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Abstract 

Hepatocellular carcinoma (HCC) is the main form of malignant liver cancer with poor survival. 

Although some critical driver aberrations were identified in HCC, neither the transcriptomic nor 

the clinical associations of many of these driver genes have been well-characterized. We used the 

state of art driver detection methods MutSigCV and OncodriveFM to identify 11 consensus 

driver genes across six HCC cohorts and 1,494 samples in total. The consensus driver genes 

include TP53, CTNNB1, ALB, AXIN1, RB1, ARID1A, RPS6KA3, ACVR2A, NFE2L2, CDKN2A 

and HNF1A. Integrative analysis of driver mutations, copy number variations and transcriptomic 

data reveals that these driver genes are associated with the majority (63%) of the mRNA 

transcriptome, but only a small fraction (9%) of miRNAs. Genes associated with TP53, 

CTNNB1, ARID1A and HNF1A mutations contribute to four most densely connected clusters of 

biological pathways. Phenotypically, these driver genes are significantly associated with 

patients’ overall survival. Some of these driver genes are significantly associated with gender 

(TP53, CTNNB1, ALB), grade (TP53, ALB, RB1) and age (CTNNB1, AXIN1, RB1) in multiple 

cohorts. In summary, this study reveals the vast impacts of driver gene mutations (genotype) in 

HCC phenotypes, which may be valuable therapeutic targets of HCC.  
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Background 

Liver cancer is the second leading cause of cancer death worldwide, with more than 700,000 

incidences and deaths in recent years [1]. Globally, this cancer is ranked second for cancer-

related mortality among men [2]. In the US, it is one of the few cancers with increased rate of 

~3% per year, for both incidence and mortality [3]. Hepatocellular carcinoma (HCC) is the 

prominent histological type of liver cancer and accounts for approximately 75%-90% of all the 

liver cancer cases [4]. The incidence rates of HCC vary by factors such as race, gender, age as 

well as demographic regions. East Asians are twice likely to develop liver cancer compared to 

Caucasian or African American populations [5]. Additionally, males have 2 to 4 times higher 

incidence rates than females. The incidence rates peak around 60-65 years for males and 65-70 

for females [6,7]. Various other risk factors for the HCC development have been well-

determined, such as cirrhosis, hepatitis B (HBV) infection, hepatitis C (HCV) infection, alcohol 

abuse, obesity and environmental toxic intake [8]. While HBV infection is the major risk for 

HCC cases in East Asian countries, HCV and alcohol abuse are the leading causes of HCC in 

North America and Europe [9].  

The initiation and advancement of cancer are thought to occur after continuous accumulations of 

somatic genomic alterations, followed by the widespread manifestation on gene products [10–

13]. Using the whole genome sequencing (WGS) or whole exome-sequencing (WES) 

technology, many studies have aimed to determine candidate driver gene mutations in HCC, the 

type of mutations that confer a selective growth advantage to the cell [14–20]. TP53 and 

CTNNB1 are reported as the two most frequently mutated genes in HCC [21]. Other putative 

driver genes include those related to genome stability, such as ARID1A, ARID2, and MLL1-4 
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[15,17,22–24], RB1 in cell cycle pathway [16], AXIN1 in Wnt signaling pathway [25], NFE2L2 

in oxidative stress [22], and TSC1/TSC2 in MAPK signaling pathway [16,22]. A recent analysis 

of Hepatocellular Carcinoma from The Cancer Genome Atlas (TCGA) reported the significant 

mutation of LZTR1 (encoding an adaptor of CUL3-containing E3 ligase complexes) and EEF1A1 

(encoding eukaryotic translation elongation factor), apart from previously reported CTNNB1, 

TP53 and ALB genes [26]. However, given the high heterogeneity of HCC populations due to 

race, risk factors etc., a consensus list of driver genes among different HCC cohorts are yet to be 

identified. Moreover, the impact of driver mutations on HCC phenotypes, such as gene 

expression, have not been adequately investigated.  

