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Abstract 

To characterize the phenotypic associations of driver genes in hepatocellular carcinoma (HCC), 

we identify 11 consensus driver genes across six HCC cohorts and 1,494 samples in total. The 

consensus driver genes include TP53, CTNNB1, ALB, AXIN1, RB1, ARID1A, RPS6KA3, 

ACVR2A, NFE2L2, CDKN2A and HNF1A. Integrative analysis of driver mutations, copy number 

variations and transcriptomic data reveals that these are associated with majority (63%) of the 

mRNA transcriptome, but only a small fraction (9%) of miRNAs. Genes associated with TP53, 

CTNNB1, ARID1A and HNF1A mutations contribute to four most densely connected clusters of 

biological pathways. Phenotypically, these driver genes are significantly associated with 

patients’ overall survival. Some driver genes are significantly linked to HCC gender and age 

disparities. CTNNB1, ALB and TP53 have higher relative risks (RR=1.2, 1.1 and 1.1) in males. 

Oppositely, AXIN1, which encodes axin-1, a component of the beta-catenin (encoded by 

CTNNB1) destruction complex has higher RR (1.6) in females. RB1 mutations are more frequent 

in younger patients (RR=1.3). This study consolidates a group of consensus driver genes in 

HCC, which collectively show vast impacts on the phenotypes. These driver genes may warrant 

as valuable therapeutic targets of HCC. 

Keywords: Driver mutations, Driver genes, hepatocellular carcinoma, genotype to phenotype, 

transcriptomics 
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Introduction 

Liver cancer is the second leading cause of cancer death worldwide, with more than 700,000 

incidences and deaths in recent years (Ferlay et al., 2015). Globally, this cancer is ranked second 

for cancer-related mortality among men (Jemal et al., 2011). In the US, it is one of the few 

cancers with increased rate of ~3% per year, for both incidence and mortality (Rebecca L. Siegel, 

Miller, & Jemal, 2016). Hepatocellular carcinoma (HCC) is the prominent histological type of 

liver cancer and accounts for approximately 75%-90% of all the liver cancer cases (London & 

Mcglynn, 2006). The incidence rates of HCC vary by factors such as race, gender, age as well as 

demographic regions. East Asians are twice likely to develop liver cancer compared to Caucasian 

or African American populations (Llovet et al., 2016). Additionally, males have 2 to 4 times 

higher incidence rates than females. The incidence rates peak around 60-65 years for males and 

65-70 for females (El-Serag & Rudolph, 2007; R L Siegel, Miller, & Jemal, 2015). Various other 

risk factors for the HCC development have been well-determined, such as cirrhosis, hepatitis B 

(HBV) infection, hepatitis C (HCV) infection, alcohol abuse, obesity and environmental toxic 

intake (European Association For The Study Of The Liver & European Organisation For 

Research And Treatment Of Cancer, 2012). While HBV infection is the major risk for HCC 

cases in East Asian countries, HCV and alcohol abuse are the leading causes of HCC in North 

America and Europe (Laursen, 2014).  

The initiation and advancement of cancer are thought to occur after continuous accumulations of 

somatic genomic alterations, followed by the widespread manifestation of gene products 
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(Alizadeh et al., 2015; Greaves & Maley, 2012; Hanahan & Weinberg, 2011; Sidow & Spies, 

2015). Using the whole genome sequencing (WGS) or whole exome-sequencing (WES) 

technology, many studies have aimed to determine candidate driver gene mutations in HCC, the 

type of mutations that confer a selective growth advantage to the cell (Ahn et al., 2014; Fujimoto 

et al., 2012; Kan et al., 2013; Li et al., 2011; Schulze et al., 2015; Totoki et al., 2011; Vogelstein 

et al., 2013). TP53 and CTNNB1 are reported as the two most frequently mutated genes in HCC 

(Shibata & Aburatani, 2014). Other putative driver genes include those related to genome 

stability, such as ARID1A, ARID2, and MLL1-4 (Cleary et al., 2013; Fujimoto et al., 2012; 

Guichard et al., 2012; J. Huang et al., 2012; Li et al., 2011), RB1 in cell cycle pathway (Schulze 

et al., 2015), AXIN1 in Wnt signaling pathway (Totoki et al., 2014), NFE2L2 in oxidative stress 

(Guichard et al., 2012), and TSC1/TSC2 in MAPK signaling pathway (Guichard et al., 2012; 

Schulze et al., 2015). A recent analysis of hepatocellular carcinoma from The Cancer Genome 

Atlas (TCGA) reported the significant mutation of LZTR1 (encoding an adaptor of CUL3-

containing E3 ligase complexes) and EEF1A1 (encoding eukaryotic translation elongation 

factor), apart from previously reported CTNNB1, TP53 and ALB genes (Ally et al., 2017). 

