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Abstract

Studies of learning mechanisms critically depend on the ability to accurately assess learning outcomes.  

This assessment can be impeded by the often complex, multidimensional nature of behavior.  We present a 

novel, automated approach to evaluating imitative learning that is founded in information theory.  Conceptually, 

our approach estimates the amount of information present in a reference behavior that is absent from the learned 

behavior.  We validate our approach through examination of songbird vocalizations, complex learned behaviors 

the study of which has provided many insights into sensory-motor learning in general and vocal learning in 

particular.  Historically, learning has been holistically assessed by human inspection or through comparison of 

specific song features selected by experimenters (e.g. fundamental frequency, spectral entropy).   In contrast, our

approach relies on statistical models that broadly capture the structure of each song, and then uses these models 

to estimate the amount of information in the reference song but absent from the learned song. We show that our 

information theoretic measure of song learning (contrast entropy) is well correlated with human evaluation of 

song learning.  We then expand the analysis beyond song learning and show that contrast entropy also detects the

typical song deterioration that occurs following deafening.  More broadly, this approach potentially provides a 

framework for assessing learning across a broad range of similarly structured behaviors.

Author Summary

Measuring learning outcomes is a critical objective of research into the neural, molecular, and behavioral

mechanisms that support learning.  Demonstration that a given manipulation results in better or worse learning 

outcomes requires an accurate and consistent measurement of learning quality.  However, many behaviors (e.g. 

speech, walking, and reading) are complex and multidimensional, confounding the assessment of learning.  One 

behavior subject to such confounds, vocal learning in Estrildid finches, has emerged as a vital model for sensory 

motor learning broadly and human speech learning in particular.  Here, we demonstrate a new approach, founded

in information theory, to the assessment of learning for complex high dimensional behaviors.  Conceptually, we 

determine the amount of information (across many dimensions) present in a reference behavior and then assess 

how much of that information is present in the resultant learned behavior.  We show that this measure provides 
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an accurate, holistic, and automated assessment of vocal learning in Estrildid finches.  Potentially, this same 

approach could be deployed to assess shared content in any multidimensional data, behavioral or otherwise.

Introduction

Songbird vocal learning shares many parallels with speech learning[1] and is a powerful, tractable model

system for elucidating neural and behavioral mechanisms underlying vocal control and vocal learning[2].  Birds, 

like humans, learn vocalizations early in life through exposure to the vocalizations of an adult ‘tutor’ followed 

by a period of practice that eventually results in typical adult vocalizations that require auditory feedback for 

maintenance[1].  Song is composed of discrete units of sound (syllables) organized into higher order 

sequences[3].  In the finch species examined here, a given bird’s song comprises about 5-10 categorically 

distinct syllable types, with these distinct types defined by their unique spectro-temporal structure (Fig. 1A).  

Hence, an individual bird’s song can be described as a specific set of categorically distinct syllable types (that 

can be labeled ‘A’, ‘B’, ‘C’ and so on).

Qualitatively, learning (and failure to learn) can occur in different ways (Fig. 1B-C)[4].  For example, 

juvenile ‘tutees’ could learn to produce all distinct syllable types present in an adult ‘tutor’ song, but the spectral 

content of the syllables might be imperfect or noisy (Fig. 1Ci-Cii), while other tutees might completely fail to 

learn some syllables (Fig. 1Ciii), and still others might improvise new syllables (Fig. 1Civ). 

Because of these complexities, many studies have relied on human evaluation of song similarity and 

learning [5–8].  Indeed, human scorers can provide a useful ‘holistic’ assessment of similarity between complex 

behaviors, such as songs, which integrates across many stimulus dimensions.  However, human scoring suffers 

from several problems including 1) it requires scorers to be trained on species-specific vocalizations, and 

analysis of different vocalization types often requires new training, 2) correspondingly, scores are potentially 

inconsistent over time and across different evaluators, and 3) human scoring is labor intensive and does not 

readily scale to the size of relevant datasets, which, in the case of bird song, can include many individuals and 

thousands of vocalizations per day.  

More recent attempts at quantification of song similarity have focused on assessing learning based on 
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specific, reliably and automatically measured features of song (e.g. the fundamental frequency of a specific 

syllable, or song entropy)[9–12].  In these approaches, selected samples of songs are decomposed into sets of 

feature values[13] and song similarity is then evaluated as the similarity between weighted feature sets 

associated with those samples.  These approaches can overcome some of the inter-evaluator variability 

associated with human scoring, and additionally enable useful assessment of how specifically analyzed features 

such as the ‘pitch’ or ‘noisiness’ of syllables differ across songs and conditions.  However, due to the reductionist

nature of the extracted features, even measures incorporating many such features will potentially fail to capture 

biologically important song information.  Additionally, as with direct human assessment of song similarity, these 

approaches often require significant human intervention for the selection of which samples of song material to 

analyze and which features to weigh in assessing similarity.  