To address these issues, we have collectively analyzed six HCC cohorts to derive 11 most 

significant consensus driver genes with significant functional impacts. To examine the impact of 

driver mutations on gene expression, we performed comprehensive analysis on driver mutation, 

copy number variation (CNV), gene expression and miRNA (miR) expression. Subsequent 

KEGG pathways and network analysis for these genes identified alterations in a broad spectrum 

of functions ranging from metabolic pathways, cell cycle to signaling pathways, as well as 

functional differences among the mutually exclusive driver genes. At the phenotypic level, we 

observed that consensus putative driver genes are predictive of survival differences among 

patients from cohorts with survival data. Some putative driver genes are significantly associated 

with physiological and clinical characteristics such as gender, age, and tumor grade. In summary, 

we present the comprehensive picture of the functional relevance of driver genes in HCC, from 

molecular to phenotypic levels. 
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Methods 

Dataset and processing: We used public domain HCC data from The Cancer Genome Atlas 

(TCGA) available at Genomic Data Commons (GDC) data portal, as of March 2017. In total, 

RNA-seq, CNV and miR-seq data comprise 371, 371 and 369 tumor samples, respectively. We 

used the R package TCGA-Assembler (v2.0) [27] to download the TCGA data. The mRNA-seq 

data are represented as the normalized gene expression RSEM (RNA-Seq by Expectation 

Maximization) quantification values obtained from Illumina HiSeq assay platform, while miR-

seq data include ‘reads per million miR mapped’ (RPM) quantification values from Illumina 

HiSeq assay platform. CNV data represent gene-level copy number values obtained by taking the 

average copy number of genomic regions of a gene from the Affymetrix SNP Array 6.0 assay 

platform. To handle the missing values, we performed three steps. First, we removed the 

biological features (i.e. genes/miRs) if they were missing in more than 20% of the samples. 

Similarly, we removed the samples if they were missing for more than 20% of the features. 

Second, we used K nearest neighbor based imputation using R impute package [28] to fill out the 

missing values. Last, we removed the genes with very low expression values (i.e. with 

RSEM/RPM<=10 in the remaining samples). For TCGA mutation profile, the comprehensive 

Mutation Annotation File (LIHC-TP.final_analysis_set.maf) was downloaded from the 

FireBrowse portal of the Broad institute. We retrieved 362 samples (with HCC histology) having 

paired tumor and normal adjacent tissue WES data. Additionally, we obtained WES data from 

Liver Cancer (France): LICA-FR (n=236), Liver Cancer (NCC, Japan): LINC-JP (n=244) and 

Liver Cancer (China): LICA-CN (n=163) cohorts, and WGS data from Liver Cancer (RIKEN, 

Japan): LIRI-JP (n=258), all available as simple somatic mutation files from the International 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 27, 2017. ; https://doi.org/10.1101/166090doi: bioRxiv preprint 

https://doi.org/10.1101/166090


6 
 

Cancer Genome Consortium (ICGC) web portal. These data from ICGC liver cohorts were 

published in the previous studies [16,22,29]. Besides ICGC, we obtained another WES dataset 

(KOREAN (n=231) form the early-stage HCCs  (patients with surgical resection) with clinical 

information of patients published earlier [18]. 

Consensus driver genes detection: To achieve the pool of consensus driver genes among six 

cohorts, we implemented the IntOGen platform (v3.0.6) [30], a comprehensive standalone 

pipeline for the identification of driver genes. The mutation profiles, from six cohorts, were 

subjected to MutSigCV (v1.4) [31] and OncodriveFM [32], both incorporated in the IntOGen 

pipeline. MutSigCV represents an advanced version of MutSig tool, which seeks to identify 

genes with significant positive selection during tumorigenesis. It calculates the personalized and 

gene-specific background random mutation rates, along with the implementation of expression 

levels and replication times as covariate factors. Complementarily, OncodriveFM uncovers the 

significant mutation space by applying the functional impact based positive selection to identify 

the driver genes. From each module (i.e. MutSigCV and OncodriveFM) separately, we identified 

the genes which satisfied: (i) q-values less than the threshold cut-off (q<0.1) in at least 3 of 6 

cohorts, and (ii) mean q-value less than the threshold cut-off (q<0.1), across the cohorts. The 

final set of drivers were obtained by the intersection of the genes found in two modules. The 

threshold value of q-value<0.1 for both MutSigCV and OncodriveFM was based on earlier 

studies [31,33]. For downstream analyses, we excluded intergenic and intronic mutations. 