However, given the high heterogeneity of HCC populations due to race, risk factors etc., a 

consensus list of driver genes among different HCC cohorts are yet to be identified. Moreover, 

the impact of driver mutations on HCC phenotypes, such as gene expression, have not been 

adequately investigated.  

To address these issues, we have collectively analyzed six HCC cohorts to derive 11 most 

significant consensus driver genes with significant functional impacts. To examine the impact of 

driver mutations on gene expression, we performed comprehensive analysis of driver mutation, 
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copy number variation (CNV), gene expression and miRNA (miR) expression. Subsequent 

KEGG pathways and network analysis for these genes identified alterations in a broad spectrum 

of functions ranging from metabolic pathways, cell cycle to signaling pathways, as well as 

functional differences among the mutually exclusive driver genes. At the phenotypic level, we 

observed that consensus putative driver genes are predictive of survival differences among 

patients from cohorts with survival data. Some putative driver genes are significantly associated 

with physiological and clinical characteristics such as gender and age. In summary, we present 

the comprehensive picture of the functional relevance of driver genes in HCC, from molecular to 

phenotypic levels. 

Methods 

Dataset and processing: We used public domain HCC data from The Cancer Genome Atlas 

(TCGA) available at Genomic Data Commons (GDC) data portal, as of March 2017. In total, 

RNA-seq, CNV and miR-seq data comprise 371, 371 and 369 tumor samples, respectively. We 

used the R package TCGA-Assembler (v2.0) (Zhu, Qiu, & Ji, 2014) to download the TCGA 

data. The mRNA-seq data are represented as the normalized gene expression RSEM (RNA-Seq 

by Expectation Maximization) quantification values obtained from Illumina HiSeq assay 

platform, while miR-seq data include ‘reads per million miR mapped’ (RPM) quantification 

values from Illumina HiSeq assay platform. CNV data represent gene-level copy number values 

obtained by taking the average copy number of genomic regions of a gene from the Affymetrix 

SNP Array 6.0 assay platform. To handle the missing values, we performed three steps. First, we 

removed the biological features (i.e. genes/miRs) if they were missing in more than 20% of the 
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samples. Similarly, we removed the samples if they were missing for more than 20% of the 

features. Second, we used K nearest neighbor based imputation using R impute package (Hastie 

T, Tibshirani R, 2017) to fill out the missing values. Last, we removed the genes with very low 

expression values (i.e. with RSEM/RPM<=10 in the remaining samples). For TCGA mutation 

profile, the comprehensive Mutation Annotation File (LIHC-TP.final_analysis_set.maf) was 

downloaded from the FireBrowse portal of the Broad institute. We retrieved 362 samples (with 

HCC histology) having paired tumor and normal adjacent tissue WES data. Additionally, we 

obtained WES data from Liver Cancer (France): LICA-FR (n=236), Liver Cancer (NCC, Japan): 

LINC-JP (n=244) and Liver Cancer (China): LICA-CN (n=163) cohorts, and WGS data from 

Liver Cancer (RIKEN, Japan): LIRI-JP (n=258), all available as simple somatic mutation files 

from the International Cancer Genome Consortium (ICGC) web portal. These data from ICGC 

liver cohorts were published in the previous studies (Fujimoto et al., 2016; Guichard et al., 2012; 

Schulze et al., 2015). Besides ICGC, we obtained another WES dataset (KOREAN (n=231) from 

the early-stage HCCs  (patients with surgical resection) with clinical information of patients 

published earlier (Ahn et al., 2014). 