For these reasons, we were interested in developing an approach to scoring the similarity between pairs 

of songs (and other complex stimuli) that could reproduce some of the human capacity for holistically 

integrating across complex stimulus dimensions but that was also automatic, reproducible and efficiently 

deployed across large data sets.  Our approach has four main components.  First, we start with a representation of

song that is the set of power spectral densities (PSDs) associated with each discrete syllable.  This representation

retains much of the complexity of the spectro-temporal information present in each song without specifically 

extracting features such as the pitch or entropy of each syllable.  Second, we represent the spectro-temporal 

structure of each song by transforming each of a large number of individual syllables drawn from the song (as 

represented by their corresponding PSDs) into a ‘syllable similarity’ space, in which each syllable (PSD) is 

represented by its similarity to a large basis set of other syllables (PSDs).  Intuitively, in this high dimensional 

space, different iterations of a given syllable type (e.g. different iterations of the syllable ‘A’) will cluster near 

each other, because they share a similar PSD.  Each song is therefore associated with regions of high density 

within the syllable similarity space, with each high density region corresponding approximately to a distinct 

syllable type.  Third, we then model each song by characterizing the high-density regions within the syllable 

similarity space (corresponding to regions in which there is clustering of PSDs).  We use a Gaussian Mixture 

Model (GMM) to fit these regions of high density, in which the means and variances are fit to the data for each 
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song using a standard expectation-maximization algorithm [14,15], and the number of Gaussian mixture 

components is determined using Bayesian Information Criteria (BIC)[16], a measure of model fit that is 

penalized for increasing model complexity.  Lastly, since the GMM describing the distribution of spectro-

temporal structure for syllables from each song is a statistical model, any differences in vocal structure (e.g. 

between tutors and tutees, or before and after onset of manipulations) can be assessed according to a principled 

information theoretic measure of the differences between the models fit to those songs.  We describe the 

difference in structure between songs as the difference between two cross entropies, here referred to as the 

contrast entropy (CE, see Methods).  CE quantifies the amount of information present in a reference song (e.g. a 

tutor song, or baseline song before a manipulation such as deafening) that is not present in a comparison song 

(e.g. the learned song of a tutee, or songs that are produced following deafening).

In this paper, we validate our approach by characterizing the similarities between pairs of songs for two 

conditions. First, we assess song learning by comparing adult tutor songs and juvenile tutee songs in the 

Bengalese finch (Lonchura striata domestica), a species with variability in both spectral content and syntax. We 

show that CE provides a measure of the quality of song learning in Bengalese finches that is well correlated with

scores provided by human experts.  Second, we assess song deterioration following deafening by comparing 

baseline songs produced by adult Zebra finches (Taeniopygia guttata guttata) with songs of the same individuals

at varying times following deafening.  We show that CE detects and quantifies the characteristic song 

deterioration that follows deafening[7].  Together, these results demonstrate an unsupervised approach to the 

quantification of both song learning and song deterioration.  Such an approach allows holistic and reproducible, 

high-resolution tracking of song similarity across both large populations of individuals and long periods of time, 

and has potential relevance outside of birdsong as it could be applied to automatic analysis of human speech and 

other complex multidimensional data.

Results

We present an automated method for assessing song learning by calculating the amount of spectral 

5

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 20, 2017. ; https://doi.org/10.1101/166124doi: bioRxiv preprint 

https://doi.org/10.1101/166124


information which is present in the song of the tutor bird, but absent from the song of the tutee.  To accomplish 

this we construct statistical models from the song spectral content of both reference song (tutor) and comparison 

song (tutee) then estimate the amount of reference song information accounted for by the tutor model but not the 

tutee model.  Below, we first describe how the statistical model for each song is constructed and how the 

statistical models for two songs are compared to provide an estimate of song similarity, the contrast entropy 

(CE).  We then show that CE correlates well with human scores for data sets that characterize song learning and 

demonstrate that CE also detects the typical deterioration of song following deafening.  The descriptions below 

elaborate a specific instantiation of our overall approach.  We follow this with an examination of the robustness 

of CE measures across a range of different possible instantiations, and a discussion of how our approach could 

be modified or extended to address related issues of similarity in other domains.

Overview of statistical model assembly

The assembly of statistical models representing song spectral data is schematized in Figure 2.  Starting 

with song data from a given bird (Fig. 2A), we identify individual syllables as continuous amplitude traces above

a threshold.  For each syllable, we calculate the power-spectral density (PSD; an estimate of acoustic power at a 

set of specific frequency values) using Welch's method[17] (Fig. 2B).  We then calculate the similarity between 

each PSD and a “basis set” of PSDs (see Methods), where the basis set is a random draw from the set of PSDs 

being modeled.  These computed similarities create an NxM matrix of PSD similarities (Fig. 2C) where N is the 

number of PSDs being analyzed ('target' PSDs) and M is the number of PSDs in the basis set ('basis' PSDs).  For 

the analyses presented below, we use a value for ‘N’ of 3000 PSDs drawn from the song to be modeled, and a 

value for ‘M’ of 50 PSDs to form the basis set for construction of the syllable similarity matrix.

Translation of the raw syllable data into a matrix of syllable-similarities has the important consequence 

that it naturally and automatically clusters syllables with similar PSDs into regions of high density (Fig. 2D, E).  

Each of these regions corresponds approximately to groups of syllables that would be identified by a human 

observer as belonging to a specific type.  That is because each instance of a syllables type has a similar PSD, and

therefore each of these instances will have a similar pattern of distances from each of the elements of the basis 
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set.  This transformation therefore results in a representation of song in syllable similarity space in which 

thousands of exemplar syllables are clustered into a small number of high density regions, corresponding 

approximately to the numbers and identities of categorically distinct syllable types in the original song. 

We then fit a series of GMMs[14] (using expectation maximization[15]) to the distribution of similarity 

values.  Each successive model in the series has an incrementally higher number of mixture components.  The 

model with the best fit to the data based on the lowest Bayesian Information Criterion[16] is then used to 

represent the song of that bird. Conceptually, the number of Gaussian mixture components in the song model 

corresponds approximately to the number of discrete syllable types present in the song.  