Determination of mutual exclusivity and co-occurrence: For each pair of consensus driver genes, 

we determined their association based on Fisher’s exact test with a p-value <0.05. For significant 

associations, if the log odds ratio was more than 0 for a pair of genes, the pair was called “co-
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occurred”, or else “exclusive”. To detect the mutational exclusivity among gene sets (i.e. more 

than two genes), we applied the Dendrix algorithm [34] which is specialized to fish out gene sets 

with high coverage and exclusivity across the samples. We used gene set numbers k=4, k=5 and 

calculated their maximum weight with consideration of mutated genes and samples. We ran 

100,000 iterations using Markov chain Monte Carlo approach to calculate empirical p-values for 

the top gene sets with the maximum weight.  

For each cohort, we also used a bipartite graph to represent the mutations in the driver genes for 

each patient, using the patients and the driver genes as the distinct set of nodes. We used 

ForceAtlas2, a graph layout algorithm implemented in Gephi [35], to spatialize the graphs for 

mutual exclusivity. To compute the distances of the different cohorts the approach used is as 

follows: using the bipartite graph of each cohort, we computed the PageRank scores, a measure 

reflecting the connectivity of a node in a network [36], of the 11 driver genes.  We used these 

scores as features representing cohorts. We then used Ward’s minimum variance method to 

cluster both the genes and the PageRank scores.  

Modeling relationships between consensus driver and gene expression: We made a binary (1, 0) 

matrix to indicate the mutation status of consensus driver genes in all samples. A value of 1 

means the existence of at least one variant within the gene body, in the categories of nonsense, 

missense, inframe indel, frameshift, silent, splice site, transcription starting site and nonstop 

mutation. Otherwise, 0 was assigned to the gene. We made another count table of CNV data 

similarly. We used function voom (limma package in R) to transform RSEM data prior to the 

linear modeling [37], then fit the linear models by minimizing generalized least squares similar 
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to others [38]. These linear models consider the effects of multiple consensus driver genes 

(predictors) and their CNVs on expression values of individual genes (responses) as follows:   

                                                  �� � ��� � ∑  �
��� ������ � ������  ��                             (1) 

Where �� is the vector representing expression value of gene g across all the n samples, ��� is 

that baseline value of g, �� and �� are the mutation status and CNV of the consensus driver gene 

g in sample i,  �� and  �� are coefficients for the same associated with the mutation status and 

CNV, respectively. We performed multiple hypothesis tests on the significance values of the 

coefficients  across all the genes using Benjamin–Hochberg (BH) adjustment, to determine the 

significant association between the driver genes and expression of all the genes (BH adjusted p-

value <0.05). 

Pathway enrichment and network analysis: We conducted pathway enrichment analysis of the 

genes impacted by somatic mutations and CNVs, using R package clusterProfiler [39]. We used 

BH adjusted p-value=0.05 as threshold to select the over-represented KEGG pathways. We used 

Gephi [35] bipartite graph to visualize driver gene-enriched pathways network.  

Modeling relationships between consensus drivers and miR expression: To find the relationship 

between driver genes (mutation and CNV) and impact of miR expression, we implemented the 

linear model similar to that of equation (1). Here driver genes’ mutation and CNV status are 

treated as independent variables and miR expression as the response variable. To narrow down 

miRs that directly target these 11 drivers, we mined miRDB resource [40], which houses the 

miR-target interactions predicted by MirTarget [41] based on CLIP-Ligation experiments. 
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Survival analysis of driver mutations: We used the Cox proportional hazards (Cox-PH) model 

[42] implemented in R survival package for the overall survival (OS) analysis of consensus 

driver genes. We also conducted Cox-PH model to fit the overall effect of all 11 driver genes on 

OS, with or without adjustments of clinical and physiological parameters (e.g. age, gender, and 

grade). For this, we used R glmnet package [43], since it enables penalization through ridge 

regression. We performed cross-validation to obtain the optimal regularization hyperparameter. 