Consensus driver genes detection: To achieve the pool of consensus driver genes among six 

cohorts, we implemented the IntOGen platform (v3.0.6) (Gonzalez-Perez et al., 2013), a 

comprehensive standalone pipeline for the identification of driver genes. The mutation profiles, 

from six cohorts, were subjected to MutSigCV (v1.4) (Lawrence et al., 2013) and OncodriveFM 

(Gonzalez-Perez & Lopez-Bigas, 2012), both incorporated in the IntOGen pipeline. MutSigCV 

represents an advanced version of MutSig tool, which seeks to identify genes with significant 

positive selection during tumorigenesis. It calculates the personalized and gene-specific 
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background random mutation rates, along with the implementation of expression levels and 

replication times as covariate factors. Complementarily, OncodriveFM uncovers the significant 

mutation space by applying the functional impact-based positive selection to identify the driver 

genes. From each module (i.e. MutSigCV and OncodriveFM) separately, we identified the genes 

which satisfied: (i) q-values less than the threshold cut-off (q<0.1) in at least 3 of 6 cohorts, and 

(ii) mean q-value less than the threshold cut-off (q<0.1), across the cohorts. The final set of 

drivers were obtained by the intersection of the genes found in two modules. The threshold of q-

value<0.1 for both MutSigCV and OncodriveFM was based on earlier studies (Cancer Genome 

Atlas Network, 2015; Lawrence et al., 2013). For downstream analyses, we excluded intergenic 

and intronic mutations. 

Determination of mutual exclusivity and co-occurrence: For each pair of consensus driver genes, 

we determined their association based on Fisher’s exact test with a p-value <0.05. For significant 

associations, if the log odds ratio was more than 0 for a pair of genes, the pair was called “co-

occurred”, or else “exclusive”. To detect the mutational exclusivity among gene sets (i.e. more 

than two genes), we applied the Dendrix algorithm (Vandin, Upfal, & Raphael, 2012) which is 

specialized to fish out gene sets with high coverage and exclusivity across the samples. We used 

gene set numbers k=4, k=5 and calculated their maximum weight with consideration of mutated 

genes and samples. We ran 100,000 iterations using Markov chain Monte Carlo approach to 

calculate empirical p-values for the top gene sets with the maximum weight.  

For each cohort, we also used a bipartite graph to represent the mutations in the driver genes for 

each patient, using the patients and the driver genes as the distinct set of nodes. We used 

ForceAtlas2, a graph layout algorithm implemented in Gephi (Jacomy, Venturini, Heymann, & 
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Bastian, 2014), to spatialize the graphs for mutual exclusivity. To compute the distances of the 

different cohorts the approach used was as follows: using the bipartite graph of each cohort, we 

computed the PageRank scores, a measure reflecting the connectivity of a node in a network 

(Altman & Tennenholtz, 2005), of the 11 driver genes.  We used these scores as features 

representing cohorts. We then used Ward’s minimum variance method to cluster both the genes 

and the PageRank scores.  

Modeling relationships between consensus driver and gene expression: We made a binary (1, 0) 

matrix to indicate the mutation status of consensus driver genes in all samples. A value of 1 

means the existence of at least one variant within the gene body, in the categories of nonsense, 

missense, inframe indel, frameshift, silent, splice site, transcription starting site and nonstop 

mutation. Otherwise, 0 was assigned to the gene. We made another table of CNV data similarly. 

We used voom function (limma package in R) to transform RSEM data prior to the linear 

modeling (Law, Chen, Shi, & Smyth, 2014), then fit the linear models by minimizing 

generalized least squares similar to others (Ritchie et al., 2015). These linear models consider the 

effects of mutations of multiple consensus driver genes (predictors) and their CNVs on 

expression values of individual genes (responses) as follows:   

                                                  �� � ��� � ∑  �
��� ������ � ������  ��                             (1) 

Where �� is the vector representing expression value of gene g across all the n samples, ��� is 

that baseline value of g, �� and �� are the mutation status and CNV of the consensus driver gene 

g in sample i,  �� and  �� are coefficients for the same associated with the mutation status and 

CNV, respectively. We performed multiple hypothesis tests on the significance values of the 

coefficients  across all the genes using Benjamin–Hochberg (BH) adjustment, to determine the 
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significant association between the driver genes and expression of all the genes (BH adjusted p-

value <0.05). 