The distribution of similarity scores reveals GMMs to be appropriate and effective for modeling these 

data.  To illustrate this, Figure 2D depicts the similarities between three discrete target PSDs (Fig. 2D, blue 

purple and yellow dots) and two basis PSDs (out of a total of 50 basis PSDs).  Target PSD identity was assigned 

as the maximum posterior probability over Gaussian mixture (see Methods) and is depicted by data color.  

Examination of the joint distribution of similarities between target PSDs and basis PSDs (Fig. 2D) reveals three 

clusters that are, even in just two dimensions, well separated.  Importantly, the separation between clusters is 

reliant not only on the mean and variance in any one dimension but also on the covariance structure between 

values in the two exemplar dimensions; all three PSD categories are distributed elliptically.  Examination of the 

marginal distributions (Fig. 2D, top and right) in each single dimension exemplifies the Gaussian nature of the 

data.  Sorting the NxM matrix of similarity data by PSD identity (Fig. 2E) reveals the underlying ordered 

structure of these data; the PSDs in each group (Fig. 2E, indicated by color) share stereotypical PSD similarity 

structure.  Spectrograms reveal good consistency of syllable identity (as indicated by corresponding PSD 

identity) within GMM classified groups (Fig. 2E, right).

Assessment of the quality of learning

Because we capture song spectral content as statistical models, we can compare the spectral content of 

two songs using a principled information theoretic measure.  In Figure 3 we outline the calculation of this 

measure, here called contrast entropy (CE).  CE estimates the amount of information in the reference song that is
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not present in the comparison song (Fig. 3A).  In this example, some, but not all, syllables from the reference 

song are well-represented in the comparison song.  GMMs are fit independently to the two songs, as described 

above, except a single basis set of PSDs, drawn from the reference song, is used for modeling both songs, so that

the syllables from both songs are transformed into the same syllable similarity space.  In Figure 3B a single 

dimension of these probability densities are shown for simplicity.  We then calculate the mean-log likelihood of a

set of reference song data (Fig. 3C, light blue histogram).  This specific data set was not used to estimate GMM 

parameter values (held-out data).  This provides an estimate of the cross entropy between the sampled 

distribution of the reference song and the model for the reference song.  We similarly estimate the cross entropy 

between the sampled reference song distribution and the model for the comparison song.  Here we define the 

difference between these two cross entropies as the contrast entropy (CE).  

An intuition for the relevance of CE to the content of song is provided by examination of Figure 3C.  

Here, represented in a single dimension, the held-out data from the reference song fit the probability distribution 

from the reference model well; very little of the data (histogram) fall outside the model (blue line).  The same 

data are less well matched to the probability distribution for the comparison song; some data fall outside the 

model (Fig. 3C, purple arrow).  Thus, the log-likelihood of these data given the reference song model is higher 

than that of the same data given the comparison song model and the magnitude of this difference determines the 

CE.  However, the likelihood of the data is not influenced by portions of the distribution of the comparison song 

model that are not occupied (red arrow) by data from the reference song.  Hence, contrast entropy will be low if 

the tutee (comparison) learned all elements of the tutor (reference) song well, but will be unaffected by tutee 

song content that is not present in the tutor song (e.g. song content innovated by the tutee; we discuss later how 

our approach can be extended to quantify innovation by the tutee).

CE closely parallels human assessment of learning outcomes

We evaluated CE as a holistic measure of song similarity through comparison of CE to human scoring 

(Fig. 4).  We used both CE and human scoring to assess learning in five cohorts of Bengalese finches.  Each 

cohort was tutored with a different song (cohort tutor song).  Figure 4A shows an example of the cohort tutor 
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song for one group (top) and 5 tutee songs that illustrate a broad range in the quality of copying.  For each 

cohort, four expert human evaluators independently estimated the similarity between each tutee’s learned song 

and the tutor song on a scale of 0-4, with 0 being most similar.

Across all five groups, CE and human scores were well correlated.  Figure 4A shows the average human 

and CE scores assigned to 5 example tutee songs from one cohort.  The rank ordering of similarities for these 

five songs relative to the tutor song was the same for CE and human scores; the learned songs are displayed from

top to bottom in order of decreasing similarity to the tutor song by both measures.  Figure 4B shows the 

correlation between CE and average human scores for 65 birds from the 5 cohorts (r=0.72, p<0.01).  When 

calculated for each cohort individually, the median CE-human correlation was high (Fig. 4C,human-computor 

correlation).  We compared these CE-human correlations to Human-Human correlations.  For each cohort of 

birds, the scores of each evaluator were correlated with the average scores provided by the other evaluators (Fig. 

4C, human-human correlation).  The correlation between CE and human scores was comparable to the 

correlation between different humans’ scores.  Together, these results indicate that CE provides a holistic and 

automated assessment of song learning that closely parallels human evaluation.

As an additional reference for ‘poor learning’, we also computed CE relative to each cohort tutor song 

for two additional groups of birds: ‘isolate birds’ that were raised without exposure to any tutor, and ‘unrelated 

birds’ that were raised with a tutor different from any of the five cohort tutors.  CE indicates information from 

the reference song that is missing from comparison songs.  Consistent with this, CE for isolate songs that contain

atypical vocalizations was higher than that for songs from normally tutored birds (Fig. 4A, example ‘isolate 

song’ and Fig 4D, summary comparisons, p<0.01, Wilcoxon rank test).  Similarly, CE for songs from birds that 

copied an unrelated tutor was also higher than that for songs from birds that learned from cohort tutor (Fig. 4A, 

example ‘unrelated song’ and Fig. 4D, summary comparisons; p<0.01, Wilcoxon rank test).  