The hyperparameter was selected by minimizing the mean cross-validated partial likelihood. To 

evaluate the performance of the survival models [44]. We calculated the concordance index (CI) 

using function concordance.index in R survcomp package [45], based on Harrell’s C-statistics 

[46]. We dichotomized the samples into high- and low-risk groups based on the median 

prognosis index (PI) score, the fitted survival values of the Cox-PH model [47–49]. In the case of 

ties for the median PI, we shuffled the samples and randomly assigned them to either risk groups. 

We plotted the Kaplan-Meier survival curves for the two risk groups and calculated the log-rank 

p-value of the survival difference between them. We performed the similar survival analysis by 

adjusting the Cox-PH model with different physiological and clinical factors (e.g. age, gender, 

grade, race, tumor stage and risk). 

Results 

Detection of consensus driver genes  

To identify the consensus pool of drive genes among multiple cohorts of diverse populations, we 

used paired tumor-normal tissue of HCC WES data from TCGA as well as five other cohorts 

(WES/WGS). The clinical summary of patients in these 6 cohorts is listed in Table S1. We 
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assessed mutation significance and functional impact of protein coding genes using MutSigCV 

and OncodriveFM modules implemented in the IntOGen pipeline (see Materials and Methods). 

From the two integrative modules of this pipeline, we obtained 11 and 21 genes with mean q-

value <0.1 from MutSigCV and OncodriveFM, respectively. By intersecting results in these two 

gene sets, we identified 11 common genes as “consensus driver genes” (see Methods) (Figure 

1A). Among these 11 genes, TP53 and CTNNB1 are most significantly mutated and functionally 

impactful genes based on q-values (Figures 1B & 1C), consistent with the observations earlier 

[18,21]. However, some low-frequency mutation genes also have significant rankings per 

MutSigCV (Figure 1B). For examples, HNF1A, CDKN2A, NFE2L2 and ACVR2A are all 

significant (mean q-values: 0.03, 0.02, 0.005 and 0.0009 respectively), although their average 

mutation frequencies are less than 5% (Figure 1D). Thus, this workflow efficiently detects less 

frequent but consistently important driver genes. 

Meta-analysis of consensus driver genes among cohorts  

Next, we explored the mutation exclusivity status among these 11 driver genes across different 

populations (Figure 2A). We used colored tiles in the plot to represent the specific type of 

mutation (e.g. missense, silent, frame shift etc.). A similar trend of mutation distribution exists in 

TCGA, three ICGC cohorts with large sample size (i.e. LINC-JP, LIRI-JP and LICA-FR) and the 

KOREAN cohort (Figures 2A (i), (ii), (iii), (iv) and (v)). Worth mentioning, LICA-CN (n=163) 

data have the lowest CTNNB1 mutation rate from the other cohorts (Figure 2A (vi)). This 

exception may be attributable to HBV infection in LICA-CN cohort, as previous studies of HBV 

patients also reported rare existence of CTNNB1 mutations [22,23].  The top mutated genes in 

the six cohorts show clear evidence of mutual exclusivity (Figure 2A). For example, CTNNB1 
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and TP53 mutations are mutually exclusive in four of six cohorts, with significant Fisher’s exact 

test p-values in TCGA (P=0.0303), LICA-FR (P= 0.0166), KOREAN (P=0.006) and LINC-JP 

cohort (P=0.057). To detect mutual exclusivity beyond two genes, we used the tool Dendrix [34].  

Again we observed significant mutational exclusivities (p-value=<0.05) for up to five genes in 

all 6 cohorts (Figure S1). TP53, CTNNB1, RB1 and AXIN1 and another cohort-specific gene are 

mutually exclusive in all five cohorts except LICA-CN. This other driver is HNF1A for TCGA 

and LICA-FR cohorts and CDKN2A for LINC-JP, LIRI-JP and KOREA cohorts. Compared to 

the five cohorts, LICA-CN cohort has most different five mutual exclusive drivers: TP53, 

ACVR2A, ALB, CDKN2A, and RPS6KA3.  