Pathway enrichment and network analysis: We conducted pathway enrichment analysis of the 

genes impacted by somatic mutations and CNVs, using R package clusterProfiler (Yu, Wang, 

Han, & He, 2012). We used BH adjusted p-value=0.05 as threshold to select the over-represented 

KEGG pathways. We used Gephi (Jacomy et al., 2014) bipartite graph to visualize driver gene-

enriched pathways network.  

Modeling relationships between consensus drivers and miR expression: To find the relationship 

between driver genes (mutation and CNV) and impact of miR expression, we implemented the 

linear model similar to that of equation (1). Here driver genes’ mutation and CNV status are 

treated as independent variables and miR expression as the response variable. To narrow down 

miRs that directly target these 11 drivers, we mined miRDB resource (Wong & Wang, 2015), 

which houses the miR-target interactions predicted by MirTarget (Wang, 2016) based on CLIP-

Ligation experiments. 

Survival analysis of driver mutations: We used the Cox proportional hazards (Cox-PH) model 

(Cox, 1972) implemented in R survival package for the overall survival (OS) analysis of 

consensus driver genes. We also conducted Cox-PH model to fit the overall effect of all 11 

driver genes on OS, with or without adjustments of clinical and physiological parameters (e.g. 

age, gender, grade etc.). For this, we used R glmnet package (Friedman et al., 2010), since it 

enables penalization through ridge regression. We performed cross-validation to obtain the 

optimal regularization hyperparameter. The hyperparameter was selected by minimizing the 
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mean cross-validated partial likelihood. To evaluate the performance of the survival models (van 

Houwelingen, Bruinsma, Hart, van’t Veer, & Wessels, 2006), we calculated the concordance 

index (CI) using function concordance.index in R survcomp package (Schroder, Culhane, 

Quackenbush, & Haibe-Kains, 2011), based on Harrell’s C-statistics (Harrell  Jr., Lee, & Mark, 

1996). We dichotomized the samples into high- and low-risk groups based on the median 

prognosis index (PI) score, the fitted survival values of the Cox-PH model (S. Huang et al., 2016; 

S. Huang, Yee, Ching, Yu, & Garmire, 2014; Wei et al., 2016). In the case of ties for the median 

PI, we shuffled the samples and randomly assigned them to either risk groups. We plotted the 

Kaplan-Meier survival curves for the two risk groups and calculated the log-rank p-value of the 

survival difference between them. We performed the similar survival analysis by adjusting the 

Cox-PH model with different physiological and clinical factors (e.g. age, gender, grade, race, 

tumor stage and risk). 

Results 

Detection of consensus driver genes  

To identify the consensus pool of drive genes among multiple cohorts of diverse populations, we 

used paired tumor-normal tissue of HCC WES data from TCGA as well as five other cohorts 

(WES/WGS). The clinical summary of patients in these 6 cohorts is provided (Supp. Table S1). 

We assessed mutation significance and functional impact of protein coding genes using 

MutSigCV and OncodriveFM modules implemented in the IntOGen pipeline (see Methods) 

(Figure 1A). We identified the driver genes among the individual cohorts with the stringent 
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threshold i.e. q-value <0.1 for both MutSigCV and OncodriveFM. Among these cohorts, TCGA 

contains the maximum number of drivers (20), while LICA-CN has 3 drivers only. LINC-JP, 

LIRI-JP, LICA-FR and KOREAN cohorts comprise 13, 14, 12 and 7 driver genes, respectively. 

TP53 and AXIN1 are two the driver genes shared by all the 6 cohorts.  

Next, we set out to define the “consensus driver gene”, which satisfy these criteria: (1) q-values 

are less than the threshold cut-off (q<0.1) in at least 3 of 6 cohorts, and (2) the mean q-value is 

less than the threshold cut-off (q<0.1) across the cohorts. As a result, we identified 11 out of total 

30 genes as “consensus driver genes” (Figure 1B). Among these 11 genes, TP53 and CTNNB1 are 

most significantly mutated and functionally impactful genes based on q-values (Figure 1C and 

D), consistent with the observations earlier (Ahn et al., 2014; Shibata & Aburatani, 2014). 

However, some low-frequency mutation genes also have significant rankings per MutSigCV 

(Figure 1C). For examples, HNF1A, CDKN2A, NFE2L2 and ACVR2A are all significant (mean 

q-values: 0.03, 0.02, 0.005 and 0.0009 respectively), although their average mutation frequencies 

are less than 5% (Figure 1E). Thus, this workflow efficiently detects less frequent but 

consistently important driver genes.  