Quantification of changes in the spectral content of song due to deafening

Many studies assess changes in song structure following various manipulations.  One such manipulation,

deafening, produces gradual deterioration of song structure and has been used extensively to provide insights 
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into the mechanisms of song learning[6,7,18].  However, as with learning, quantitative assessment of song 

deterioration following deafening has often relied on human inspection[6,18].  To determine whether CE 

captures this deterioration we examined the songs of seven Zebra finches before and after deafening.  We used 

CE to evaluate changes in song spectral content between baseline reference songs (before deafening) and 

comparison songs from the same birds two, four, six, and eight weeks post deafening.  Figure 5A illustrates 

spectrograms from baseline songs and corresponding portions of post-deafening songs for 3 birds that 

qualitatively exhibited small (green), medium (yellow) and large (blue) changes to syllable spectral content.  

Figure 5B shows post deafening CE trajectories for 9 birds.  These data reveal a gradual and continuous loss of 

song information over time (as quantified by CE), and demonstrate our approach as a sensitive method for 

evaluating changes in song following manipulations such as deafening.  

Robustness of similarity measures to parameter choices.

Our approach is intended to provide a measure of song similarity that requires little in the way of user 

intervention and selection of parameters.  Correspondingly, all of the foregoing analyses were based on a specific

instantiation of our approach using fixed values for parameters that could in principle be set by a user.  Here we 

consider how different choices of parameter values affect similarity measures and demonstrate that CE measures 

are indeed very robust across a brand range of values.  The specific parameters that we consider are 1) the 

number of ‘target’ syllables drawn from both the reference song and the comparison song, 2) the number of 

‘basis’ syllables used for the PSD similarity basis set, and 3) the number of mixture components in the GMM 

used to model the structure of each song.  In addition to these numerical choices, our approach as described 

above uses the PSD for each syllable as a representation of the spectro-temporal complexity of song.  We 

therefore also consider and discuss below how different choices of song representation could affect similarity 

measures or extend our approach to capture other aspects of song structure.

There are two numerical values important to CE that are necessarily under experimenter control: the 

number of target syllables from the song to be modeled (N) and the number of syllables in the basis set (M).  To 

determine appropriate values, we conducted numerical titrations of both the number of target syllables in the 
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input data set (Fig. 6a and S1) and the number of syllables in the basis set (Fig. 6b and S2).  For each of 44 birds,

CE (relative to the corresponding tutor song) was calculated using 100, 200, 500, 1000, 2000, and 3000 target 

syllables from the songs that were being modeled (both reference and comparison songs).  For each number of 

target syllables, we computed CE values for the 44 birds and correlated these CE values with CE values 

determined with 3000 syllables.  Not surprisingly, CE values with little input data showed substantial deviation 

from the 3000 syllable CE values (Fig. 6a and S1A).  However, for target syllable numbers above ~500, CE-CE 

correlations approached an asymptote, indicating little change to CE similarity measures above this value (Fig. 

6a and S1B-D).  We therefore used a fixed value of 3000 target syllables to model song structure throughout our 

analysis.  For the same set of birds, CE values were calculated using 5, 10, 20, 40, 80, and 160 basis syllables.  

CE-CE correlations were calculated relative to CE values derived using the 160 PSD basis set.  CE-CE 

correlations approached an asymptote for basis set numbers above ~25 (Fig. 6b and S2).  For computational 

efficiency and to constrain the number of free parameters in our GMMs, we therefore used a basis set of 50 

syllables throughout the study.  These data indicate that CE measures of song similarity are robust to changes in 

numbers of target and basis syllables above threshold minimum values and therefore that out approach can be 

deployed effectively with fixed values of these parameters that do not require human tuning. 

The number of Gaussian mixtures required to model the spectral complexity of a given song was 

selected automatically using Bayesian Information Criteria.  However, the number of Gaussian mixtures can in 

principle be set to different values, for example in cases where the experimenter has an independent basis for 

modeling a song with a specific number of discrete syllable types. We therefore evaluated the robustness of CE 

similarity measures to variation in the number of Gaussian mixture components.  Specifically, we calculated the 

squared error between CE values when calculated using the number of mixture components determined by BIC 

(nBIC) and CE values calculated using a series of other models in which the number of mixture components 

ranged from nBIC-4 through nBIC+4 (Fig. 6C and S3).  These values were used in both the reference model and 

the comparison model.  CE was very robust to variation in the number of mixture components; squared errors for

all CE comparisons were above 0.96 (Fig. 6C, n=44, p<0.001 for all correlations).  

Throughout the analyses described above, we used a single PSD to capture the spectro-temporal content 
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of a given syllable.  At each frequency represented, this single PSD encodes acoustic power averaged across the 

duration of the entire syllable (Fig. 2B) effectively capturing syllable spectral content collapsed across time.  

Accordingly, time dependent spectral information is not captured by these representations and this missing 

information may influence CE values.  We therefore compared CE calculated using single PSDs per syllable 

with a series of CE values calculated using multiple PSDs per syllable where each syllable was divided into 

equal duration blocks (2, 5, or 10 blocks per syllable) and PSDs were calculated for each block (Fig. 6D and S4).

