matrix Y of log-transformed copy numbers and B allele frequencies; Weight matrix W;
penalty v > 0;
Output: Segment start indices and segment averages

1. Calculate scores by setting Ag =[], Co =[], €0 = 0 and iterate for k=1,...,p
¢ Ap=[Ap-1 0] + Wiy
[ ] Ck = [Ck—l O] +W.k

o d,=-1"7 (A;C oAjyo szl) where o denotes an element-wise matrix product and C?l
the element-wise inverse
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storing also the index t; € 1,...,k at which the minimum in the last step is achieved.
2. Find segment start indices from right to left as s1 = ¢p, s2 = ts,—1, ..., s; = 1, where
M <1.

3. Find segment averages
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A heuristic algorithm for large data sets: Algorithm 1 is of order O(p?), which means
that the segmentation becomes computationally expensive for long sequences. However, instead
of allowing breakpoints at any of the p positions, we can pre-select potential breakpoints and
thereby reduce the runtime to O(q?) where ¢ is the number of potential breakpoints. To identify
potential breakpoints, different heuristics can be used. Here, we apply Algorithm 1 to overlapping
subsequences, combine all of the inferred breakpoints and use them as input for the subsequent
global segmentation. As in the implementation by Nilsen et al. (2012) we use subsequences of length
5000 with an overlap of 1000. Algorithm 2 describes the fast heuristic version of asmultipcf.

Algorithm 2: Fast asmultipcf

Input: Matrix Y of log-transformed copy numbers and B allele frequencies; Weight matrix W;
penalty v > 0;
Output: Segment start indices and segment averages

1. Split data set into overlapping subsequences and apply steps 1 and 2 of Algorithm 1 to each
of them in order to find potential breakpoints rg, r1, ..., ry where ro =1 and r; =p+ 1.

2. Aggregate sequences between breakpoints by setting x;, = Z;’;;:_l w;;Yi; and vy, = Z;’“:;i_l Wi
3. Calculate segmentation solution by using the aggregated matrices X and V € R?"*4 as input
to Algorithm 1 instead of Y and W, respectively.

Post-processing: Both algorithms yield a single segmentation solution S for all samples. How-
ever, we expect that only some of the segments will be shared between all samples while others
will be private. While ASCAT can be run directly on the global segmentation solution, removing
unnecessary breakpoints on a per sample base can reduce noise in the segment average estimates
by generating larger segments. To refine breakpoints individually for each sample, we simply use
the breakpoints inferred from the multi-sample segmentation and rerun steps 2 and 3 of Algorithm
2 on each sample individually based on these potential break points.

Implementation: asmultipct is part of the ASCAT R package from version 2.5 onwards. The
asmultipcf function contains a parameter to select whether the exact or the fast algorithm should
be run, as well as an option to include the per-sample breakpoint refinement. Furthermore, samples
can be weight adjusted to account for quality differences in the data. An example of how to use
this function can be found in the package manual.

3 Discussion

The independent segmentation of related samples can artificially inflate tumor heterogeneity. The
algorithm presented here addresses this problem by joint segmentation. While this approach can
potentially underestimate tumor heterogeneity, because CNAs that are shared by many samples are
more likely to be detected than CNAs that are private or shared by only few samples, in practice
the penalty parameter v can be adjusted to ensure sensitivity. Overall, asmultipcf substantially
improves the analysis of copy number changes of multiple samples.
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