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Abstract

Motivation: Large pharmacogenomic screenings integrate heterogeneous cancer genomic data sets as
well as anti-cancer drug responses on thousand human cancer cell lines. Mining this data to identify new
therapies for cancer sub-populations would benefit from common data structures, modular computational
biology tools and user-friendly interfaces.
Results: We have developed GDSCTools: a software aimed at the identification of clinically relevant
genomic markers of drug response. The Genomics of Drug Sensitivity in Cancer (GDSC) database
(www.cancerRxgene.org) integrates heterogeneous cancer genomic data sets as well as anti-cancer drug
responses on a thousand cancer cell lines. Including statistical tools (ANOVA) and predictive methods
(Elastic Net), as well as common data structures, GDSCTools allows users to reproduce published results
from GDSC, to analyse their own drug responses or genomic datasets, and to implement new analytical
methods.
Keywords: Drug discovery, ANOVA, Elastic Net, Lasso, cancer cell lines, GDSC, genomic mutations
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1 Introduction
Cancers occur due to genetic alterations in cells accumulated through the
lifespan of an individual. Cancers are genetically heterogeneous and as a
consequence patients with similar diagnoses may vary in their response to
the same therapy. The path towards precision cancer medicine requires the
identification of specific biomarkers, such as genetic alterations, allowing
effective patient selection strategies for therapy.

Large-scale pharmacological screens such as the Genomics of Drug
Sensitivity in Cancer (GDSC) (Garnett et al.,2012) and Cancer Cell Line
Encyclopaedia (CCLE) projects (Barretina et al.,2012) have been used
to identify potential new treatments and to explore biomarkers of drug
sensitivity in cancer cells. In particular, the GDSC project releases database
resources periodically (www.cancerRxgene.org) (Yang et al.,2013). A
recent installment of this resource (version 17, v17 hereafter) includes
cancer-driven alterations identified in 11,289 tumors from 29 tissues
across 1,001 molecularly annotated human cancer cell lines, and cell line
sensitivity data for 265 anti-cancer compounds. A systematic identification

of clinically-relevant markers of drug response uncovered numerous
alterations that sensitize to anti-cancer drugs (Iorio et al.,2016).
Here, we present GDSCTools, a Python library that allows users to perform
pharmacogenomic analyses as those presented in (Iorio et al.,2016). Our
software complements an existing tool (Smirnov et al.,2016) by giving
access to the full GDSC dataset and providing a powerful platform for
statistical analyses and data mining through visualization tools. In the
following, we briefly describe the GDSCTools features, including common
data structures, statistical tools and machine learning approaches.

2 Data formats and data wrangling tools
The GDSC database provides large-scale genomics and drug sensitivity
datasets. The drug sensitivity dataset contains dose-response curves (e.g.,
cell viability for 5 - 9 drug concentrations) which can be used to derive
drug sensitivity indicators (Vis et al.,2016; Garnett et al.,2012), such as
the half-maximal inhibitory concentration (IC50) or the area under the
curve (AUC) (See Fig. 1-A). In GDSCTools, IC50 indicators are encoded
as a Nc ×Nd matrix, where Nc is the number of cell lines labeled with
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their COSMIC identifier (http://cancer.sanger.ac.uk/cosmic) andNd is the
number of drugs. For a given drug, we denote with Yd the vector of IC50s
across theNc cell lines. The genomic feature datasetX is also encoded as a
Nc×Nf matrix, whereNf is the number of genomic features. In addition
to a subset of the v17 data files available in GDSCTools, users can also
retrieve additional data sets online (e.g., methylation data, copy number
variants, etc.). Database-like queries can be used to extract and use specific
features (e.g., only gene amplifications or deletions). These database-
like functionalities are part of the OmniBEM builder (see supplementary
section).