CE calculated with single PSD syllable representations was well correlated with CE calculated with 10 PSDs per

syllable (Fig. 6D and S4A; n=44, r2=0.78).  This strong correlation suggests that much of the spectro-temporal 

information in a syllable is captured in single PSD representations.  For purposes of computational efficiency, we

therefore use a single PSD to represent syllable spectral content for song modeling and calculation of CE. 

Syllable identity assignments provided by GMMs are well correlated with human assignments

Our contrast entropy measure is intended primarily to provide a holistic measure of song similarity 

between a reference song and comparison song.  As part of this process we model the structure of each song 

using a GMM in which an intuition is that each fit Gaussian corresponds approximately to what a human 

observer would label as a single categorically defined syllable type.  The assignment of syllables to specific 

Gaussian mixtures is not required for the computation of CE, which relies solely on the models fit to the 

distribution of (unlabeled) syllable similarity data.  However, it is of potential interest to know how effectively 

assignment of syllables to different Gaussian mixtures results in a categorization of syllables by type that 

matches human labeling of syllables.  Such automatic labeling of syllables has potential utility in objectively 

determining the number of distinct syllable types in a bird’s song repertoire and facilitating the assignment of 

labels corresponding to these types to large amounts of song data. 

Here, we explicitly examine the correspondence between syllable labels assigned using the GMM for 

each song to labels assigned by expert human evaluators.  For each of 90 birds, syllables were labeled by 

determining the maximum posterior probability for assignment of syllable identity under the GMM fitted to 

songs of that bird (see Methods).  These classifications were then compared with classifications provided by 
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human inspection.  Figure 7A illustrates labeled syllable categories for songs from two example birds.  For some

birds (e.g. upper panel) there was perfect concordance between human assigned (black) and GMM assigned 

(red) labels (categories).  However, for most birds there were some discrepancies between human and GMM 

assigned labels (e.g. lower panel, gray box).  To determine the accuracy of GMM based classifications, for 90 

birds, all assignments were inspected by an expert human observer and the classification of each was determined

to be accurate or inaccurate (Fig. 7B).  Overall, 50% of birds had 96% or better correspondence between human 

and GMM assignments, while 80% of birds had 93% or better correspondence (Fig. 7C).  This correlation 

between human and GMM based syllable classification indicates that much of the complex information 

subjectively used by humans to classify song syllables is incorporated into the GMM models that were used to 

model song structure.  

In this analysis, the spectral structure of each syllable was modeled using only a single PSD computed 

from the entire syllable (Fig. 2B).  To ask whether a richer spectro-temporal representation of each syllable 

would increase concordance between human and GMM assignments, we built GMM models as above, but with 

10 separate PSDs, evenly spaced over the duration of each syllable, used as an input representation for each 

syllable.  We previously found that this richer syllable representation had little effect on CE measures of song 

similarity (Fig. 6D).  In contrast, for the specific assignment of syllable labels, this richer representation resulted 

in significantly improved correspondence between human assignments and GMM assignments of syllable labels 

(Fig. 7D).

Discussion

We demonstrate an approach for analysis of song and song learning that is computationally efficient and 

automated.  We use syllable spectral content to assemble statistical models for song that can then be used to 

estimate the amount of spectral information present in one song but absent in another.  Our measure of song 

similarity, the contrast entropy (CE), is well correlated with holistic song similarity scores provided by expert 

human evaluators while providing several critical advantages.  CE is automatically computed and thus consistent

given the same data, where human assessment is less reliable both across individuals and over time.  Because CE
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is automatically and efficiently computed, we can analyze large amounts of data (many thousands of songs) 

facilitating dense analysis of learning across time and, for any given comparison, incorporating much more song 

data in assessments of learning than can be accomplished by a human evaluator.  Importantly, this also obviates 

the need for selection of specific samples of song for comparison, and results in measurements of similarity that 

neither require, nor are potentially biased by, human intervention in selection of representative samples of song 

for analysis.  Human evaluators of song learning also require species-specific training to ensure reliability and 

increase consistency across individuals.  We show that our approach can be applied, with no modification, to two

different songbird species vocalizations, indicating that this approach can be readily extend to analyze other 

vocalizations and other complex but similarly structured data.

CE is asymmetrical in that it estimates the amount of spectral content in a reference song that is missing 

from a comparison song.  This asymmetry can be exploited to address distinct conceptual questions contingent 

on the reference-comparison relationship.  In the case of birdsong, when the reference is tutor song, and the 

comparison is tutee song, the measure indicates how much information from the tutor song was not learned by 

the tutee.  Reciprocally, if the reference is tutee song, and the comparison is tutor song, CE indicates how much 

information in the tutee song did not come from the tutor, providing an estimate of “innovation”.

We specifically focused on assessing the learning of song spectral content, but the general framework of 

comparing the shared information between statistical models can be extended (or restricted) to different 

categories of song information by changing the statistical descriptions of song.  For example, an analysis might 

focus on the means of syllables but not the rendition-to-rendition variation.  In this case, syllable variances 

would be excluded from cross entropy estimation.  Alternatively, the model could be extended to include, not 

only spectral content, but also syllable transition information using a Hidden Markov Model (HMM) with 

Gaussian emissions.  HMMs have been effectively used in the past to model song transition structure with 

human assigned syllable identities[19].  If song structure was modeled using HMMs with Gaussian emissions,  

CE would indicate discrepancies in spectral content as well as syllable ordering.  Hence, our general approach to 

the evaluation of learning can be applied to any aspect of song that can be incorporated into a statistical model.