We further visualized the mutual exclusivity using bipartite graphs, where patients, driver genes, 

and their topologies are highlighted in a connective graph (Figure 2B). The blue nodes and the 

labeled nodes represent patients and driver genes, respectively, and the edge between them 

indicates the existence of certain driver in a particular patient. Based on the PageRank score that 

measures the connectivity and topologies of the graphs (see Materials and Methods), the 

similarity between TCGA and the other cohort descends in the following order: LINC-JP > LIRI-

JP> LICA-FR > KOREAN > LICA-CN (Figure S2). KOREAN and LICA-CN cohorts are most 

distinct from other cohorts, with much fewer patients showing mutations in at least two driver 

genes. While KOREAN cohort mostly mutates in TP53 and CTNNB1 (however lacking ALB 

mutations like the other three cohorts), LICA-CN most dominantly mutates in TP53 but not 

CTNNB1 or ALB (Figure 2B (vi) and S2). 
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The associations between gene expression and consensus driver gene mutation/CNV 

To obtain the lists of genes impacted by the consensus drivers at the transcriptional level, we 

built linear models using these driver genes’ mutation profile and their CNVs as the predictors, 

whereas gene expression values as the response variables, similar to another study [50]. These 

genetics based models decently predict gene expression values (R2=0.58) (Figure 3A), 

indicating that albeit the complex genetics and epigenetics regulatory mechanisms of gene 

expression, HCC driver gene mutations still convey important functional impacts on gene 

expression. Overall, our results show that around 63% (13,036) of genes are significantly 

associated (BH adjusted p-value <0.05) with these consensus driver genes. We list the number of 

genes significantly associated to each consensus driver gene in these linear models in Figure 3B. 

The top two mutated genes are TP53 and CTNNB1 as expected, both affecting over four 

thousand genes. Strikingly, the CNV of ARID1A is ranked 4th and linked to expression changes 

in over 2,800 genes, despite its relatively low mutation rate of ~5%.  

To investigate the biological processes that these 13,036 genes are involved in, we conducted 

KEGG pathway enrichment analysis and detected 108 significantly (BH adjusted p-values <0.05) 

associated pathways (Figure 3C). We further categorized these pathways into 6 super groups 

according to the KEGG pathway organization [51], namely: cellular processes, environmental 

information processing, genetic information processing, metabolism, human diseases, and 

organismal systems [51]. It is not surprising that the pathway super-group affected most by the 

consensus driver genes belongs to metabolic pathways. Among the driver genes, TP53, 

CTNNB1, ARID1A and HNF1A are most densely connected to enriched pathways, due to the 

associations with gene expression changes. Some signaling pathways in the environmental 
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information processing group are significantly influenced by driver genes, especially CTNNB1, 

which is associated with PI3K-Akt pathway, Wnt pathway and CGMP-PKG signaling pathway. 

The association network between driver genes and pathways provide functional explanations for 

mutual exclusivities observed earlier, at least partially, in that certain pathways are commonly 

associated by two mutually exclusive drivers. Between the well-known mutually exclusive TP53 

and CTNNB1, multiple pathways in amino acid and glucose metabolism are shared. TP53 and 

ARID1A are both involved in amino acid and fatty acid metabolism pathways. CTNNB1-

ARID1A-HNF1A share CYP450 metabolism pathway.  