3 Data analysis tools
Using GDSCTools, genomic features can be investigated as possible
predictors of differential drug sensitivity across screened cell lines. The
statistical interaction Yd ∼ X between drug response and genomic
features can be tested within a sample population of cell lines from
the same cancer type with a t-test. However, to account for possible
confounding factors (including the tissue of origin, when performing
pan-cancer analyses) a more versatile analysis of variance (ANOVA) is
implemented. In this model the variability observed inYd is first explained
using the tissue covariate, subsequently using additional factors (e.g.,
microsatellite instability denoted by MSI), and finally by each of the
genomic features inX (one model per feature). This can be mathematically
expressed as Yd ∼ C(tissue) +C(MSI) + . . .+ feature, where the
C() operator indicates a categorical variable. An ANOVA test is performed
for each combination of drug and genomic feature (Fig. 1-B). Outcomes of
this large number of tests (Nd×Nf ) are corrected for multiple hypothesis
testing using Bonferroni or Benjamini-Hochberg corrections. To account
for p-value inflations due to differences in sample sizes, the effect sizes
of the tested statistical interactions (computed with the Cohen and Glass
models) are also included (Fig. 1-C).

Unlike the ANOVA analysis that is performed on a one drug / one
feature basis, linear regression models assume that drug response can be
expressed as a linear combination of the status of a set of genomic features.
GDSCTools includes 3 linear regression methods: (i) Ridge, based on
an L2 penalty term, which limits the size of the coefficient vector; (ii)
Lasso, based on an L1 penalty term, which imposes sparsity among the
coefficients (i.e., makes the fitted model more interpretable); and (iii)
Elastic Net, a compromise between Ridge and Lasso techniques with a
mix penalty between L1 and L2 norms (see supplementary for details).
The linear regression methods require optimisation of anα parameter (mix
ratio between L1 and L2). This is performed via a cross validation to avoid
over-fitting. The best model is determined using as objective function the
Pearson correlation between predicted and actual drug responses on the
training set. The final regressor weights are outputted as shown in Fig. 1-
D. Significance of the final selected models is computed against a Monte
Carlo simulated null model.

4 Implementation and future directions
GDSCTools is available on http://github.com/CancerRxGene/gdsctools.
It is fully documented on http://gdsctools.readthedocs.io. Pre-compiled
versions of the library are available on https://bioconda.github.io/.
GDSCTools can be used via standalone applications to analyse a user
defined set of drugs (and genomic features) and assemble the results in
an HTML report. We also provide solutions based on the Snakemake
framework (Köster and Rahman,2012) to parallelize the analysis on
distributed cluster farm architectures such as LSF or SLURM (see
supplementary data). Besides analysis of pharmacogenomic datasets,
GDSCTools can provide the framework for discovering new biomarkers

Fig. 1. Panel A: drug response (cell viability versus drug concentrations) and derived drug
response metrics (AUC and IC50s). Panel B: distribution of IC50s in response to a given
drug across a dichotomy of cell lines induced by the status of a genomic feature. Panel
C: p-values from an ANOVA analysis versus signed effect sizes (all drug-genomic feature
interactions). Panel D: weights distributions resulting from training a sparse linear regression
model of a given drug response using all the genomic features.

through integration/mining of novel and heterogeneous data sets, including
pharmacological, RNA interference or increasingly available genetic
screens (e.g., CRISPR), alternative drug response metrics (e.g., AUC), or
implementing new analytical tools. The augmentation of genomic features
with information obtained from online web services (Cokelaer et al.,2012)
like pathway enrichment (e.g., via OmniPath (Turei et al.,2017)) will
further extend functionality and usefulness of GDSCTools.
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5 Supplementary

5.1 Code and Installation

GDSCTools source code is available on GitHub website at
http:// www.github.com/cancerRxgene/gdsctools and a pre-compiled
version is available on Bioconda channel. It has an extended documentation
hosted on http://gdsctools.readthedocs.io. We have also included a
large set of functional tests to assess results’ reproducibility. Changes
made to the code are tested automatically via the Travis continuous
integration framework so that changes that affect the analysis or normal
behaviour may be caught early. Finally, GDSCTools makes use of
existing open source libraries such as scikit-learn (Pedregosa et al.,2011)
for the machine learning tools, and statsmodels (Seabold et al.,2010) for
advanced statistical analysis.

GDSCTools can be installed from the source code. However, we
recommend using the Anaconda framework. Information can be found on
https://www.continuum.io/downloads. Once the software is installed, an
executable called conda provides pre-compiled versions of many scientific
libraries. In addition, GDSCTools itself is exposed on one of the Anaconda
channel called Bioconda. Consequently, having Anaconda pre-installed
makes the installation of GDSCTools easier and quicker. The commands
needed to select the Anaconda channel to be used (once for all) are the
following ones:

conda config --add channels r

conda config --add channels defaults

conda config --add channels conda-forge

conda config --add channels bioconda

Then, GDSCTools can be installed as follows:

conda install gdsctools

This will take care of all dependencies required by GDSCTools.
Further details can be found in the http://gdsctools.readthedocs.io website
(installation section).