Beyond song learning, our approach allows fitting GMMs to sparse, high dimensional data.  GMMs 
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have been difficult to fit to high dimensional, sparse data, (like song PSDs) partially because standard 

marginalization based dimensionality reduction approaches (e.g. principle components analysis) remove 

covariance structure which is potentially critical to fitting accurate GMMs[20].  Here we reduce the 

dimensionality and the sparseness of our data via calculation of syllable-syllable similarities.  Our results 

indicate that this intuitive approach allows modeling high dimensional data sets within a framework that 

facilitates quantitative and meaningful comparisons.  Similarity matrices are already used in the context of 

spectral[21] and hierarchical[22] clustering, but neither approach provides a statistical description (provided by 

GMMs) of data and, thus, cannot be easily used for information theoretic calculations.  Our approach may have 

broad application to high dimensional problems where statistical descriptions can be leveraged for more accurate

classification or where information theoretic calculations are desired.

Methods

Song recordings

For audio recording, animals were single housed in sound isolation chambers (Acoustic Systems).  

Songs were recorded digitally at a sampling frequency of 32 kHz and a bit depth of 16 then stored uncompressed

using custom Python or LabView (National Instruments) software.  Recording microphones were placed in a 

fixed position at the top of the cage housing the bird.  Prior to further analysis, all songs were digitally high pass 

filtered at 500 Hz using a digitally implemented elliptical infinite impulse response filter with a passband edge 

frequency of 0.04 radians.

Syllable segmentation

Discrete units of sound separated by silence (syllables) were identified based on amplitude.  First an 

“amplitude envelope” was created by rectifying the song waveform then smoothing the waveform through 

convolution with an 8 ms square wave.  This amplitude trace was then used, through thresholding, to identify 

periods of vocalization.  To automatically identify a threshold capable of separating vocalizations from silence, 

we used Otsu's method[23].  Briefly, Otsu's method is an exhaustive search to identify a threshold that minimizes
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the shared variance between data above threshold and data below threshold.  Once the threshold is established, 

“objects” are identified as contiguous regions of the amplitude envelope over threshold.  To eliminate short and 

spurious threshold crossing that can occur at the edge of syllables where syllable amplitude is low, any objects 

separated by a gap of 5 ms or less are merged, and then any objects shorter than 10 ms are eliminated.  The 

onsets and offsets of each object are padded by 3 ms and then used to segment audio data from the original 

filtered waveform.  We refer to each of these segments of audio data as syllables.

Power spectral density estimation

To estimate frequency information of syllables while removing temporal information, we calculated the 

power spectral density for each syllable at 2048 frequencies using Welch's method[17].  Briefly, the PSD was 

computed via FFT for successive 4096 sample windows (at 32kHz), each overlapping by 256 samples.  These 

were then averaged over the duration of the syllable, and the power in the frequency range 600 Hz – 1600 Hz 

(sampled at 1970 points) was used as the PSD for the syllable. 

Similarity matrix

Instead of clustering syllables on their PSD values (sampled at 1970 points), we transformed each PSD 

into a syllable similarity representation.  For each of M syllables, the Euclidean squared distance between the 

PSD of that syllable and the PSDs of a basis set of N reference syllables was calculated creating an MxN 

distance matrix, D, in which Dij = ║pi – qj║2  where p is the vector of M syllable PSDs and q is the vector of basis

set syllable PSDs.  We then calculated A, a similarity matrix, where Aij=1 / (Dij / max(D)).  For each bird in our 

main analysis presented in results, an M=3000 data syllables and N=50 reference basis syllables were used.

Gaussian mixture model and parameter estimation

We model each song as a Gaussian mixture model fit to the distribution of syllables in the syllable 

similarity space.  These GMMs[14] are defined as:
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p ( x|θ )=∑
k−1

K

π k N ( x|μk ,∑ )
(1)

Where K is the number of mixing components, �k is the mixing weight, �k is the vector of means, and �k is the 

full covariance matrix for component k. The values of �={�k, �k, �k} are the parameters. The values of �k and �k

are initialized using the K-means algorithm and then estimated through standard expectation-maximization[15]. 

The value of �k is 1/k for all k.  The values of x are the observed data.  For this work, the implementation of 

expectation-maximization for GMMs in the scikit-learn software package[24] was used.

Model estimation.  

We conducted model selection to identify the number of Gaussian mixtures needed to describe a song.  

For each bird, we fit, as described, a series of GMMs to song data.  The set of models had increasing numbers of 

Gaussian components (K), ranging from 2-20.  For each model we calculated a three-fold cross validated 

Bayesian information criterion (BIC)[16], a measure of model fit that is penalized for increasing model 

complexity.  As the number of Gaussian components increase, the BIC decreases to a minimum value and then, 

as the number of Gaussian components proceeds beyond optimal, the BIC increases again.  The number of 

Gaussian components in the model with the lowest BIC value was used to model each song’s structure for 

purposes of song similarity comparisons. 

 

Information theoretic measurement of song similarity

In order to quantify the similarity of two songs, we follow the procedure described above to derive two 

song models, one from a reference song (i.e. the song of an adult tutor, or baseline song of a bird prior to a 

manipulation such as deafening) and one from a comparison song (i.e. the song of a tutee, or song of a bird 

following a manipulation such as deafening).  We then calculate how much worse (in bits of information) the 

model based on the comparison song is than the model based on the reference song at explaining held out data 

from the reference song.  Mathematically, this is a difference between two cross-entropies (or Kullback-Leibler 

divergence).  Here we refer to this quantity as contrast entropy, defined as follows:
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H c (R|| (P,Q ) )  = H (R,P )−H (R,Q ) (4)

Where Hc is the contrast entropy, P is the density function for the model fit to the reference data set, Q is the 

density function fit the comparison data set, R is the true (but unknown) density function of the reference data. 