Associations between miR expression and consensus driver gene mutation/CNV 

We extended the linear modeling approach described earlier to examine the association between 

consensus driver genes and miR expression. As a result, we found 164 miRs significantly 

associated with the consensus drivers. Among them, 120 miRs are associated with driver gene 

CNV-level changes, 88 miRs are associated with the driver mutations, and 44 miRs are 

associated with both of them. Figures 4A and B show the bipartite graphs of associations 

between miRs and driver gene mutations and CNVs, respectively. Overall, CTNNB1 and TP53 

are most influential drivers, as expected, affecting 77 and 52 miRs respectively. From the 

mutation perspective, CTNNB1 is dominantly associated with the most number (60) of miRs 

(Figure 4A), whereas from the driver gene CNV perspective, TP53 is associated with the most 

number (44) of miRs (Figure 4B). From the miR-centric perspective, hsa-mir-616 is associated 

with CNVs of the most number (4) of genes TP53, RB1, ARID1A and CDKN2A. This miR was 

overexpressed in HCC and promoted tumorigensis [52]. On the other hand, hsa-mir-203a is 
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associated with the most number (3) of genes (TP53, CTNNB1 and HNF1A) at the mutation 

level. 

Since the miRs discovered above are based on linear models, they may directly or indirectly 

target the consensus drivers. To help narrow down the miRs that may directly target these 

drivers, we searched miRDB resource [40], in which miR and targets are predicted by 

correlational analysis of thousands of miRNA-target interactions from CLIP-Seq experiments. 

As results, we obtained 15 miRs that are predicted to target one or more consensus driver genes 

(Figure S3).  CTNNB1 is the direct target of 6 miRs: hsa-mir-214, hsa-mir-330, hsa-mir-885, 

hsa-mir-3591, hsa-mir-5586 and hsa-mir-6715b, where hsa-miR-214 and hsa-miR-885-5p have 

been reported to be targeting CTNNB1 [53,54]. TP53 is the target of hsa-mir-149, which was 

shown to be directly up regulated by P53 [55] (Figure S3A). ARID1A is the potential target of 

hsa-mir-181b-1, hsa-mir-1976, hsa-mir-92a-2 and hsa-mir-511 (Figure S3B). Future 

experimental studies are warranted to decipher if these miRs are indeed associated with driver 

genes at primary target level, or secondary, tertiary levels. 

Associations between consensus driver genes and survival outcome 

In order to test survival associations from all the driver mutations, we built multivariate Cox-PH 

models on overall survival in each of the four cohorts that have survival data (TCGA, LINC-JP, 

LIRI-JP and LICA-FR). We used the median PI score generated from the Cox-PH model as the 

threshold [47], and divided samples into high and low risk groups accordingly. The Kaplan-

Meier survival curves of the two groups are shown in Figure 5. For all the cohorts with survival 

data, the log-rank P-values between the Kaplan-Meier curves are significant (TCGA: P=0.0063, 

C-index-0.58; LICA-FR: P=0.0068, C-index=0.60; LINC-JP: P=0.013, C-index=0.67 and LIRI-
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JP: P=0.004, C-index=0.64). To avoid potential confounding from age, gender, grade, stage in all 

4 cohorts, as well as risk factor and race in TCGA cohort, we adjusted the Cox-PH model by 

these variables accordingly. Still, we identified significantly different survival groups (TCGA: 

P=4.3e-05, LINC-JP: P=3.1e-02, LIRI-JP: P=6e-06 and LICA-FR: P=7.6e-04) (Figure S4). All 

together, these results show that the driver gene mutational status is associated with HCC 

patients’ overall survival.  

Associations between consensus driver genes and other physiological and clinical 

characteristics 

To reveal the possible associations of these driver genes with physiological and clinical 

characteristics of patients, such as gender, age, and grade, risk factors etc., we conducted Fisher’s 

exact tests for the categorical variables, and Mann-Whitney-Wilcoxon test for the continuous age 

variable. With regard to gender, CTNNB1, ALB and TP53 are statistically more frequently 

mutated in males than females, in 5, 3 and 2 out of 6 cohorts, respectively (Figure 6A). The 

statistical significance of bias towards male is especially striking for CTNNB1, a proto-oncogene, 

with the strongest association from the TCGA cohort (P-value=1.5e-05). For associations with 

grade, TP53 mutation frequency increases with higher tumor grades in 4 out of 6 cohorts, where 

the most significant association comes from LINC-JP cohort (P-value=1e-05) (Figure 6B). Four 

other genes, CTNNB1, ALB, RB1, and CDKN2A also have significant associations with grade in 

one or two cohorts. For age, again CTNNB1 is the driver gene with the strongest associations, for 

both significance level and the number of cohorts (4 out of 6) (Figure 6C). It has the strongest 

association in the KOREAN cohort (P-value=1.3e-04). Interestingly, RB1 is another driver gene 

significantly but inversely related to age (3 out of 6 cohorts).  
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Discussion 