5.2 Data

5.2.1 IC50 indicators
The first data object that GDSCTools uses by default contains
IC50 indicators, summarising the effect of drug treatment across a
large collection of cell lines using experimental protocols detailed
in (Garnett et al.,2012; Iorio et al.,2016). These indicators were derived by
applying a curve-fitting algorithm to raw cell counts data, via a multilevel
mixed model (Vis et al.,2016). These (or any other user defined drug
response indicators) must be stored in a CSV file, which can be optionally
compressed (gzip format). In this file, the header must contain an entry
named COSMIC_ID: this column will contain the COSMIC identifiers of
the cell lines, one per line. The following entries should contain drug
identifiers (one integer per column). The order of the columns is not
relevant. Each row should contain IC50s for a given cell line (identified
through its COSMIC_ID), across all the tested drugs. Here is an example
of the data format for 2 cell lines and 3 drugs

COSMIC_ID, 1, 20, 40

111111, 0.5, 0.8, 10

222222, 1, 2, 10

Further details can be found within the GDSCTools on-line documentation
http://gdsctools.readthedocs.io/en/master/data.html. Worthy of note is that
in this data object, IC50s can be replaced by any kind of scalar data (e.g.,
AUCs). To read the IC50s file shown above, the following commands
should be used (assuming that the object is saved into a file named
ic50.csv):

Fig. 2. Drug response (cell viability upon exposure to different drug concentrations) and
derived drug response metrics (AUC and IC50).

1 from gdsctools import *

2 ic50 = IC50("ic50.csv")

This allows the data to be accessed as a DataFrame and used with various
descriptive statistics and plotting functions.

5.2.2 Genomic features
The second data set required by GDSCTools is the Genomic Features data
set. All the implemented analyses are performed on the cell lines included
in both the IC50s and the Genomic Features data object and this intersection
is determined at the level of COSMIC identifiers. As a consequence,
cell lines that are not included in both matrices will be discarded. In
addition to the COSMIC identifiers, the Genomic Features file should
contain the following columns: TISSUE_FACTOR, MSI_FACTOR and
MEDIA_FACTOR that can be used in the ANOVA or linear regression
models as explained hereafter. All remaining columns should refer to
individual genomic features, whose status (positive or negative) in a
generic i−th cell line should be indicated with a binary entry in the i−th
line.
An example is reported below.

COSMIC_ID, TISSUE_FACTOR, MSI_FACTOR, BRAF_mut

111111, lung_NSCLC, 1, 1

222222, prostate, 1, 0

To read this Genomic Features object saved for example in the gf.csv file,
the following commands should be executed:

1 from gdsctools import *

2 gf = GenomicFeature("gf.csv")

The genomic feature data is accessible as a DataFrame with plotting and
statistical capabilities.

5.2.3 Data retrieval and data wrangling
In GDSCTools, we embedded several data sets either for testing purposes
or to serve as full scale examples. One such type of data is related to the
version 17 (v17) of the GDSC database used in (Iorio et al.,2016). A subset
of the genomic features and IC50s used in (Iorio et al.,2016) are provided
inside GDSCTools, which includes IC50s of 265 drugs across 988 cell
lines. In parallel, a Genomic Features file encompassing the status of 677
genomic features (copy number alteration and cancer gene mutations) on
the same set of cell lines is provided. Alternatively, GDSCTools contains
built-in functions to retrieve and to analyse more data from the GDSC
database. This currently encompasses data sets including 29,214 gene
variants, 2,436 copy number variations (deletion and amplification) and
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10,581 differentially methylated gene promoters across 1,002 cancer cell
lines. For instance, the following code downloads all GDSC data from
(Iorio et al.,2016) locally in a data directory (line 3). One can filter the
data to keep only a sub set of Core Genes used in the published analysis.
1 from gdsctools import *

2 data = GDSC1000 ()

3 data.download_data ()

4 data.filter_by_genes("Core Genes")

More generally, we provide the OmniBEM Builder module that allows
the user to merge different levels of annotations from the GDSC web-
portal into a single gene-level view that merges together different types
of alterations (for example mutations and copy number amplifications
involving the same gene). Users can additionally specify which sets of
genomic annotations to integrate as well as upload and integrate their own
sets of genomic annotations.