H(R,P) is the cross entropy between P and R, and H(R,Q) is the cross entropy between Q and R.  Hc is calculated 

as:

H c (R|| (P,Q ) )  =  −∑
n−1

N
1
N

log2 p (rn )+∑
n−1

N
1
N

log2q (rn ) (5)

where N is the size of a set of syllable similarity data (r) from the reference song, log2 p (rn ) is the log likelihood

of that data under the GMM (p) fit to a different set of reference data, and
log2q (rn) is the log likelihood of that 

data under the GMM (p) fit to data from the comparison song.  Intuitively, Hc is an estimate of how much worse 

the comparison (e.g. tutee) model is at explaining the true data from the reference song (e.g. tutor) than a model 

based on different (held out) data from the reference song.  Alternatively, Hc can be viewed as an estimate of the 

information present in the reference song that is absent in the comparison song. 

Syllable classification

For each syllable, the GMM based syllable classification was calculated as the maximum posterior 

probability over the K syllable types defined by each of the Gaussian mixtures in the fit model.  Calculated as:

zn=argmax
k

p(k|xn ,θ ) (2)

    =argmax
k

π k N (xn|μk ,∑ j
)

∑ π j N ( xn|μ j ,∑ j
)

(3)

Where zn is the assigned syllable type.

Human scoring

Contrast Entropy estimates of song similarity created by our method were compared with assessments 
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made by humans experienced in song analysis.  We considered 5 groups of songs, corresponding to 5 nests in our

colony.  Each group consisted of a tutor reference song (the adult male breeder in the nest) and multiple tutee 

comparison songs (between 8 and 20 tutee songs per group, corresponding to juveniles that were hatched and 

raised to independence in the nest of the adult male tutor).  These groups were chosen such that each of the tutor 

songs were qualitatively distinct, and each group of tutees expressed a broad range in the quality of tutor song 

copying.  Human judges that had extensive experience in song analysis were presented with spectrograms 

(frequency range from 500-10000 Hz) representing four samples of tutor song and four sample of each tutee 

song.  Four seconds of each of the four sample songs were presented on the same time scale in a single 

representation. Human judges assigned a score between zero (high similarity to tutor), and four (low similarity to

tutor), to each tutor-tutee song pair.

Deafened birds

Deafening data were presented previously in Kojima et. al. 2013[24].  For each of seven birds, song

was recorded before deafening and at two, four, six, and eight weeks post deafening.  In each case the amount of 