Meta-analysis of consensus driver genes among cohorts  

Next, we explored the mutation exclusivity status among these 11 driver genes across different 

populations (Figure 2A). We used colored tiles in the plot to represent the specific type of 

mutation (e.g. missense, silent, frame shift etc.). A similar trend of mutation distribution exists in 

TCGA, three ICGC cohorts with large sample size (i.e. LINC-JP, LIRI-JP and LICA-FR) and the 

KOREAN cohort (Figure 2A (i), (ii), (iii), (iv) and (v)). Worth mentioning, LICA-CN cohort 

(n=163) is most distinct from others, and has the lowest CTNNB1 mutation rate among all 
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(Figure 2A (vi)). This exception may be attributable to HBV infection in LICA-CN cohort, as 

previous studies of HBV patients also reported rare existence of CTNNB1 mutations (Guichard et 

al., 2012; J. Huang et al., 2012). 

Mutual exclusivity is apparent among some drivers (Figure 2A). For example, CTNNB1 and 

TP53 mutations are mutually exclusive in three of six cohorts, with significant Fisher’s exact test 

p-values in TCGA (P=0.0303), LICA-FR (P= 0.0166) and KOREAN (P=0.006). The mutual 

exclusivity between them was documented earlier (Ahn et al., 2014). To detect mutual 

exclusivity beyond two genes, we used the Dendrix tool (Vandin et al., 2012). Again we 

observed significant mutational exclusivities (p-value=<0.05) for up to five genes in all 6 cohorts 

(Supp. Figure S1). TP53, CTNNB1, RB1 and AXIN1 and another cohort-specific genes are 

mutually exclusive in all five cohorts except LICA-CN. The other cohort-specific driver is 

HNF1A (TCGA and LICA-FR) and CDKN2A (LINC-JP, LIRI-JP and KOREAN). Compared to 

the other five cohorts, LICA-CN cohort has most different five mutually exclusive drivers: TP53, 

ACVR2A, ALB, CDKN2A, and RPS6KA3.  

We further visualized the relationships among patients, driver genes, and their topologies, using 

bipartite graphs (Figure 2B). The blue nodes and the labeled nodes represent patients and driver 

genes, respectively, and the edges between them indicate the existence of certain drivers in a 

particular patient. Based on the PageRank score that measures the connectivity and topologies of 

the graphs (see Methods), the similarity between TCGA and the other cohort descends in the 

following order: LINC-JP > LIRI-JP > LICA-FR > KOREAN > LICA-CN (Supp. Figure S2). 

KOREAN and LICA-CN cohorts are most distinct from other cohorts, with much fewer patients 

showing mutations in at least two driver genes. While KOREAN cohort mostly mutates in TP53 
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and CTNNB1 (however lacking ALB mutations like the other three cohorts), LICA-CN most 

dominantly mutates in TP53 but not in CTNNB1 or ALB (Figure 2B (vi) and Supp. Figure S2). 

The associations between gene expression and consensus driver gene mutation/CNV 

To assess the impact of the consensus drivers on the transcriptome level, we built generalized 

linear models using these driver genes’ mutation profile and their CNVs as the predictors, 

whereas gene expression values as the response variables, similar to another earlier study 

(Gerstung et al., 2015; Vervier & Michaelson, 2016). These genetics based models decently 

predict gene expression values (R2=0.58) (Figure 3A), indicating that albeit the complex genetics 

and epigenetics regulatory mechanisms of gene expression, HCC driver gene mutations still 

convey important functional impacts on gene expression. Overall, our results show that around 

63% (13,036) of genes are significantly associated (BH adjusted p-value <0.05) with these 

consensus driver genes. We list the number of genes significantly associated to each consensus 

driver gene in these linear models (Figure 3B). The top two mutated genes are TP53 and 

CTNNB1 as expected, both affecting over four thousand genes. Strikingly, the CNV of ARID1A 

is ranked 4th and linked to expression changes in over 2,800 genes, despite its relatively low 

mutation rate of <10%.  