5.3 ANOVA

5.3.1 Details
GDSCTools implements functions to perform a systematic analysis of
variance (ANOVA) to identify statistically significant interactions between
genomic features and drug responses. To this aim IC50s and Genomic
Features data object must be created first (as explained in the previous
section).
The implemented model is fully detailed in (Iorio et al.,2016) and
(Garnett et al.,2012). Briefly, for each drug a drug response vector is
assembled consisting of n IC50s values, derived from treating n cell lines
with the drug under consideration, as explained in the previous sections.
The implemented model is linear with no interaction terms, dependent
variables represented by the described vector and independent factors
including tissue type, and screening medium (for the pan-cancer analysis
only), microsatellite instability status (for the cancer types with positive
samples for this feature) and the status of a genomic feature. For all the
tested gene-drug associations, an indication of their effect size is estimated
considering the pooled standard deviation of the analysed IC50s population
(Cohen’s d), or the individual standard deviations (quantified through two
different Glass deltas), for the IC50s populations of the cell lines that are
respectively positive or negative for a given genomic feature. P-values and
all other statistical scores are obtained from the fitted models. A genomic-
feature/drug pair is tested only if at leastn cell lines are contained in the two
sets resulting from the dichotomy induced by the status of the considered
genomic-feature (for example at least 3 positive cell lines and at least 3
negative cell lines), and n can be defined by the user.
The resulting p-values are corrected (all together those obtained
in the pan-cancer analysis and on a cancer type basis those
obtained in a given cancer-specific analysis), with a user-chosen
method among Bonferroni (Bonferroni,1935) or Benjamini-Hochberg
(Benjamini-Hochberg et al.,1995).

5.3.2 Examples
From GDSCTools Python library, which is fully documented on
http://gdsctools.readthedocs.io, users can read the IC50s and Genomic
Features files, perform the analysis and create HTML reports highlighting
the identified significant interactions and meaningful models. Here is the
code to perform these tasks:
1 from gdsctools import *

2

3 anova = ANOVA(ic50_test ,

genomic_features_test)

4

5 results = anova.anova_all ()

6 results.volcano ()

7

8 report = ANOVAReport(anova , results)

Fig. 3. Distribution of IC50s for a given drug and genomic feature. The wild type is shown
on the left and the IC50s corresponding to the mutated cell lines are shown on the right.

Fig. 4. Summary of the ANOVA analysis across all drugs and all features (ADAF). p-
values from the ANOVA analysis are shown versus signed effect sizes. Red horizontal lines
indicates several false discovery rate (FDR) that is the rate of type I errors in null hypothesis
testing when conducting multiple testing corrections (such as Bonferroni correction).

9 report.create_html_pages ()

On line 1, the entire library is loaded. On line 3, the ANOVA class is
called. The first and second arguments are the IC50s and Genomic Features
files. Here, we use two test files embedded in GDSCTools (only 11 drugs,
47 mutations, 10 tissues). This is for test purposes and can be replaced
with other files. On line 5, we run the ANOVA analysis. This may be
time consuming depending on the number of drugs and genomic features,
although this example would take only a few seconds on a typical desktop
computer. Once the analysis is completed, users can look at results with
multiple visualisation routines. For example in the form of volcano plots 4
that shows the p-values versus signed effect size for each combination of
drug and genomic features. An alternative to the Python library is to use a
standalone application from a shell. It is named gdsctools_anova and has
its own online help. Consider this code:
1 gdsctools_anova -I IC_v17.csv.gz -F

GF_v17.csv.gz

This performs the ANOVA analysis on each drug and genomic feature of
the version 17 of the GDSC data. Then, it creates HTML reports that can
be browsed to inspect the significant associations more closely. The two
data files can be found within the GDSCTools library or downloaded as
follows

wget https://tinyurl.com/ycavjd37 -O IC_v17.csv.gz
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wget https://tinyurl.com/y7nn6e5h -O GF_v17.csv.gz

5.4 Regression analysis

The Elastic Net model is a linear regression model trained with L1 and L2
priors as regularizer. The objective function to minimize is defined as