information loss at any time post deafening was taken with reference to the pre-deafening, baseline song.
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Fig 1.  Quantification of song learning is complicated by variety in both learning and failure to learn.
(A) Typical sample of song from an adult Bengalese finch.  Song is composed of a set of categorically 
distinct syllable types (labeled ‘A’, ‘B’, ‘C’…) that are organized into larger, repeated, sequences (gray 
bars).  Both the spectral structure of syllables and their sequencing are learned features of song.  Hence,
song is a complex, high dimensional behavior that differs across individuals.  (B) Song of an adult male
‘tutor’ and (C) songs of four juvenile ‘tutees’ that were all exposed to the same tutor song, illustrating 
variation in the quality of song learning. (Ci) Song from a tutee that learned the spectral content of the 
tutor song well, producing a song with accurate copies of all syllables.  (Cii) Song from a tutee that 
copied all syllables, but with noisier versions than those present in the tutor song.  (Ciii) song from a 
tutee that failed to copy some of the syllables from the tutor song.  (Civ) song from a tutee that 
included ‘new syllables’ that were not clearly present in the tutor song.
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Fig 2.  Assembly of statistical models for song.  (A) To assemble a statistical model for the song of a 
given bird, we first segment all syllables from a set of songs produced by that bird and compute their 
corresponding PSDs.  (B) Three examples of segmented syllables, each of a different type, and their 
corresponding PSDs.  (C) For each of 3000 ‘target’ syllables from the song to be modeled, similarity of
PSDs is calculated relative to a basis set of PSDs for 50 syllables randomly drawn from the same song. 
This creates an M (number of basis syllables) by N (number of target syllables) similarity matrix.  (D) 
Visualization of how transformation of raw syllable data into the syllable similarity matrix results in a 
clustering of syllables by type.  Each point in the plot indicates the similarity between the PSD for one 
target syllable and two basis PSDs (‘basis PSD1’ and ‘basis PSD2’) from the set of 50 basis PSDs.  For 
clarity of exposition, only data that fall into one of three regions of high density are plotted here.  Each 
of these regions corresponds approximately to multiple instances of one syllable type (which cluster 
near each other because of the similarity in their PSDs).  In practice, there were more than three regions
of syllable clustering (corresponding approximately to the number distinct syllable types in the bird’s 
song), and these regions were represented in the 50 dimensional space defined by the basis set of PSDs 
(only two of which are illustrated here).  The regions of high density in this similarity space were fit 
with a Gaussian mixture model, in which the optimal number of Gaussian mixtures was determined by 
Bayesian Information Criteria.  Individual data points here are color-coded by their assignment to one 
of three Gaussian mixtures, with data points corresponding to 6 additional Gaussian mixtures not 
shown.  In any single dimension (top and right) data points assigned to each Gaussian mixture were 
approximately normally distributed.  (E) Similarity matrix shown in C, reordered so that data are 
grouped by assignment to each of 9 Gaussian mixtures fit to the data (represented by colored blocks at 
the right of the similarity matrix).   In this reordered representation, it is apparent that syllables 
assigned to each Gaussian mixture have a shared ‘bar code’ reflecting a shared pattern of PSD 
similarity values relative to the basis PSDs.  The spectrograms at the right illustrate that syllables 
assigned to a given Gaussian mixture tend to be of the same type.
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Fig 3.  Estimation of the amount of spectral information present in the reference (tutor) song that is 
absent from the comparison (tutee) song. (A) Example reference and comparison songs.  To compute 
contrast entropy for these songs, we first fit GMMs to the data from each song.  (B) Representation in 
one dimension of the GMMs fit to song spectral content for both the reference song (left) and the 
comparison song (right).  (C) We then calculate the log-likelihood of reference song syllables withheld 
from model fitting (light blue histogram) under both the model for the reference song and the model for
the comparison song.  Spectral content present in the reference song and not well represented in the 
comparison song model (purple arrow) will result in lower likelihood.  Consequently, the difference 
(CE) between the two (reference song and comparison song) log-likelihoods will increase if there is 
information present in the reference song that is absent from the comparison song.  However, 
information present in the comparison song, but not in the reference song (orange arrow) will not 
impact the CE.
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Fig 4.  Contrast entropy closely parallels human assessment of learning outcomes.  The quality of 
learning for individuals from five cohorts, each with a distinct tutor song, were evaluated by contrast 
entropy (CE) and human inspection.  (A) Example spectrograms of the tutor song from one cohort and 
the songs of 5 tutees from the same cohort (cohort B).  Also shown for comparison is the song of one 
isolate bird, raised without tutor song exposure (isolate song), and the song from one bird raised with a 
different tutor (unrelated bird song).  Numbers at left indicate the CE and human similarity scores for 
each song relative to the tutor song from cohort B.  (B) There was a good correspondence between CE 
and human evaluations of learning across a broad range. Here, human scores are the average of four 
human judges.  Across all five cohorts, CE and human scores were well correlated (p < 0.01, r = 0.722, 
OLS). (C) Comparison of CE and human scores for each of the five cohorts.  Human-computer 
correlation (left) shows the correlation between CE values and average human scores for each of the 
five cohorts.  Human-human correlation (right) indicates the correlation between the scores of each of 4
individual humans and the average of the remaining human scores for each cohort.  Medians are 
indicated as gray bars. (D) Summary of CE scores for the five cohorts (gray) were significantly lower 
than scores from a cohort of unrelated birds (purple, p < 0.01, Wilcoxon rank test) and from a cohort of 
‘isolate birds’ raised without a tutor (red, p < 0.01, Wilcoxon rank test).  Across all panels, bird cohort 
identity is indicated by color.
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Fig 5. Quantification of changes to song following deafening.  (A) Spectrograms from before (pre), two
weeks, and six weeks post deafening for three Zebra finches demonstrate typical disruption to the 
spectral content of song due to deafening.  (B) CE values indicating information missing from post 
deafening songs relative to baseline reference songs for nine birds at two, four, six, and eight weeks 
following deafening.  Colors indicate bird identity, with green, yellow and blue in panels A and B 
illustrating data from birds that had small, intermediate and large changes to song spectral structure 
following deafening.
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Fig 6. Contrast entropy song similarity measures are robust to variation in defined parameters.
(A) Plot of r2 values for correlations between CE calculated using a range of input data sizes and CE 
calculated using 3000 syllables of input data. (B) Plot of r2 values for correlations between CE 
calculated using a range of basis set sizes and CE calculated using a 160 syllable basis set. (C) Plot of r2

values for correlations between CE calculated using the number of mixture components (k) determined 
by BIC (nBIC) and CE calculated using a number of mixture components ranging from nBIC-4 to 
nBIC+4. (D) Plot of r2 values for correlations between CE calculated using a single PSD representation 
of a syllable and CE calculated using a 10 PSD representation.
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Fig 7.  GMM derived syllable classifications are correlated with human syllable classifications. (A) 
Examples of labels assigned to two songs by human inspection (black) and GMM (red).  For many 
birds, there were no differences between human assigned and GMM assigned labels (e.g. upper panel). 
However, for some birds, there were discrepancies (e.g. gray box, lower panel).  (B) Erroneous GMM 
classifications can be identified by inspection of spectrograms for groups of syllables assigned to a 
given Gaussian mixture.  Illustrated here are two examples of groups of syllables assigned to individual
Gaussian mixtures, where it is apparent in each case that a single syllable (gray boxes) is miss-
classified relative to human assignment.  For 90 animals, the number of miss-classified syllables was 
determined by such human inspection of groups of syllables that were assigned to each Gaussian 
mixture.  (C) Distribution of the percent of correctly classified syllables (per-bird) is shown in red with 
a gamma distribution fit to these data shown in black.  50% of animals had greater than 96% correctly 
classified syllables (blue line) while 80% had more than 93% correctly classified syllables (purple 
line).  (D) Distribution of the percent of correctly classified syllables per bird is shown as in C, but here
with categorization carried out in which the input representation of each syllable to the GMM includes 
10 PSDs evenly spaced over the duration of the syllable, rather than a single PSD for the entire 
syllable.  Using this richer representation of syllable, 50% of animals had more than 99% correctly 
classified syllables (blue line) while 80% had more than 96% correctly classified syllables (purple 
line).  
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