To investigate the biological processes that these 13,036 genes are involved in, we conducted 

KEGG pathway enrichment analysis and detected 108 significantly (BH adjusted p-values <0.05) 

associated pathways (Figure 3C). We further categorized these pathways into 6 super groups 

according to the KEGG pathway organization, namely: cellular processes, environmental 

information processing, genetic information processing, metabolism, human diseases, and 

organismal systems (Kanehisa & Goto, 2000). It is not surprising that the pathway super-group, 
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affected most by the consensus driver genes, belongs to metabolic pathways. Among the driver 

genes, TP53, CTNNB1, ARID1A and HNF1A are most densely connected to enriched pathways, 

due to the associations with gene expression changes. Some signaling pathways in the 

environmental information processing group are significantly influenced by driver genes, 

especially CTNNB1, which is associated with PI3K-Akt pathway, Wnt pathway and CGMP-PKG 

signaling pathway. 

The association network between driver genes and pathways provide further support for mutual 

exclusivities observed earlier, at least partially, in that certain pathways are commonly associated 

by two mutually exclusive drivers. Between the well-known mutually exclusive TP53 and 

CTNNB1, multiple pathways in amino acid and glucose metabolism are shared. TP53 and 

ARID1A are both involved in amino acid and fatty acid metabolism pathways. CTNNB1-

ARID1A-HNF1A share CYP450 metabolism pathway. Heatmap of driver genes and six pathways 

classes (Figure 3C, insert) shows that TP53 has the impact on maximum number of pathways 

related to Metabolism and Diseases, followed by CTNNB1, ARID1A and HNF1A.  

We extended the linear modeling approach described earlier to examine the association between 

consensus driver genes and miRNA (miR) expression. Contrary to the vast prevalence of 

correlations between mRNAs and consensus drivers, we only found 164 miRs that are 

significantly associated with these drivers. Among them, 120 miRs are associated with driver 

gene CNV-level changes, 88 miRs are associated with the driver mutations, and 44 miRs are 

associated with both of them (Supp. Figure S3). This suggests that the major impact of driver 

mutation is manifested in protein coding genes, rather than non-coding regulatory elements 

miRs.  The detailed association analysis between miR expression and consensus driver gene 

mutation/CNV is described in the supporting information (Supp. File S1). 
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Associations between consensus driver genes and survival outcome 

In order to test survival associations from all the driver mutations, we built multivariate Cox-PH 

models on overall survival in each of the four cohorts that have survival data (TCGA, LINC-JP, 

LIRI-JP and LICA-FR). We used the median prognostic index (PI) score generated from the 

Cox-PH model as the threshold (S. Huang et al., 2014), and divided samples into high and low 

risk groups accordingly. The Kaplan-Meier survival curves of the two groups are generated 

(Figure 4). For all the cohorts with survival data, the log-rank P-values between the Kaplan-

Meier curves are significant (TCGA: P=6.3e-03, C-index-0.58; LINC-JP: P=1.3e-02, C-

index=0.67; LIRI-JP: P=4e-03, C-index=0.64 and LICA-FR: P=6.8e-03, C-index=0.60). To 

avoid potential confounding from age, gender, grade, stage in all 4 cohorts, as well as risk factor 

and race in TCGA cohort, we adjusted the Cox-PH model by these variables accordingly. Still, 

we identified significantly or almost significantly different survival groups (TCGA: P=1.02e-04, 

LINC-JP: P=2.2e-02, LIRI-JP: P=6.5e-02 and LICA-FR: P=1.9e-02) (Supp. Figure S4). All 

together, these results show that the driver gene mutational status is associated with HCC 

patients’ overall survival.  

Associations of consensus driver genes with gender and age disparities 

Previous studies have revealed aspects of disparities in HCC, such as preferable incidents in 

males (El-Serag & Rudolph, 2007; McGlynn & London, 2011). To reveal the possible link 

between these driver genes and gender/age, we conducted Fisher’s exact tests for gender, and 

Mann-Whitney-Wilcoxon tests for the continuous age variable. We found some significant 

associations of driver genes with gender and age (Figure 5). To directly illustrate differences 

between categories, we calculated the relative risk of each category for the mutated genes vs. 
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wild type genes. RR for age was calculated after dichotomizing the samples based on mean age 

in respective cohorts. 