1

2N
‖Yd −Xw‖22 + αρ‖w‖1 +

α(1− ρ)
2

‖w‖22 . (1)

Where Yd as defined before contains the IC50s for all cell lines
for given drug and X contains the genomic features for the same
cell lines. Here we will use the notations used in the scikit-learn
library (Pedregosa et al.,2011). The mixing parameter ρ (with 0 ≤ ρ ≤ 1)
controls the combination of L1 and L2 penalties. For ρ = 1 the penalty is
an L1 penalty (Lasso) while for ρ = 0 we have an L2 penalty (Ridge). In
the Elastic Net analysis, we fix ρ = 0.5 but it can be changed by the user.

The equation above allows for learning a sparse model where few of the
weights are non-zero like Lasso, while still maintaining the regularisation
properties of Ridge. Elastic-net is useful when there are multiple features
which are correlated with one another. Lasso is likely to pick one of these
at random, while elastic-net is likely to pick both.

Before proceeding with an analysis, we need to minimize the function
and optimize the alpha parameter. In order to avoid over-fitting, we hold
out part of the available data as a test set and perform a cross validation on
a training set. When performing a k folds, we train the model with k-1 of
the training data and the resulting model is validated on the remaining part
of the data. The performance measure reported by k-fold cross validation
is the average of the values computed on the k − 1 models. The metric
used to select the best model is the Pearson correlation between predicted
and actual drug responses. We scan the range of α parameter and select
the best α. In Fig. 6 we show the Pearson coefficient along the log of an
α parameter.

5.5 Running analysis with Snakemake pipelines

In parallel computing, an embarrassingly parallel problem is one where
little or no effort is needed to separate the problem into a number of
parallel tasks. In GDSCTools, each drug can be analyzed independently
of the others. The analysis is therefore an embarrassingly problem. In
GDSCTools, developers can write their own pipelines and run analysis
locally, however, we also provide Snakemake pipelines that can be easily
run on various clusters (e.g., LSF, SLURM).

5.5.1 Linear models
The initialisation of the pipeline works as follows:
1 gdsctools_regression -I ic50.csv

2 -F features.csv

3 --method lasso

4 --output -directory analysis

This command creates a directory called analysis where a pipeline encoded
with the Snakemake framework (Köster and Rahman,2012) is copied.
The pipeline filename is regression.rules. In addition, a configuration file
named config.yaml is also provided. A snapshot of the pipeline workflow
is shown in Fig.5. This is a simple example with 4 drug responses. Of
course, real case examples would include hundreds of them.

Each drug is analysed in the same way with a linear model analysis
(e.g. Lasso). The results of the analysis as well as images representing the
weights are stored in sub directories. Finally, HTML reports are created
for each drug and a summary page is also created.

The configuration file is the entry point for the end user who can
change some parameters such as the regression method, the number of
cross validations to perform or the number of null models to compute to
compare the best model obtained with a null hypothesis (where Y variable
is randomized).

Fig. 5. Directed acyclic graph representation of the sparse linear regression pipeline (e.g.,
Lasso). Each drug can be analyzed independently of the others. We provide Snakemake
pipelines that can be easily run on various clusters (e.g., LSF, SLURM). In this example,
the input data sets contains 4 drugs (top layer) that can be analysed at the same time. Once
the analysis is over, the get_results and get_weights gather the results. Finally, plots and
reports are created. The outcome is a HTML file summarising the analysis.

Fig. 6. Tuning of the α parameter of a linear regression model. Using a 10-folds cross
validation, for a given drug and a set of genomic features, we scan the α parameter space
to obtain the best α that maximises the Pearson correlation (indicated by the green vertical
line).

Here is the configuration, which can easily be edited and adapted to
your needs.
1 regression:

2 method: lasso

3 kfold: 10

4 randomness: 50

5

6 input:

7 ic50: ic50.csv

8 genomic_features: gf.csv

Once the configuration file is available, one can start the analysis as
follows. On a local computer (using 4 CPUs):
1 snakemake -s regression.rules -j 4

Or on a cluster, you may add the following information (for instance
on a SLURM system):
1 snakemake -s regression.rules -j 40 --cluster

"sbatch --qos normal"

where -j 40 indicates that we wish to use 40 cores.
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