In this study, we have pushed forward our understanding of the molecular and clinical 

associations of HCC drivers using multiple cohorts. Despite the heterogeneity among the 

datasets, we identified eleven consensus driver genes derived from HCC WES/WGS data. 

Anchoring on these consensus driver genes, we investigated in-depth their transcriptomic 

(mRNA and miRs) impacts, physiological and clinical associations, and prognosis values. 

A major contribution of this study is to associate the drivers with transcriptomic changes, which 

was previously unknown. The consensus driver genes are correlated to around 63% mRNA 

transcriptome. These influenced genes are involved in various pathways in cell cycle and DNA 

repair, metabolism, and signaling transduction. Interestingly, network analysis results show that 

the mutually exclusively mutated genes have effects on some common biological processes, 

which may explain why mutations in both genes do not usually co-occur within the same patient.  

Surprisingly, only 9% of miRs are associated with the consensus drivers globally, suggesting the 

major and direct role of driver mutations is on protein coding genes rather than regulatory 

components such as miRs. For the miRs that do link with consensus drivers, the relationship is 

more significant at the CNV level of drivers, rather than mutation level of drivers. This makes 

sense, as the change of copy numbers of drivers are integers, supposed to be greater than 

mutations that are modulating.  

Our analysis reveals some unusual findings on genes with low mutation frequencies. One of 

them is that ARID1A CNV is one of the most “effective” events in driver genes, prevalently 

associated with transcriptomic changes of 2,803 genes. ARID1A is a chromatin remodeller which 

is involved in transcriptional activation and considered as tumor suppressor [56]. Previously, this 
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gene is reported to be frequently deleted in HCC [20,57]. ARID1A mutations in HCC have been 

reported to be associated HCC progression and metastasis in HBV- and alcohol-related HCC 

[23,58]. Other infrequently mutated genes HFN1A and ACVR2A have also been reported in 

individual studies much less frequently [16,29]. Our stringent criteria for selection of consensus 

driver genes among 6 HCC cohorts highlights these low mutated genes with consensus, 

reflecting that these may play a crucial role in HCC etiology. Along with TP53 and CTNNB1, 

two genes HNF1A and ARID1A stand out with densely connected sub networks. 

We highlight some low-frequency mutation genes that were less studied in HCC before, such as 

ARID1A, HNF1A, ACVR2A and NFE2L2. These mutations all together are significantly 

associated with HCC patients’ survival in all cohorts that have survival records, providing the 

promise that therapeutics targeting these mutations may improve patient survival. Moreover, we 

have found extensive evidence that these driver mutations are associated with gender bias, age 

and tumor grade, thus warranty more patient-specific treatment plans. CTNNB1 is more frequent 

in males, and it increases with age, and tumor grades. TP53 is more frequent in males, and also 

increases with age. Interestingly, we also found that ALB mutations are biased in males and 

increases with grade, to a less degree than CTNNB1. Another interesting driver gene RB1 is 

significantly associated with grade, however, reversely related to ages of HCC patients. We do 

not know the etiology of such reversal age dependency of RB1 in HCC. However, it has been 

well known that mutations in both alleles of the RB1 gene are essential for retinoblastoma, which 

often diagnosed in neonatals.  

In summary, we have identified a consensus list of 11 driver genes in HCC and their associations 

with molecular and clinical phenotypes. Albeit the heterogeneity and complexity of HCC, the 
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driver genes have broad and significant impacts on global gene expression and molecular 

pathway functions. Future mechanistic studies will be needed to understand the causality 

between driver mutations and impacted genes and miRs. Nevertheless, this study provides an 

important reference for driver mutations in HCC patients, which may be valuable for HCC 

prognosis prediction. It may even provide insights on combinatorial targeted therapies, which are 

severely lacking in HCC. 