With regard to gender, CTNNB1, a proto-oncogene, shows the most consistent evidence of 

preferred mutations in males for all 5 cohorts (Figure 5A-E). Its strongest association comes 

from the TCGA cohort, based on significance level (P-value=1.5e-05) and relative risk (RR=1.4) 

(Figure 5A). Interestingly, AXIN1 shows opposite and higher relative risks in females in 2 

cohorts LIRI-JP (RR=2.2) and KOREAN (RR=2.2) (Figure 5C and E). Other drivers, such as 

ALB and TP53, are also preferred in males from 3 and 2 cohorts, respectively. For age, again 

CTNNB1 is the driver gene with the strongest positive associations, for both relative risks 

(average RR=1.2) and the number of cohorts (4 out of 6) (Figure 5G-J). Interestingly, RB1 is the 

driver gene significantly and preferably prevalent in younger patients (3 out of 6 cohorts) (Figure 

5F, H and J). However, AXIN1 shows controversial associations with age between LINC-JP and 

LICA-FR cohorts, which may have to do with the different ethnicities between the two.  

Discussion 

In this study, we have pushed forward our understanding of the molecular and clinical 

associations of HCC drivers using multiple cohorts. Despite the heterogeneity among the 

datasets, we identified eleven consensus driver genes derived from HCC WES/WGS data. 

Anchoring on these consensus driver genes, we investigated in-depth their transcriptomic 

impacts, phenotypic associations, and prognostic values at systematic level. Detailed molecular 

mechanisms for each consensus drivers, although of interest to follow up, are not the focus of 

this multi-modal meta-analysis report.  
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A major contribution of this study is to associate the drivers with transcriptomic changes, which 

was previously unknown. The consensus driver genes are correlated to around 63% mRNA 

transcriptome. These influenced genes are involved in various pathways in cell cycle and DNA 

repair, metabolism, and signaling transduction. Interestingly, network analysis results show that 

mutually exclusively mutated genes have effects on some common biological processes, which 

may explain why mutations in both genes do not usually co-occur within the same patient.  

Surprisingly, only 9% of miRs are associated with the consensus drivers globally, suggesting the 

major and direct role of driver mutations is on protein coding genes rather than regulatory 

components such as miRs.  

Our analysis reveals some unusual findings on genes with low mutation frequencies. One of 

them is that the CNV of ARID1A is one of the most “effective” events in the driver genes, 

prevalently associated with transcriptomic changes of 2,803 genes. ARID1A is a chromatin 

remodeller which is involved in transcriptional activation and considered as tumor suppressor 

(Wu & Roberts, 2013). Previously, this gene is reported to be frequently deleted in HCC (Kan et 

al., 2013; Zhao et al., 2016). ARID1A, a tumor suppressor gene, is depleted in advanced HCC 

and hence promotes angiogenesis via angiopoietin-2 (Ang2). ARID1A-deficient HCCs have been 

suggested as a good target for anti-angiogenesis therapies e.g. using sorafenib (Hu et al., 2017). 

ARID1A mutations in HCC have been reported to be associated HCC progression and metastasis 

in HBV- and alcohol-related HCC (J. Huang et al., 2012; Nahon & Nault, 2017). Other 

infrequently mutated genes HFN1A and ACVR2A have also been reported in individual studies 

(Fujimoto et al., 2016; Schulze et al., 2015). Our stringent criteria for selection of consensus 

driver genes among 6 HCC cohorts highlights these low-mutated genes with consensus, 
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reflecting that these may play a crucial role in HCC etiology. Along with TP53 and CTNNB1, 

two genes HNF1A and ARID1A stand out with densely connected sub networks. 

Most interestingly, we have found evidence that some driver mutations are associated with 

gender and age disparities among HCC patients. CTNNB1 is mostly strongly preferred in males, 

and it increases with age. Additionally, TP53 and ALB are also more frequently mutated in 

males. Oppositely, AXIN1 shows preferred mutations in females. AXIN1 encodes tumor 

suppressor gene axin-1, which is part of the beta-catenin destruction complex required for 

regulating CTNNB1 levels through phosphorylation and ubiquitination (Nakamura et al., 1998). 