 Conclusions 

We have identified 11 consensus driver genes in HCC from six international cohorts, 

representing the largest endeavor on genotype-phenotype analysis. These driver genes and 

physiological and clinical factors show significant associations, particularly on patient survival, 

gender, age and risk factors. Moreover, the 11 driver genes exert impacts on the majority of 

mRNA transcriptome. Altogether, this study provides a list of driver genes in HCC that may be 

good therapeutic targets. 
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Figure Legends 

Figure 1. Consensus driver genes in 6 HCC cohorts. (A) IntOGen pipeline to identify consensus driver 

genes. (B) Final 11 genes with mean q-value <0.1 from MutSigCV module. (C) Same 11 genes with 

mean q-value <0.1 from OncodriveFM module. (D) Percentage of sample coverage of driver gene 

mutations. 

Figure 2. Mutual exclusivity among different driver genes in 6 HCC cohorts. (A) Co-mutation plots 

for the 6 HCC cohorts, where each colored tile represents one of the mutation types (i.e. frame shift, in-

frame indel, missense, exonic, nonsense, splice site, silent or mixture of mutations) (i) TCGA (ii) LINC-

JP (iii) LIRI-JP (iv) LICA-FR (v) KOREAN (vi) LICA-CN cohorts. (B) Bipartite graphs for mutual 

exclusivity of the same cohorts in (A). Blue nodes represent the patients and the other labeled nodes 

represent consensus driver genes, whose size is proportional to their degree.  

Figure 3. Associations of consensus driver genes with mRNA expression. (A) Correlation between 

observed and predicted gene expression. (B) The number of genes whose expression values are 

significantly associated with the driver gene mutation/CNV statuses. (C) Enriched KEGG pathways 

network among significant genes as shown in (B). The thickness of edges is proportional to the -log10 p-

adjusted value.   

Figure 4. Associations of consensus driver genes with miR expression. Bipartite graphs representing 

(A) correlations between miR expression and mutations of the genes. (B) Correlations between miR 

expression and CNV. Green color represents positive correlation and red for anti-correlation. 

Figure 5. Kaplan-Meier estimates of overall survival (OS) in 4 HCC cohorts. A Cox-PH regression 

was used to build the overall survival model featuring the driver genes mutation profile. The samples 

were dichotomized into high and low risk groups by the median Prognostic Index (PI). (A) TCGA (B) 

LINC-JP (C) LIRI-JP (D) LICA-FR cohorts. 
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Figure 6. Associations of clinical factors with driver genes. Shown are genes with significant 

associations to physiological and clinical factors, including gender, grade (Fisher’s exact test with p-

value< 0.05) and age (Mann-Whitney-Wilcoxon test with p-value<0.05). 
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Supplementary Material 

Supplementary Figures  

Figure S1. Bipartite graph showing the distribution of mutually exclusive genes identified with Dendrix 

across the 6 cohorts. Purple and yellow nodes represent genes and cohorts, respectively where the size of 

the node is proportional to the connectivity. 

Figure S2. Similarity of the bipartite graphs among 6 HCC cohorts based on pageRank scores. The 

darker color represents more predominant mutations.  

Figure S3. miRs significantly associated with consensus drivers as well as being predicted to target 

them directly. (A) association between the miRs and predicted targets among 11 driver genes mapped on 

the background bipartite graph of miRs and driver genes’ mutations and (B) association between the miRs 

and predicted targets among 11 driver genes mapped on the background bipartite graph of miRs and 

driver genes’ CNV. Red colored edges represent the miRs with a non-null correlation with their predicted 

targets. The edge thicknesses are proportional to the absolute value of the correlations. 

Figure S4. Kaplan-Meier of overall survival (OS) after adjustment for gender, age, stage, grade, 

race, and risk factors. (A) TCGA (B) LINC-JP (C) LIRI-JP (D) LICA-FR cohorts. 

Supplementary Table 

Table S1. Clinical summary of 6 HCC cohorts.  
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