The opposite trend of gender association between AXIN1 and CTNNB1 can be explained by their 

antagonism relationship. Unexpectedly, we found that driver gene RB1 is reversely related to 

ages of HCC patients. We do not know the etiology of such reversal age dependency of RB1 in 

HCC. However, it has been well known that mutations in both alleles of the RB1 gene are 

essential for retinoblastoma, which is often diagnosed in neonates.  

In summary, we have identified a consensus list of 11 driver genes in HCC, as well as their 

associations with downstream transcriptome and patient outcomes, such as survival, age and 

gender. Albeit the heterogeneity and complexity of HCC, the driver genes have broad and 

significant impacts on global gene expression and molecular pathway functions, suggesting that 

HCC are genetically dominated diseases. Thus, this study provides an important and refined 

reference list for driver genes, which may serve as candidates for targeted therapies currently 

severely lacking in HCC. 
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Availability of data and material 

All HCC data are downloaded from the TCGA portal (https://tcga-data.nci.nih.gov/tcga/ and 

https://portal.gdc.cancer.gov/), FireBrowse portal from Broad institute (http://firebrowse.org/) 

and ICGC portal (https://dcc.icgc.org/).  
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Figure Legends 

Figure 1. Consensus driver genes in 6 HCC cohorts. (A) IntOGen pipeline to identify consensus driver 

genes. (B) Driver genes from individual cohorts. Genes with asterisks represent consensus drivers. (C) 

Final 11 genes with mean q-value <0.1 from MutSigCV module. (D) Same 11 genes with mean q-value 

<0.1 from OncodriveFM module. (E) Percentage of sample coverage of driver gene mutations. 

Figure 2. Mutual exclusivity among different driver genes in 6 HCC cohorts. (A) Co-mutation plots 

for the 6 HCC cohorts, where each colored tile represents one of the mutation types (i.e. frame shift, in-

frame indel, missense, exonic, nonsense, splice site, silent or mixture of mutations) (i) TCGA (ii) LINC-

JP (iii) LIRI-JP (iv) LICA-FR (v) KOREAN (vi) LICA-CN cohorts. (B) Bipartite graphs for mutual 

exclusivity of the same cohorts in (A). Blue nodes represent the patients and the other labeled nodes 

represent consensus driver genes, whose size is proportional to their degree.  

Figure 3. Associations of consensus driver genes with mRNA expression. (A) Correlation between 

observed and predicted gene expression. (B) The number of genes whose expression values are 

significantly associated with the driver gene mutation/CNV statuses. (C) Enriched KEGG pathways 

network among significant genes as shown in (B). The thickness of edges is proportional to the -log10 p-

adjusted value.   

Figure 4. Kaplan-Meier estimates of overall survival (OS) in 4 HCC cohorts. A Cox-PH regression 

was used to build the overall survival model featuring the driver genes mutation profile. The samples 

were dichotomized into high and low risk groups by the median Prognostic Index (PI). (A) TCGA (B) 

LINC-JP (C) LIRI-JP (D) LICA-FR cohorts. 

Figure 5. Associations of gender and age with driver genes. Shown are subsets of consensus driver 

genes with significant associations with gender (Fisher’s exact test with p-value<0.05) and age (Mann-
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Whitney-Wilcoxon test with p-value<0.05). Age is divided to two groups by the median value (in 

parentheses) in each cohort. 
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Supplementary Material 

Supplementary Figures  

Figure S1.  Bipartite graph showing the distribution of mutually exclusive genes identified with Dendrix 

across the 6 cohorts. Purple and yellow nodes represent genes and cohorts, respectively where the size of 

the node is proportional to the connectivity. 

Figure S2. Similarity of the bipartite graphs among 6 HCC cohorts based on pageRank scores. The 

darker color represents more predominant mutations.  

Figure S3. Associations of consensus driver genes with miR expression. Bipartite graphs representing 

(A) correlations between miR expression and mutations of the genes. (B) Correlations between miR 

expression and CNV. Green color represents positive correlation and red for anti-correlation. 

Figure S4.  Kaplan-Meier of overall survival (OS) after adjustment for gender, age, stage, grade, 

race, and risk factors. (A) TCGA (B) LINC-JP (C) LIRI-JP (D) LICA-FR cohorts. 

Supplementary Table 

Table S1. Clinical summary of 6 HCC cohorts.  

Supplementary File 

File S1. Associations between miR expression and consensus driver gene mutation/CNV. 
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